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A USERS’ GUIDE TO PSTSWM 

Patrick H. Worley 
Brian Toonen 

The Parallel Spectral Transform Shallow Water Model (PSTSWM) is a code developed to 
evaluate parallel algorithms for the spectral transform method in global atmospheric circulation 
models. PSTSWM is also useful for benchmarking parallel platforms that use the message- 
passing parallel programming paradigm. In this report, we describe how to obtain, compile, 
and use the code. We also discuss what is involved in porting the code to a new parallel 
platform. 

- v -  





1. INTRODUCTION 

PSTSWM Version 4.0 is a message-passing benchmark code and parallel algorithm testbed that 
solves the nonlinear shallow water equations on a rotating sphere using the spectral transform 
method. PSTSWM was developed to evaluate parallel algorithms for the spectral transform 
method as it is used in global atmospheric circulation models [6]. Multiple parallel algorithms 
are embedded in the code and can be selected at run-time, as can the problem size, number of 
processors, and data decomposition. Six different problem test cases are also supported, each 
with associated solution and error analysis options. 

The extensive selection of run-time options are included to make a fair parallel algorithm 
comparison tractable. On each platform, each major algorithm is first tuned to achieve optimum 
performance before comparing between the algorithms. Developing, validating, maintaining, 
and executing separate versions of the code for each variant of each parallel algorithm would 
have been impossible. 

The algorithm comparison is also sensitive to problem specifics, motivating the run-time se- 
lection of the problem size and problem test case, and to the parallel platform. To avoid 
maintaining significantly different versions of the code for outwardly similar parallel architec- 
tures, PSTSWM has been structured to be easily ported. PSTSWM is written in Fortran 77 
with VMS extensions and a small number of C preprocessor directives. Message passing is 
implemented using MPI [2], PICL [8], PVM [7], or native message passing libraries, with the 
choice being made at compile time. Additionally, all message passing is encapsulated in three 
high level routines for broadcast, global minimum and global maximum, and in two classes of 
low level routines representing variants or stages of the swap operation and the send/receive 
operation. Porting the code to another message passing system requires either porting the 
MPI, PICL, or PVM libraries or implementing the (few) communication routines in PSTSWM 
using native message passing primitives. As of 4/1/95, PSTSWM has been run on the Intel 
iPSC/2, iPSC/860, DELTA, and Paragon (on both GP and MP nodes and using either the 
NX or SUNMOS operating systems), the nCUBE/2 and nCUBE/2S, the IBM SP-1 and SP-2, 
the Cray Research T3D, across a network of workstations, and on a Cray vector machine (as a 
serial application). In principle, it should also run on any other platform on which MPI, PICL, 
or PVM is available. 

To aid in tuning and in understanding the parallel performance, PSTSWM has been instru- 
mented for the collection of performance data using the PICL trace and profile collection 
interface. The PICL implementation of the code must be used in order to  collect performance 

1 



- 2 -  

data on interprocessor communication' but a mixed PICL/native implementation is also pro- 
vided that can be used to collect data on events not related to message passing. In the mixed 
implementation, the performance sensitive message passing uses native commands and PICL 
is only used in the collection of the performance data. 

The ability to easily port and tune PSTSWM on different message-passing platforms has made 
the code valuable as a fair benchmark. By comparing the run-times for the best parallel 
algorithm options on each platform, PSTSWM allows the parallel platform to be evaluated 
on its ability to run the numerical simulation, not just a particular parallel implementation. 
Thus, PSTSWM is a compromise between paper benchmarks [l], where most everything can be 
varied, at the cost of developing a parallel simulation code from scratch on each platform, and 
fixed benchmarks, where nothing can be varied even if the parallel implementation is unsuitable. 
The results on the best algorithm options also provide guidance on how to use a given platform 
most efficiently. Note that all parallel algorithms have been carefully implemented, eliminating 
unnecessary buffer copying and exploiting our knowledge of the context in which they are called. 

In this report, we describe the practical issues of how to use PSTSWM. In a future report, 
we will describe the code structure and embedded parallel algorithms in detail. Algorithm 
comparison results are described in [6]. Benchmark results are described in [18] and [5]. The 
benchmarking philosophy inspired by PSTSWM is described in [17]. 

