SCOPE OF WORK

SUPPLEMENTAL STANDARDS-RELATED FIELDWORK

SALT LAKE CITY UMTRA PROJECT SITE

SALT LAKE CITY, UTAH

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
SCOPE OF WORK

SUPPLEMENTAL STANDARDS-RELATED FIELDWORK
SALT LAKE CITY UMTRA PROJECT SITE
SALT LAKE CITY, UTAH

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 SCOPE AND OBJECTIVES</td>
<td>1</td>
</tr>
<tr>
<td>2.0 SITE DESCRIPTION</td>
<td>1</td>
</tr>
<tr>
<td>2.1 Site location and access</td>
<td>1</td>
</tr>
<tr>
<td>2.2 Surface conditions</td>
<td>1</td>
</tr>
<tr>
<td>2.3 Subsurface conditions</td>
<td>4</td>
</tr>
<tr>
<td>2.4 Other conditions</td>
<td>4</td>
</tr>
<tr>
<td>3.0 STATEMENT OF WORK</td>
<td>4</td>
</tr>
<tr>
<td>3.1 HydroPunch® investigation</td>
<td>4</td>
</tr>
<tr>
<td>3.1.1 HydroPunch® subsurface logging methods</td>
<td>4</td>
</tr>
<tr>
<td>3.1.2 HydroPunch® ground water sample collection methods</td>
<td>5</td>
</tr>
<tr>
<td>3.1.3 HydroPunch® hole abandonment methods</td>
<td>5</td>
</tr>
<tr>
<td>3.2 Well point installation</td>
<td>5</td>
</tr>
<tr>
<td>3.2.1 Well point installation methods</td>
<td>5</td>
</tr>
<tr>
<td>3.3 Site restoration</td>
<td>6</td>
</tr>
<tr>
<td>4.0 DELIVERABLES AND SCHEDULE</td>
<td>6</td>
</tr>
<tr>
<td>4.1 Deliverables</td>
<td>6</td>
</tr>
<tr>
<td>4.2 Schedule</td>
<td>6</td>
</tr>
<tr>
<td>4.2.1 Weather delays</td>
<td>7</td>
</tr>
<tr>
<td>4.2.2 Standby time</td>
<td>7</td>
</tr>
<tr>
<td>4.2.3 Work day</td>
<td>7</td>
</tr>
<tr>
<td>5.0 CONTAMINATION PREVENTION</td>
<td>7</td>
</tr>
<tr>
<td>6.0 FIELD DOCUMENTATION</td>
<td>8</td>
</tr>
<tr>
<td>7.0 PERMITS AND LICENSES</td>
<td>8</td>
</tr>
<tr>
<td>8.0 HEALTH AND SAFETY</td>
<td>8</td>
</tr>
<tr>
<td>9.0 SUBCONTRACTOR PERFORMANCE</td>
<td>12</td>
</tr>
</tbody>
</table>
SUBCONTRACT NO. 05-62350-G-95-00__

SCOPE OF WORK
SUPPLEMENTAL STANDARDS-RELATED FIELDWORK
SALT LAKE CITY UMTRA PROJECT SITE
SALT LAKE CITY, UTAH

FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Location of the Salt Lake City, Utah, Vitro processing site</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Detailed site map showing proposed HydroPunch™ logging and sampling locations</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Daily field activity report</td>
<td>9</td>
</tr>
</tbody>
</table>

TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Suggested health and safety plan outline</td>
<td>10</td>
</tr>
</tbody>
</table>
1.0 SCOPE AND OBJECTIVES

This scope of work governs the field effort to conduct transient in situ (hereafter referred to by the trademark name HydroPunch®) investigative subsurface logging and ground water sampling, and perform well point installation services at the U.S. Department of Energy’s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site near Salt Lake City, Utah. The HydroPunch® and well point services subcontractor (the Subcontractor) shall provide services as stated herein to be used to investigate the subsurface, collect and analyze ground water samples, and install shallow well points.

This project will be conducted by Jacobs Engineering Group Inc. (JEG), the Technical Assistance Contractor (TAC) (the Contractor) for the DOE’s UMTRA Project.

