Advanced sulfur control concepts for hot gas desulfurization technology. Quarterly report, October--December 1995

PDF Version Also Available for Download.

Description

In the area of gas analysis, most of the attention during the past quarter was devoted to gaining an understanding of the operation of the Antek total sulfur analyzer, and making appropriate modifications in the unit. The primary problem is that the resistance of the capillary flow restrictor is not large enough, and the amount of sulfur which reaches the UV-analyzer results in the analyzer becoming saturated. We have added a N{sub 2} diluent flow downstream of the pyrotube tube which, we believe, will permit the unit to be operated at pressures to about 50 psig. Use of larger diluent ... continued below

Physical Description

31 p.

Creation Information

Creator: Unknown. January 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Creator

  • We've been unable to identify the creator(s) of this report.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In the area of gas analysis, most of the attention during the past quarter was devoted to gaining an understanding of the operation of the Antek total sulfur analyzer, and making appropriate modifications in the unit. The primary problem is that the resistance of the capillary flow restrictor is not large enough, and the amount of sulfur which reaches the UV-analyzer results in the analyzer becoming saturated. We have added a N{sub 2} diluent flow downstream of the pyrotube tube which, we believe, will permit the unit to be operated at pressures to about 50 psig. Use of larger diluent flow rates to permit higher pressure operation is not feasible since larger diluent rates increase the back pressure on the quartz pyrotube (which operates at 1050{degrees}C) to unsafe levels. In the meantime, Antek is studying the redesign of the capillary flow restrictor to provide larger flow resistance. Studies on the regeneration of FeS in the atmospheric pressure reactor were almost completed during the quarter. Only a series of multicycle sulfidation-regeneration tests remains. The effects of reactive gas mol fraction and temperature have been examined using both O{sub 2}/N{sub 2} and H{sub 2}O/N{sub 2} atmospheres. The initial rate of regeneration was found to be a weak function of temperature and first-order in both O{sub 2} and H{sub 2}O concentration. In a test series in which the reactive gas contained both O{sub 2} and H{sub 2}O, the experimental initial rate was effectively equal to the sum of the individual initial rates, suggesting that the two reactions proceed independently of one another. Detailed correlation and statistical analysis of the data is currently being done. Principal effort during the quarter using the high pressure electrobalance was devoted to studying the regeneration of FeS in a H{sub 2}O/N{sub 2} atmosphere.

Physical Description

31 p.

Notes

OSTI as DE96004455

Source

  • Other Information: PBD: Jan 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96004455
  • Report No.: DOE/MC/30012--5178
  • Grant Number: AC21-94MC30012
  • DOI: 10.2172/243502 | External Link
  • Office of Scientific & Technical Information Report Number: 243502
  • Archival Resource Key: ark:/67531/metadc669375

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Nov. 18, 2015, 11:54 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Advanced sulfur control concepts for hot gas desulfurization technology. Quarterly report, October--December 1995, report, January 1, 1996; United States. (digital.library.unt.edu/ark:/67531/metadc669375/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.