The rest of this report is as follows. Chapter 2 gives a brief history of the development of 
PSTSWM. Chapter 3 describes how to obtain, build, and run the code. Chapter 4 describes 
the underlying problem and problem specification options. Chapter 5 describes the approach 
to parallelization and the parallel algorithm specification options. Chapter 6 describes per- 
formance data that can be collected and the performance data collection options. Chapter 7 
describes the compile time options, which specify maximum problem size and platform-specific 
parameters. Chapter 8 describes the model and timing data output produced by running the 
code. Chapter 9 briefly describes our benchmarking methodology and features in PSTSWM 
that support this usage. Chapter 10 describes how PSTSWM has been adapted to pecu- 
liarities of some of the target platforms. Chapter 11 discusses what is involved in porting 
PSTSWM to a new platform. Appendix A lists the sample problem input files included with 
the PSTSWM source code. Appendix B describes the differences between the general distribu- 
tion of PSTSWM, the PVM-only version used in the ParkBench v1.0 suite of benchmark codes, 
and the MPI-only version developed for inclusion in the next generation of the ParkBench suite. 

* 

lThe PICL message passing model is fairly rich, representing a substantial subset of both the NX [12] and 
MPI [2] low level primitives, and has been adequate for obtaining eificient message passing performance on most 
current message passing systems. But PICL message passing is not as efficient as the native commands on all 
systems. For example, the SHMEM remote read/write commands are significantly less expensive to use than 
are tagged message passing commands (like those used in PICL) on the T3D. 



2. HISTORY 

PSTSWM is a parallel implementation of the sequential Fortran 77 code STSWM 2.0, written 
by J. J. Hack and R. Jakob at the National Center for Atmospheric Research (NCAR) [lo]. 
STSWM was developed to provide the reference solutions to the seven test cases proposed by 
Williamsonet. al. in [14], which were chosen to test the ability ofnumerical methods to simulate 
important flow phenomena. In addition, STSWM was meant to serve as an educational tool 
for numerical studies of the shallow water equations, and is available from the netlib software 
repository [3] and via the World Wide Web from http://uvn. epm. ornl.gov/chnramp/stswm. 

PSTSWM was developed as an experimental vehicle for evaluating parallel algorithms for in- 
clusion in PCCM2 [4], the message passing parallel implementation of NCAR’s Community 
Climate Model CCM2 [9]. The data structures and algorithms used to solve the shallow water 
equations in STSWM are similar to those employed in CCM2 to handle the horizontal dynamics 
component of the primitive equations on a single vertical level [9]. By modifying PSTSWM to 
solve the shallow water equations on multiple (independent) vertical levels during each timestep 
of the simulation, the parallel performance of PCCM2’s horizontal dynamics can be studied in 
isolation from the other aspects of the full model. 

PSTSWM represents a complete rewrite of STSWM, but the underlying numerical algorithms, 
most of the test cases and analysis routines, and much of the user interface are unchanged. 
In particular, the primary index and loop orderings are unchanged, preserving the close corre- 
spondence to the numerical algorithms in CCM2. 

From the user’s point of view, there are four major differences between STSWM and PSTSWM. 
First, the graphics options in the analysis routines are not supported in PSTSWM. Second, 
reading in the solutions for test cases #5, #6, and #7 and writing out the spectral coefficients 
for the calculated solution are not supported in PSTSWjM. This eliminates test case #7, which 
depends on reading in real weather data. Both of these changes make PSTSWM easier to 
port by eliminating dependence on the NCAR graphics and netCDF libraries that are used to 
implement the graphics options and to input and output solution values, respectively. 

The other two differences between STSWM and PSTSWM represent additional capabilities. 
First, as mentioned above, PSTSWM solves the shallow water equations on multiple (fictitious) 
vertical levels. The number of levels is a run-time selectable parameter, allowing the correct 
communication and computation granularity for any given 3-D weather or climate code to be 
specified. Second, two additional input files are used to specify the numerous parallel algorithm 
and performance measurement options, as will be described in Chapter 5 and Chapter 6. 
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3. GENERAL DESCRIPTION 

PSTSWM is packaged as a makefile and five subdirectories: bin, doc, input, p i c la .  0,  and src. 
The bin subdirectory will contain any executables, Le., the makefile puts executables there. 
The doc subdirectory contains any documentation, like this document. The input subdirectory 
contains sample input files. The picl2.0 subdirectory contains the latest version of the PICL 
communication library. 