2.0 SITE DESCRIPTION

2.1 Site location and access

The Salt Lake City Vitro processing site is 4 miles (6 kilometers) southwest of the center of Salt Lake City. The site comprises 128 acres (52 hectares) at the northeastern corner of the intersection of 3300 South Street and 900 West Street (Figure 1). The Central Valley Water Reclamation Facility (CVWRF) sewage treatment plant is located on adjacent property north of the central portion of the site (Figure 2). The CVWRF board now owns the Salt Lake City Vitro processing site, except for a 25 by 25-foot (ft) (8 by 8-meter) strip of land surrounding the municipal water supply well and an easement owned by the city of South Salt Lake. Access to the site (including utility clearance) is the responsibility of the Contractor. The Subcontractor shall abide by all access agreements and conditions.

2.2 Surface conditions

The Salt Lake City Vitro site is in the lower part of the Jordan River basin. The site is located on a generally flat plain, gently sloping to the northwest. The 128-acre former Vitro processing site is in a primarily urban area in the city of South Salt Lake. As the metropolitan area expanded, the land usage around the site changed from agricultural and limited residential to industrial use.

All HydroPunch® and well point locations will be generally accessible and located away from buildings, structures, or overhead hazards.
Figure 1
Location of the Salt Lake City, Utah, Vitro Processing Site

Salt Lake City

Salt Lake City limits

International airport

Jordan River

Salt Lake City

University of Utah

Salt Lake City processing site

Legend

15 Interstate highway
17 State highway
- Perennial stream

Not to scale
Figure 2: Detailed Site Map Showing Proposed HydroPunch® Logging and Sampling Locations
Salt Lake City, Utah, Vitro Processing Site

Legend

- 133 Number and location of well screened in the shallow, unconfined aquifer
- Fence
- Paved road
- Railroad track
- Interstate highway
- Proposed HydroPunch® location
- CVWRF Central Valley Water Reclamation Facility
- Building

Designated site boundary

Scale:
500 0 500 1000 Feet
150 0 150 300 Meters
2.3 Subsurface conditions

The lithology underlying the Salt Lake City Vitro site consists of a thick sequence of Quaternary lacustrine-fluvial deposits with minor alluvial overburden. Borehole samples from previous investigations indicate the shallow materials consist of unconsolidated silt, clayey-silt, silty-clay, and lenticular sands. These sediments are complexly interbedded and correlation between individual boreholes is sometimes difficult. However, a grey clay layer up to 3 ft thick generally is present 12 to 15 ft below the ground surface beneath the entire site and the CVWRF.

The ground water regime in the Salt Lake City Vitro site vicinity generally is characterized by two aquifer systems: a shallow, unconfined system and a deeper, confined system. This investigation will focus on the shallow, unconfined system, which is approximately 45 ft thick. Ground water levels in the unconfined aquifer in the area of the investigation range from 5 to 15 ft or more below the ground surface.

2.4 Other conditions

It is the responsibility of the Subcontractor to have knowledge regarding all general, local, and other conditions that may affect the cost of subcontract execution (including the suitability of the Subcontractor’s equipment to access borehole locations and perform the work). In no event shall 1) failure to inspect the site, 2) a lack of knowledge of general and local conditions, or 3) the suitability of the Subcontractor’s equipment constitute grounds for a claim by the Subcontractor.

3.0 STATEMENT OF WORK

3.1 HydroPunch® investigation

A HydroPunch® probe will be used to penetrate the subsurface at as many as 11 locations at the Salt Lake City site. The proposed location of each HydroPunch® hole is shown in Figure 2. At each location, the HydroPunch® system will be used to log the subsurface lithology underlying the site and collect ground water samples from discrete depth intervals as directed by the Field Technical Representative (FTR). Unit costs for both logging and sample collection will be estimated on a per foot basis as outlined in Exhibit B, Pricing Schedule, of this Statement of Work.

3.1.1 HydroPunch® subsurface logging methods

At each proposed location, a rig-mounted hydraulic system will be used to push the HydroPunch® probe to a total depth of 40 ft below the ground surface. The probe will be equipped with a piezometer cone which will record tip resistance, sleeve friction, and pore pressure during the entire length of the HydroPunch® push. The tip resistance and sleeve friction data collected will be used to indicate relative changes in the subsurface lithology with depth at each location. The pore pressure data
will be used to calculate the depth of the potentiometric surface of the unconfined aquifer at each location in order to delineate sample intervals for the collection of ground water samples.