The src subdirectory contains approximately 30,000 lines of source code, about half of which 
are comments, divided into approximately 80 separate files. These files are mostly Fortran 
source code with C preprocessor directives (*.F), but there are also some include files (*.i) 
and C source code files (* .c) .  src also contains the l i b  subdirectory, which contains the 
communication library-specific implementations of the low-level communication routines, and 
the makef i l e s  subdirectory, which contains one makefile for each different parallel platform 
and communication library combination. The (top level) driver makefile is used to define the 
compile-time options and to select the appropriate system-specific makefile. 

Obtaining PSTSWM. PSTSWM is available via the World Wide Web from location 
http: //m. epm. orn l .  gov/chammp/pstsw or via netlib, a software distribution service set 
up on the Internet [3]. To obtain source code and documentation for PSTSWM via netlib, send 
e-mail to netlibQornl. gov with the message: send index from chammp. A mail handler will 
return a list of available files and further instructions by e-mail. If all else fails, you can also 
contact the authors at uorleyphQornl .gov or f os terhcs  . adi. gov. The code from the World 
Wide Web location will generally be the most current. Note that the PVM-only and MPI-only 
distributions of PSTSWM are available from the WWW location as well. 

Building PSTSWM. For most of the supported systems you simply need to execute make at 
the top level of the PSTSWM distribution with the appropriate arguments to build PSTSWM. 
Executing make with no arguments will print a brief description of the arguments and the 
currently available options. These options are described in detail in Chapter 7. 

Certain systems may require that the appropriate makefile in src/m&ef i les  be modified to, 
for example, point to the correct C preprocessor, compilers, libraries, and/or include files. What 
is currently used is what works in the authors’ environments. 
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Multiprocessor 
CFU T3D 
IBM SP 

Intel iPSC 

Intel Paragon - OSF 

Intel Paragon - SUNMOS 
nCUBE 2 series 

Load Commands 
pstsmn -npes 64 
setenw MPSROCS 64 
poe pstsum 
getcube -c pstsum-cube -t 64 
load -c pstsum-cube pstsum 
mkpart -sz 8x8 pstsumqartition 
pstsum -pn pstsum-partition 
yod -proc I -sz 8x8 pstsum 
H ~ C  -d 6 p s t s m  

Figure 3.1: Example commands to load PSTSWM on to 64 processors of a multiprocessor. 

Loading PSTSWM. PSTSWM is a hostless parallel program. Loading the program on the 
multiprocessor is the responsibility of the user, and what is required differs from platform to 
platform and from site to site. Example load commands are listed in Fig. 3.1. Note that there 
are numerous environment variables that control parallel execution in the IBM SP environment, 
and more may be required than is shown here. 

Input. Once loaded, PSTSWM normally looks for three input files: problem, described in 
Chapters 4, algorithm, described in Chapter 5, and measurements, described in Chapter 6. 
Example algorithm and measurements input files and six example problem input files are lo- 
cated in the subdirectory input that comes with the code distribution. To use a particular 
example problem input file, you must rename it problem and copy it to where the executable 
will look for it, usually in the same directory from which the executable is loaded onto the 
multiprocessor. Similarly, the example algorithm and measurements input files must be copied 
to the appropriate location. 

If the file script is found by PSTSWM, then PSTSWM runs a sequence of experiments, using 
a sequence of problem, algorithm, and measurements input files. script indicates how many 
experiments to run and the names of the input files to be used in each experiment. See Chapter 9 
for more information. 

Depending on the value of the algorithm input parameter MESHOPT, PSTSWM may also look 
for a file named meshmap, which specifies how the problem should be partitioned over the 
processors. See Chapter 5 for details. 

Output. PSTSWM sends model output to standard out (Fortran Unit 6). Model output 
includes a summary of problem and algorithm specifications and the results of any requested 
solution analyses, as described in Chapter 8. If timing measurements are requested, timing 
data is appended to a file indicated in measurements, as described in Chapter 6. If PICL 
performance data is requested, it is also output to a file indicated in measurements. Error 
output is sent to standard error. 



4. PROBLEM DESCRIPTION AND SPECIFICATION 

4.1. Spectral Transform Method for the Shallow Water Equations 

The shallow water equations in the form solved by the spectral transform method describe 
the time evolution of three state variables: vorticity, horizontal divergence, and a perturbation 
from an average geopotential. The horizontal velocities are computed from these variables. 
PSTSWM advances the solution fields in a sequence of timesteps. During each timestep, the 
state variables of the problem are transformed between the physical domain, where the physical 
forces are calculated, and the spectral domain, where the terms of the differential equation are 
evaluated. The physical domain for a given vertical level is a tensor product longitude-latitude 
grid. The spectral domain.for a given vertical level is the set of spectral coefficients in a 
truncated spherical harmonic expansion of the state variables of the form 

where 

Here i = fl, ,u = sine, ~9 is latitude, X is longitude, m is the wavenumber or Fourier mode, 
P,"(,u) is the associated Legendre function, and {PF(,u)eimA) are the spherical harmonics. In 
the truncated expansion, M is the highest Fourier mode and N(m) is the highest degree of the 
associated Legendre function in the north-south representation. 

Transforming from physical coordinates to spectral coordinates involves performing a real fast 
Fourier transform (FFT) for each line of constant latitude, followed by integration over latitude 
using Gaussian quadrature (approximating the Legendre transform (LT)) to obtain the spectral 
coefficients. The inverse transformation involves evaluating sums of spectral harmonics and 
inverse real FFTs, analogous to the forward transform. The basic outline of each timestep is 
the following: 

1) Evaluate non-linear product and forcing terms. 

2) Fourier transform non-linear terms as a block transform. 

6 
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3) Compute forward Legendre transforms and advance in time the spectral coefficients for 
state variables. (Much of the calculation of the time update is ‘%undled” with the Leg- 
endre transform for efficiency.) 

4) Transform state variables back to gridpoint space using 

a) an inverse LT and associated computations, and 
b) an inverse real block FFT, 

simultaneously calculating the horizontal velocities from the updated state variables. 

For more details on the steps in solving the shallow water equations using the spectral transform 
algorithm see [lo]. 

4.2. Problem Specification 

Unlike STSWM, all problem parameters in PSTSWM are specified at run-time and are input 
from a file named problem. Included with the code distribution are example problem input 
files corresponding to the first 6 test cases described in [14] and a common problem resolution. 
Figure 4.1 contains the input file corresponding to test case #2. Problem input files for the 
other test cases can be found in Appendix A. A brief description of each of the problem 
parameters follows: 

- 1: CHEXP is a 4 character string used to label the experiment. Typically, it is a numeric 
label indicating which test case is being run (see ICOHD below). The default is a string of 
blanks. 

- 2-4: The integer parameters MM, NN, and KK define the total number of spectral coefficients and 
the spectral truncation used. MM is the maximum number of wavenumbers retained, i.e., 
is equivalent to M in equation 4.1, acd 

N(m)= { N H + m  ifHN+m<KK; 
KK otherwise. 

Note that KK must be at least as large as both MM and NH, but no larger than MM + NN. 
All the included problem input files use a triangular truncation MM = HN = KK, so called 
because the (m,n) indices of the spectral coefficients for a single vertical layer form a 
triangular grid. The default values are MM = 21, NN = 21, and KK = 21. 

- 5-7: The integer parameters NLAT, NLOH, and NVER define the tensor-product physical grid of 
size NLON x NLAT x NVER. NLAT must be an even number no less than (3NN+ 1)/2 if NN = KK, 
and no less than (3NN + 2MM + 1)/2 otherwise. NLOH must be a power of two no less than 
3MM + 1. NVER must be a positive integer. The default values are NLAT = 32, NLOH = 64, 
and NVER = 9. 
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'0002' 
42 
42 
42 
64 
128 
16 

/ CHEXP 
/ MM 
/ NE 
/ K K  
/ NLAT 
/ NLOB 
/ H E R  
/ NGWHS 
/ A  
/ OMEGA 
/ GRAV 
/ HDC 

.78539816339744830961 / ALPHA 
2000.0 / DT 
999 f 0 / EGWRQ 
1.0 / ERRFRQ 
999.0 / SPCFRQ 
120.0 / TAUE 

/ AFC 

/ FORCED 
/ MOMENT 

.TRUE. . / SITS 

2 / 1com 

Figure 4.1: Examp2 problem input file for test case #2. 

- 8: The parameter HGRPHS is not used currently, and should not be set. 