3.1.2 HydroPunch® ground water sample collection methods

Based on the HydroPunch® piezometer cone data, two sample intervals will be selected for the collection of ground water samples at each location. The first ground water sample will be collected from approximately 5 ft below the static water level, within a depth interval of 10 to 25 ft below ground surface (BGS). The second ground water sample will be collected from near the bottom of the HydroPunch® hole, within a depth interval of 35 to 40 ft BGS. A minimum sample volume of 2500 milliliters (mL) of ground water will be collected from each sample interval. The Contractor will submit a portion of the sample aliquot to an offsite laboratory for analysis. The Contractor will use remaining portion of the sample aliquot to perform field parameter testing and onsite uranium analysis. The results from the onsite uranium analysis will be used to guide the course of the investigation. As a result, the number of proposed HydroPunch® holes to be installed and sampled may be reduced based on uranium analysis results. Any delays in HydroPunch® rig operation due to Contractor activities will be paid as standby time to the Subcontractor. A general contingency for standby time has been included as a line item in Exhibit B of this Statement of Work.

3.1.3 HydroPunch® hole abandonment methods

All HydroPunch® holes will be abandoned by installing a grout backfill from the bottom of the hole to the land surface. The grout shall be pumped as one continuous activity to completely fill the open hole. The grout shall consist of Portland cement (ASTM C150, Type I, II, or V) mixed with up to 5 percent commercial bentonite powder. Unit costs for hole abandonment will be estimated on a per-hole basis as outlined in Exhibit B of this Statement of Work.

3.2 Well point installation

Based on data obtained from the HydroPunch® investigation, a polyvinyl chloride (PVC) well point will be installed at as many as 5 of the 11 HydroPunch® locations. Unit costs for well point installation will be estimated on a per-foot basis as outlined in Exhibit B of this Statement of Work.

3.2.1 Well point installation methods

Using the HydroPunch® hydraulic system, each well point will be pushed to a nominal total depth of approximately 15 ft BGS. The actual completion depth of each well point will be determined from the adjacent HydroPunch® data derived at the well point location. The well points will be constructed using 1.5- or 2.0-inch outer diameter (O.D.), Schedule 40 PVC, with a 5-ft-long well screen coupled to a 10-ft-long riser pipe. The
well screen interval will extend from 10 to 15 ft BGS. The Subcontractor is required to provide and install well head protection that will consist of a flush-mounted vault cemented in place with a lockable cover. Unit costs for the installation of well head protection will be estimated on a per-vault basis as outlined in Exhibit B of this Statement of Work.

3.3 Site restoration

The drilling subcontractor shall restore each drill site and routes of ingress and egress to their predrilling conditions.

4.0 DELIVERABLES AND SCHEDULE

4.1 Deliverables

All Subcontractor deliverables, with the exception of field copies of piezometer cone logs shall be submitted in accordance with Exhibit C, Delivery Requirements, of this Statement of Work.

Prior to mobilization, the Subcontractor shall submit a draft outline itemizing the contents of the final data report. The outline must be approved by the Contractor before fieldwork can proceed.

During the execution of HydroPunch® logging activities, one copy of all field logs shall be provided to the FTR for inspection and approval prior to releasing the Subcontractor’s HydroPunch® operator.

Within 15 days of completion of all field operations, the Subcontractor shall submit a draft data report to include 1) a bound document (three copies) containing copies of each original HydroPunch® log suitable for blueprint production and 2) two electronic copies of each original log on 3.5-inch diskette. The Contractor will review the draft data report and provide comments to the Subcontractor within 5 working days. Comment resolution between the Contractor and Subcontractor will be conducted by telephone correspondence. The Subcontractor will submit the final data report to the Contractor within 5 working days of comment resolution. The final data report has been included as a line item in Exhibit B of this Statement of Work and payment will be contingent upon receipt and approval of the report by the Contractor.

4.2 Schedule

Work shall commence 14 days after award of the contract and must be completed within 5 days (with adjustments to be made for weather days and standby time as described in the following paragraphs, as applicable). The Subcontractor shall submit a work schedule for approval by the Contractor along with their bid. It is expected that the Subcontractor will perform the work on a continuous basis until the work is completed.
4.2.1 Weather delays

Credit of days lost due to weather shall be added to the period of performance. A “weather day” applies to any normal work day when weather conditions deteriorate to the point that site work is neither safe or practical and when four hours or less have been worked. The Subcontractor in consultation with the FTR will decide whether or not to continue work activities. All Subcontractor personnel must be present on site and be available for work in order to be eligible for a weather day. The Contractor will pay for any work performed at the stipulated rates plus per diem.