9-11: The floating point parameters A, OMEGA, and GRAV are the radius, angular velocity, and 
gravitational acceleration of the sphere, respectively. The default values are those for the 
Earth. 

- 12: The floating point parameter HDC is the h e a r  diffusion constant K4. For a description, 
see [15]. The default value is 0.0. 

- 13: The floating point parameter ALPHA is the rotation angle of the coordinate system in 
radians. It is used in test cases #1, #2, and #3. The defadt value is 7r/4 for these test 
Cases. 

- 14: The floating point parameter DT is the timestep in seconds used in advancing the state 
variables. The size of the timestep is subject to  a stability condition defined by the 
resolution of the computational grids, the numerical method, and the test case. A stability 
condition estimate is printed as part of the output of the model run. A necessary condition 
for stability is that the condition estimate be less than 1.0. Due to unresolved problems 
with the estimator, this is not a sufficient condition when using explicit timestepping 
(see SITS below). For test cases #2-#6, a condition number less than 0.5 does appear 
to be sufficient. For test case #1, the estimate should be kept below 0.1. As a first 
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approximation, the condition estimate scales linearly with the timestep, and a reasonable 
timestep can be determined quickly. The default value is 2400.0. 

15-17: The floating point parameters EQYFRQ, ERRFRQ, and SPCFRQ specify the time interval in 
simulation hours between output of conservation, error, and spectral analyses of the model 
state, respectively. The default values are all 999.0. These parameters are ignored when 
doing timing runs, so that calculation and output of these analyses will not affect the 
timings. 

- 18: The floating point parameter TAUE is the duration of the model run in simulation hours. 
The default value is 120.0, representing a 5 day simulation. 

- 19: The floating point parameter AFC is the Asselin filter coefficient, which is used to pre- 
vent the modal splitting between even and odd timesteps that can occur in the leapfrog 
timestepping procedure. The default value is 0.0. 

- 20: The logical parameter SITS specifies whether to use semi-implicit timestepping (.TRUE.) 
or explicit timestepping (.FALSE.). The default value is .TRUE. - Note that explicit 
timestepping must be used with test case #1, and that stability restrictions require that 
explicit timestepping use smaller timesteps than are needed by semi-implicit timestep- 
ping for the same problem. Also note that the stability condition estimate for explicit 
timestepping is not reliable, as described earlier. 

- 21: The logical parameter FORCING specifies whether or not to enable external forcing. The 
default value is .FALSE. . Note that forcing must be used with test case #4, and will 
invalidate the error analysis if used in test cases #2 and #3. 

- 22: The logical parameter MOMENT specifies whether to use momentum forcing (.TRUE.) or 
vorticity-divergence forcing ( .FALSE.) in test case #4. The default value is .FALSE.. 

- 23: The integer parameter ICOm specifies the test case to be executed. Currently the following 
cases are supported: 

#1- advection equation for solid body flow 
#2 - solid body rotation steady state flow 
#3 - jetstream steady state flow 
#4 - forced low in jetstream 
#5 - zonal flow over isolated mountain 
#6 - Rossby-Haurwitz waves ' 

For full descriptions of these cases, see [14]. Note that a 5 day simulation of test case #2 
is the designated parallel benchmark test. 



5. PARALLEL ALGORITHM DESCRIPTION AND 

SPECIFICATION 

5.1. Approach to Parallelization 

The parallel algorithms in PSTSWM are based on decompositions of the physical and spectral 
computational domains over a logical two-dimensional processor mksh of size Px x Py . Initially, 
the longitude dimension of the physical domain is decomposed over the processor mesh “row” 
dimension and the latitude dimension is decomposed over the “column” dimension. Thus, 
FFTs in different processor rows are independent, and each row of Px processors collaborates 
in computing a block FFT. Similarly, the Legendre transforms in different processor columns are 
independent, and each column of P y  processors collaborates in computing a block of Legendre 
transforms. The computation of the nonlinear terms at a given location on the physical grid is 
independent of that at other locations, and the domain decomposition requires no collaboration 
between processors for this phase of the algorithm. The spectral domain decomposition is a 
function of the parallel algorithm used. 