4.2.2 Standby time

Standby time shall be paid when authorized by the FTR. Standby time is associated with lost work time caused by Contractor activities. The Subcontractor shall be paid in accordance with the stipulated standby time rate. Standby time will not be paid for Subcontractor breakdown, equipment failure, missing equipment, or insufficient supplies where the program has to be shutdown. Standby time compensation is limited to delays caused by the Contractor that include extended time periods spent for onsite ground water sample collection, field parameter testing, or radiological analysis. Weather days or weather delays will not be compensated as standby time.

4.2.3 Work day

The work day shall be limited to the period of time starting no earlier than one-half hour before sunrise and ending no later than one-half hour after sunset. In all cases, the Contractor reserves the right to limit or restrict the length of the work day based on safety (e.g., worker fatigue). In all cases, the Subcontractor is responsible for adhering to all local, state, and federal labor laws, rules, and regulations as applicable to the Subcontractor’s personnel.

5.0 CONTAMINATION PREVENTION

The Subcontractor shall at all times make diligent efforts to prevent the contamination of the HydroPunch® holes or ground water samples collected. These efforts shall preclude the introduction of foreign, toxic, and/or other contaminating substances into the borehole. Such items include, but are not limited to oil, greases, lubricating fluids, and fuels.

Additionally, equipment decontamination using a hot, high-pressure washer shall be required to remove oily or greasy hydrocarbon substances from vehicles and equipment prior to the start of site work or at the direction of the FTR. To avoid cross contamination between HydroPunch® holes or ground water sample intervals, the HydroPunch® probe and/or sampling equipment shall be thoroughly rinsed with potable water upon completion of any HydroPunch® logging or sampling event at each location.
6.0 FIELD DOCUMENTATION

The FTR shall maintain a daily record of all progress made on the project. This record will include a list of all pay items expended each day and shall be recorded on a Daily Field Activity Report (Figure 3). The Subcontractor shall review this record each day with the FTR, and a Subcontractor representative shall sign each record to verify the accuracy of each record. Unresolved discrepancies regarding pay items shall be documented for future review and resolution by Contractor and Subcontractor representatives. A copy of each Daily Field Activity report will be provided to the Subcontractor to assist in billing.

7.0 PERMITS AND LICENSES

The Subcontractor shall abide by the requirements of all permits, letters of authorization, and laws that are applicable to the performance of the project. The Subcontractor shall be in possession of those valid and appropriate licenses necessary to perform this scope of work.

8.0 HEALTH AND SAFETY

The Subcontractor shall take all reasonable precautions in the performance of work under this subcontract to protect the environment and assure the safety of employees and the public. Work under this subcontract shall be conducted in compliance with the established health and safety regulation of the Occupational Safety and Health Administration (OSHA) 29 CFR Part 1910 and Part 1926 and referenced codes/regulations, the DOE, and other applicable regulations. DOE requirements that apply specifically to work activities and UMTRA Project sites are provided in the UMTRA Project Environmental Health and Safety Plan.

Upon notification of award of the subcontract, the Subcontractor shall submit a site-specific health and safety plan to the Contractor in Albuquerque, New Mexico. At a minimum, the Subcontractor’s health and safety plan must address the items listed in Table 1 and follow the TAC Site-Specific Health and Safety Plan for the Salt Lake City site presented in Attachment 1 of Exhibit A. In addition, the Subcontractor’s health and safety plan shall include:

- A photo, sketch, or drawing of the HydroPunch® rig and a description of its operation (the manufacturer’s specifications and literature are acceptable).

- A list of procedures employed during HydroPunch® operation, the anticipated hazards associated with each procedure, and the safety measures to be implemented to protect personnel from each hazard.

- The names, titles, and addresses of Subcontractor employee personnel who will be performing the work.