Two classes of parallel algorithms are available for each transform: distributed algorithms, 
using a fixed data decomposition and computing results where they are assigned, and transpose 
algorithms, remapping the domains to allow the transforms to be calculated sequentially. These 
represent four classes of parallel algorithms: 

1) distributed FFT/distributed LT 

2) transpose FFT/distributed LT 

3) distributed FFT/transpose LT 

4) transpose FFT/transpose LT 

There are two transpose algorithms, which differ primarily in the number of messages sent and 
the cumulative message volume. Assume that the transpose algorithms are implemented on Q 
processors and that each processor contains D data to be transposed. Then the per processor 
communication costs for the two algorithms can be characterized by 

O(Q) messages, O(D) total volume 

10 
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e O(1ogQ) messages, O(D1ogQ) total volume 

respectively. In the first (O(Q) transpose) algorithm, every processor sends data to every other 
processor. In the second (@(log Q) transpose) algorithm, every processor exchanges data with 
its neighbors in a logical log, Q dimensional hypercube. 

There are also two distributed LT algorithms. Assume that the Legendre transform is paral- 
lelized over Q processors and that each processor will contain D spectral coefficients when the 
transform is complete. Then the per processor communication costs for these two algorithms 
can be characterized by 

e O(Q) messages, O(DQ) total volume 

e @(log Q) messages, O(DQ) total volume 

respectively. The O(Q) algorithm works on a logical ring, sending messages to and receiving 
them from nearest neighbors only. The O(1ogQ) algorithm uses the same communication 
pattern as the @(log Q) transpose algorithm. 

There is only one distributed FFT algorithm. It has the same characterization of communication 
costs and communication pattern as the @(log Q) transpose algorithm. 

All parallel algorithms execute essentially the same computations, and, modulo load imbalances, 
differ only in communication costs. Load balance issues are discussed in detail in [6]. Each FFT 
and LT parallel algorithm also has a number of implementation options that can be selected at 
runtime, as indicated below. 

5.2. Parallel Algorithm Specification 

The parallel algorithm specification is input from a file named algorithm. Included with the 
code distribution is the example algorithm input file given in Fig. 5.1. A brief description of 
each of the algorithm parameters follows. 

- 1-2: The integer parameters HPLOH and HPLAT define the logical processor grid PX x Py, 
determining how many processors are allocated to the parallel FFT and the parallel LT, 
respectively. The default values are both 1. 

- 3: The integer parameter MESHOPT indicates how to map the logical processor mesh 

[0, HPLOH - 13 X [0, BPLAT - 11 

to the “physical” processors numbered 0 to (BPLOH-BPLAT) - 1. The nine options currently 
supported are listed in Fig. 5.2. The default value is 1. For more details, see the comments 
in the source code file map. F. 
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I 
I 
I 
1 
0 
0 
I 
I 
I 
I 
0 
0 
0 
0 
6 
6 
6 
6 
0 
0 

/ NPLOH 
/ BPLAT 
/ MESHOPT 
/ RIHGOPT 
/ FTOPT 
/ LTOPT 
/ COMMF'FT 
/ COMMIFT 
/ COMMFLT 
/ COMMILT 
/ BUFSFFT 
/ BUFSIFT 
/ BUFSFLT 
/ BUFSILT 
/ PROTFFT 
/ PROTIFT 
/ PROTFLT 
/ PROTILT 
/ SUMOPT 
/ EXCHSIZE 

Figure 5.1: Sample algorithm input file. 

Options -1 and 1 are generally the best options on mesh based machines. The sign of the 
option should be set to map the long logical dimension to the long physical dimension. On 
platforms with hypercube interconnects, use a linear encoding of the longitude coordinate 
(options f 1 and f 2) for the distributed FFT or @(log&) transpose FFT algorithms 
and a Gray code encoding (options It 3 and f 4) for the @(&) transpose FFT algorithm. 
Similarly, use a linear encoding of the latitude coordinate (options f 1 and f 3) for the 
e(1ogQ) transpose LT or distributed LT algorithms and a Gray code encoding (options 
=t 2 and f 4) for the @(Q) LT algorithm. Note that options -5 and 5 decrease the com- 
munication cost of the parallel LT or FFT, respectively, on mesh-based multiprocessors, 
but at the expense of increasing the communication cost of the other parallel transform. 

- 4: The integer parameter RINGOPT is not used currently. 