Work shall not proceed prior to the approval of the plan by the Contractor.
Daily Field Activity Report
Salt Lake City, Utah, Vitro Processing Site

<table>
<thead>
<tr>
<th>BILLABLE WORK</th>
<th>ITEM NO.</th>
<th>DATE UNITS</th>
<th>MON</th>
<th>TUE</th>
<th>WED</th>
<th>THUR</th>
<th>FRI</th>
<th>SAT</th>
<th>SUN</th>
<th>WEEKLY SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

FTR INITIALS:

SUBCONTRACTOR INITIALS:

MAC: SITE/SLC/SOW/ACT REPORT

-9-
Table 1. Suggested health and safety plan outline

<table>
<thead>
<tr>
<th>Site-Specific Health and Safety Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following are items that should be covered in the Subcontractor’s Site-Specific Health and Safety Plan:</td>
</tr>
</tbody>
</table>

General Information:

1. Site name
2. Project number
3. Dates will be performing field activities
4. Statement of work
5. Site location
6. Direction to the site
7. Primary company contact name and phone number
8. Company’s name

HAZARDOUS WASTE:

1. Types of waste generated
2. How wastes will be disposed of

HAZARD EVALUATION:

1. Include narrative of all anticipated hazards while performing work
2. Evaluate exposure hazard and potential for exposure to personnel
3. Anticipated control of hazards

Work Plan:

1. Describe in detail each task covered under the plan
2. All personnel and responsibilities involved in the work scope
3. Personal protective equipment to be used
4. Any anticipated field monitoring equipment needed
5. Decontamination procedures, if applicable
6. Where site entry will be made and parts of site to be accessed
7. Any anticipated work limitations such as time of day, temperature extremes, etc.

EMERGENCY INFORMATION:

1. Phone numbers for emergency such as police, ambulance, fire department, etc.
2. Phone for your regional safety coordinator, if one is available
3. Locations of site resources such as water supply, phone, radio, restrooms, etc.
Table 1. Suggested health and safety plan outline (Concluded)

<table>
<thead>
<tr>
<th>Site-Specific Health and Safety Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMERGENCY INFORMATION (Concluded):</td>
</tr>
<tr>
<td>4. Direction to the nearest hospital with map attached</td>
</tr>
<tr>
<td>5. Locations of first aid kits, material safety data sheet, fire extinguishers, etc.</td>
</tr>
</tbody>
</table>

TRAINING:

1. Documentation of employees' health and safety training, i.e., lockout/tagout, Hazcom, driver safety, first aid/CPR/bloodborne pathogen, as appropriate
2. Documentation of employees job-specific training
3. Statement that all employees' medical physicals are current
4. Records of company's past safety record
5. Academic credential of employees, as appropriate.

Equipment and Machinery:

1. Maintenance logs on all equipment
2. Necessary state/local licensing of equipment

Insurance coverage:

1. Documentation of workers' compensation or additional insurance
2. List of previous projects completed.
Prior to the mobilization of equipment and materials to the site, and periodically during the performance of the work, the FTR may perform a health and safety inspection of the Subcontractor’s equipment and operations. A checklist will be developed by the Contractor using the Subcontractor’s health and safety plan.

Contractor personnel will provide an UMTRA Project radiological health and safety orientation to Subcontractor personnel prior to the commencement of work. Additionally, the Contractor/Subcontractor work crew will conduct a daily “tailgate” health and safety meeting prior to the daily initiation of work. The health and safety meetings will be led by the FTR; input from all members of the Subcontractor’s personnel is strongly encouraged.

Work shall be suspended at any time conditions appear to be unsafe. Work stoppage can be requested by the FTR, other Contractor representatives, regulatory agencies, or any member of the Subcontractor’s team. Additional health and safety meetings or briefings can be held at any time that any member of the work team presents the request.

The Subcontractor shall provide all personal protective equipment (PPE) necessary to safely perform this scope of work. Examples of PPE that may be required are:

- Hard hat
- Safety boots
- Eye protection with side shields
- Hearing protection
- Coveralls
- Work gloves
- First aid kit
- Fire extinguisher

Accidents/injuries or “occurrences” involving Subcontractor personnel during the course of execution of this scope of work that result in lost time or medical treatment shall be promptly reported by telephone to the Contractor’s Albuquerque office. Prompt reporting of incidents is necessary to comply with DOE Orders and shall be accomplished as soon as possible after any critical condition(s) is (are) stabilized. Reporting shall not be deferred overnight. Both work and home phone numbers of appropriate incident contact Contractor personnel will be provided. Following the occurrence of a reportable incident, the Subcontractor shall submit a written incident report to the Contractor within 3 days.

9.0 SUBCONTRACTOR PERFORMANCE

An FTR, or an authorized Contractor representative designated by the FTR, shall be on the site at all times during the contract execution. The FTR provides Contractor representation in the field and is responsible for 1) determining compliance with the scope of work, and all attendant procedures and specifications; 2) observing that all work is conducted in a safe manner and that health and safety plan is followed; and 3) documenting the completion of work performed under this scope of work. If the FTR, or an authorized Contractor representative designated by the FTR, is not onsite, no work shall be performed.
ATTACHMENT
TAC SITE-SPECIFIC
HEALTH AND SAFETY SUPPLEMENT

FOR ____________Salt Lake City, UT__________

February 28, 1995
DATE

Larry E. Ross
TAG's ESH MANAGER

SITE MANAGER
SITE-SPECIFIC HEALTH AND SAFETY SUPPLEMENT
FOR Salt Lake City, UT

I. Objective

- Review the important safety and health items discussed in the UMTRA Project Environmental Health and Safety Plan,
- Define the hazards or potential hazards unique to the site such as biological, chemical, electrical and excavation,
- Recommend protective measures to control the existing hazards,
- Provide telephone numbers and locations of emergency medical, fire, and police services.

This plan is to serve as a supplement to the UMTRA TAC Site Health and Safety Plan developed for the field visitor.

II. Site Characteristics

The tailings pile at the mill site is:

Uncovered ____ The Remedial Action Contractor (RAC) is not present on the site. The tailings are exposed and contaminated areas may or may not be fenced and marked at the site. The attached map of the mill site shows the contaminated areas of the site.

In Process ____ The RAC is present on the site. Controlled areas have been fenced and marked.

While on site property controlled by the RAC, you are a visitor and your health and safety is the responsibility of the RAC. All TAC employees and subcontractors shall make the RAC aware of their presence on the site. All TAC employees and subcontractors shall be escorted by a RAC employee; or if unescorted, the employee shall be issued a site radio from the RAC. All TAC employees and subcontractors shall obey posted signs and follow all instructions given by the RAC. The RAC ES&H representative on the site is ____________________.

Where discrepancies exist between this plan and the RAC ES&H plan, the RAC ES&H plan supersedes this plan while employees are on property controlled by the RAC.

When working in the surrounding uncontrolled and off-site areas of the site not controlled by RAC (some sampling, biological, historical, and drilling activities), TAC employees and subcontractors shall follow this plan completely.
Complete

The site has been remediated. Although physical and industrial hygiene hazards still exist, the contaminated tailings are covered and no longer present a radiological hazard to TAC employees.

III. Radiological hazards

External exposure

There is potential for external exposure of personnel to penetrating gamma radiation from radionuclides in the piles. HP personnel will determine if it is necessary to wear a thermoluminscent dosimeter (TLD) before entering the controlled area.

Note: All personnel in the controlled area shall be surveyed for contamination before leaving the job site.

Internal exposure

The potential exists for ingestion and inhalation of radioactive dust and silica. To minimize airborne contamination hazards, the resuspension of dust by traffic and equipment should be reduced as much as possible. Respirators may be worn as a protective measure.

Eating, drinking, chewing gum, smoking, or chewing tobacco shall be prohibited while inside the controlled area, or while working on or around the tailings piles.

IV. Personal protective equipment

Personal protective equipment (PPE) shall be worn as required by the hazards of the work and/or the location of the site, as determined by the Job Hazard Analysis completed by employees and reviewed by the Health and Safety staff.

V. Site hazards

Use the TAC Pager system to report the discovery of an unknown material. This includes the discovery of unusual soil colors, stains, liquids, and strong or unusual odors that are not expected.

Hazardous chemicals (acids, bases, solvents, coolants, gases, plastics, epoxies and polymers, cleaners, fuels and other petroleum products) are on site. Personnel shall not move or handle any chemicals for which they have no responsibility. All chemicals shall be labeled, stored, and transported in accordance with the Department of Transportation and OSHA regulations by trained hazardous chemical shippers. Other chemical hazards at this site include:

Hazardous waste is not present on site.

Hazardous waste has not been found on the site, but could be present.
Hazardous waste is present on the site. The approximate location and known description are given on the accompanying map.

Since abandoned buildings may be structurally unsound and/or may contain hazardous materials, employees should not enter any abandoned buildings.

Some of the potential hazards arising from the multiple use of the site (i.e., historical uses other than uranium mining) include:

Explosives, uncovered holes, pits, or shafts may be present in or around the site area.

Appropriate safety precautions shall be observed when working over or near water.

Heavy equipment is operating on site. All personnel shall establish eye contact with the heavy-equipment operator, make appropriate gestures, and yield the right-of-way to heavy equipment.

Buried tanks have not been reported, but could be present.

Buried tanks are present on the site. The approximate locations of those that are known to exist are given on the accompanying map.

The local electric company, Utah Power and Light (801)220-2006, indicates there are:

- No electric power lines crossing the site.
- Buried electric power lines. Contact the utility company before beginning any drilling, excavation, or other activities that involve disturbing the ground.
- Buried utilities have not been identified or marked. Contact the utility company before any drilling, excavation, or other activities that involve disturbing the ground.
- Overhead electric power lines crossing the site. Contact the local utility company to determine the minimum distance of a crane or drilling rig to the lines, and the closest approach to a power line when in transit.

The local natural gas utility, in SLC, Mountain Fuel; in Clive, none.

- Indicates that gas pipelines do not cross the site.
- Indicates that gas pipelines are present on the site. Their locations are marked as follows: ____________________________.
- Must be consulted before drilling at the site. Call "Blue Stake" at (801)532-5000.
VI. Industrial Hygiene Hazards

Biological hazards include:

- Hantavirus from rodent feces
- Hepatitis "A" from wastes, sewers, or garbage created by worksite personnel
- Poisonous snakes and insects
- Other biological hazards at this site include:

Heat stress

Working in protective clothing can greatly increase the likelihood of heat stress, heat exhaustion, and heat stroke, the latter being a life-threatening condition. Employees shall be alert to the possibility and symptoms of heat stress. Should extreme fatigue, cramps, dizziness, headache, nausea, profuse sweating, or pale and/or clammy skin occur, the employee is to immediately leave the work area, rest, cool off, and drink plenty of cool water. Sufficient cool water and disposable drinking cups shall be in the rest area. If the symptoms do not subside after a reasonable rest period, the employee shall notify their supervisor and shall be provided medical assistance.

Cold Stress

Hypothermia is a physical condition that develops from cold exposure. Blood from the extremities concentrates in the body core, leaving the extremities susceptible to frostbite. A person with hypothermia becomes confused, sleepy, and irritable. They should be warmed immediately.

Frostbite is most likely to occur in extremities, especially fingers, toes, cheeks, and ears. The affected body parts may feel numb. Individuals may experience pain and loss of flexibility in the affected body part, and skin may become waxy or translucent.

Individuals who have frost bite should be moved to a warm room and covered with blankets. Frostbitten tissue should not be rubbed. Frostbite is a very serious condition that requires immediate medical treatment.
Severe weather/natural disasters

All employees shall stop work and seek appropriate shelter when severe weather threatens life or health, or when instructed to do so. Personnel working on structures should remove all tools, equipment, and materials and descend to ground level.

When an electrical storm is approaching, personnel should leave unprotected areas and seek appropriate shelter. Suitable shelter shall be all passenger vehicles, buildings and low areas or ground depressions. Arroyos and other drainage ditches are not suitable shelters due to possible flash flooding. Personnel working on or around drill rigs should distance themselves from the rig immediately.

Additional hazards at the site include:
VII. EMERGENCY INFORMATION FOR Salt Lake City, UT Site and Clive Disposal Site

FIRE: 911

AMBULANCE: 911

POLICE/SHERIFF: 911/(801)799-3100 SLC Police
(801)355-5860 Tooele Co. Sheriff

NEAREST AVAILABLE TELEPHONES: Businesses near former processing site. At Clive Disposal Site - the Envirocare Office (801)521-9619

NEAREST EMERGENCY ROOM: For SLC Site - St. Marks Hospital
3900 South 1200 East, SLC
(801)268-7111

For Clive Site - Salt Lake Regional Medical Center, 1050 East South Temple, SLC
(801)350-4111

TAC PAGER SYSTEM:
(USE IN ALL CASES. The system will notify H&S staff, site managers, other UMTRA staff as appropriate, and initiate reporting processes if necessary)

PAGER 1: (505) 845-0142 2465 + the area code and number where you are

PAGER 2: (505) 845-0142 2464 + the area code and number where you are

SITE TELEPHONE NUMBER: ___________________________

MK-F SITE H&S CONTACT: ___________________________

IMMEDIATE SUPERVISOR: ___________________________
Directions from SLC Sites
to Hospitals in Salt Lake City, UT

From Former SLC Processing Site

1. Exit the site onto West 3300 South Street.

2. Take either South 700 West Street or South 500 West Street south to 3900 South Street.

3. Turn left (east) onto 3900 South Street and follow it to St. Marks Hospital at 3900 South 1200 East.

From Clive Disposal Site

1. Exit the site and get on eastbound Interstate 80.

2. Follow Interstate 80 east to where it joins Interstate 15 in Salt Lake City.

3. Take Interstate 15 north.

4. Exit onto Hiway 186 (North Temple Street) and head east.

5. Where Hiway 186 turns south, follow it south to its intersection South Temple Street (about 1 block) and turn left (east) onto South Temple Street.

6. Follow South Temple Street east to the Salt Lake Regional Medical Center at 1050 East South Temple Street (see map).
Route from SLC Site
to St. Marks Hospital, SLC, UT
Route from Clive Disposal Site
to Salt Lake Regional Medical Center, SLC, UT
Route from Clive Disposal Site
to Salt Lake Regional Medical Center, SLC, U
EXHIBIT B

PRICING SCHEDULE
PRICING SCHEDULE

SUPPLEMENTAL STANDARDS-RELATED FIELDWORK

SALT LAKE CITY UMTRA PROJECT SITE

SALT LAKE CITY, UTAH

Prices for performing the work described in Exhibit A (Scope of Work) are based upon the following firm fixed-price values:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Unit</th>
<th>Estimated quantity</th>
<th>Unit price</th>
<th>Extended value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Mobilize/Demobilize</td>
<td>Lump Sum</td>
<td>1</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>2.0</td>
<td>HydroPunch<sup>®</sup> Operation</td>
<td>Foot</td>
<td>440</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>2.1</td>
<td>Piezometer Cone<sup>1</sup></td>
<td>Foot</td>
<td>605</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>2.2</td>
<td>Sample Collection<sup>2</sup></td>
<td>Foot</td>
<td>605</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>2.3</td>
<td>Grout Backfill</td>
<td>Hole</td>
<td>22</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>3.0</td>
<td>Well Point Installation<sup>3</sup></td>
<td>Foot</td>
<td>75</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>3.1</td>
<td>Install Well Points</td>
<td>Foot</td>
<td>75</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>3.2</td>
<td>Install Well Head Protection</td>
<td>Each</td>
<td>5</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>4.0</td>
<td>Standby Time</td>
<td>Hour</td>
<td>10</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>5.0</td>
<td>Final Data Report</td>
<td>Lump Sum</td>
<td>1</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

| Total Subcontract Cost | $ |

¹Piezometer Cone records tip resistance, sleeve friction, and pore pressure during entire length of HydroPunch[®] push.

²Assume each hole will be a total depth of 40 ft x 11 holes = 440 ft

³Footage is charged per sample run within each HydroPunch[®] hole. Example below.

- Sample Run 1: Sample collected at 15 ft x 11 holes = 165 ft
- Sample Run 2: Sample collected at 40 ft x 11 holes = 440 ft
- Total footage for sample collection = 605 ft

⁴Well point installation includes all materials and installation costs for 5 PVC well points completed at 15 ft BGS.

Signature ________________________________

Name ________________________________

Company ________________________________

Date ________________________________
EXHIBIT C

DELIVERY REQUIREMENTS
Delivery under this subcontract will be in accordance with Exhibit A, Scope of Work. Deliverables should be shipped, in accordance with Exhibit A, to the following address:

Jacobs Engineering Group Inc.
2155 Louisiana Blvd. NE, Suite 10,000
Albuquerque, NM 87110
Attn: Anchor Holm
Mark for: Subcontract 05-62350-G-95-00XX