- 5: The integer parameter FTOPT specifies whether to use a distributed parallel FFT algorithm 
(0), a single transpose parallel FFT algorithm (l), or a double transpose parallel FFT 
algorithm (2). The single transpose algorithm undecomposes the longitude dimension, 
to d o w  the use of a serial FFT, by instead decomposing over the vertical dimension. 
This can lead to severe load imbalances if there are not enough vertical layers in the 
model. The double transpose algorithm decomposes over both vertical levels and fields, 
improving load balance, but requires an additional transpose at the end of the FFT to 
undecompose the vertical dimension and fields, since the fields must be together for the 
Legendre transform. HPLON must be a power of two to use the distributed algorithm or 
the @(log&) transpose algorithm. The default value is 0. 
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MESHOPT 

0 

-1 

1 

-2 

2 

-3 

3 

-4 

4 

-5 

5 

Mapping 

Read mapping from the file meshmap in row major order: 

where meshmap contains a list of physical node numbers, one per line. 

Use linear code encoding for both coordinates and column major or- 
dering 

( i , j )  - + j + i . H P L O H .  

Use linear code encoding for both coordinates and row major ordering 

(i,j) + i+j -HPLAT. 

Use linear encoding for longitude coordinate, Gray code encoding for 
latitude coordinate, and column major ordering 

(i, j) + GRAY(j + BPLAT mod HPLAT) + (i - BPLON mod HPLOH) - HPLAT . 

Use linear encoding for longitude coordinate, Gray code encoding for 
latitude coordinate, and row major ordering 

( i , j )  -+ (i - HPLOH mod BPLON) + GRAY(j + HPLAT mod HPLAT) - HPLOH . 

Use Gray code encoding for longitude coordinate, linear encoding for 
latitude coordinat, and column major ordering. 

Use Gray code encoding for longitude coordinate, linear encoding for 
latitude coordinat, and row major ordering. 

Use Gray code encoding for both coordinates and column major 
ordering. 

Use Gray code encoding for both coordinates and row major ordering. 

Map latitude coordinate j to a square subgrid in the logical NPLOB x 
NPLAT grid, scattering longitude coordinate. 

Map longitude coordinate i to a square subgrid in the logical WLOH x 
NPLAT grid, scattering latitude coordinate. 

Figure 5.2: Options for mapping logical processor grid onto physical multiprocessor. 
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- 6: The integer parameter LTOPT specifies whether to use a distributed LT algorithm (0) or 
a transpose-based parallel LT algorithm (1). P L A T  must be a power-of-two to use the 
@(log Q) transpose algorithm. The transpose-based parallel LT algorithm cannot be used 
with the double transpose parallel FFT. This an uninteresting algorithm combination, 
and is unlikely ever to be supported. The default value is 0. 

- 7-8: The integer parameters C O W T  and COMMIFT specify which algorithm variants to  be used 
in the parallel forward and inverse FFT algorithms, respectively. 

Distributed. The four options for the distributed algorithm are listed in Fig. 5.3, where 
the default value is 1. The distributed algorithm uses a series of swap operations (between 
pairs of processors) to move data between processors. These swaps can be implemented 
in two ways: send/receive (simple) 

Processor a Processor b 

send t o  b send to a 

receive from b receive from a 

or send/receive by one processor and receivelsend by the other (ordered) 

Processor a Processor b 

send t o  b receive from a 

receive from b send to a 

Also, if the block transform is divided into two blocks, communication and computation 
can be overlapped: during each stage of the transform one block is being communicated 
while the other block is being used in computation. 

Transpose. The twelve options for the transpose algorithms are listed in Fig. 5.4, where 
the default value is 1. The O(Q) transpose parallel algorithm has two options for schedul- 
ing how the information is sent and received, linear and exclusive-OR. During step k of 
the h e a r  schedule, processor q sends data to processor ( q  + k mod Q) and receives data 
from (q - k mod Q). During step k of the exclusive-OR schedule, processor q swaps 
data with processor XOR(q,  k). The send/receives and swaps in these algorithms can both 
be implemented in two ways: simple or ordered, as in the distributed FFT. (For the 
h e a r  ordering, the ordered option uses send/receive by even numbered processors and 
receive/send by odd numbered processors.) 

In the O(Q) transpose algorithm, what is being sent is known beforehand and all of the 
data can be sent before any data is received. This is the send-ahead option. Similarly, 
all data that is received is retained and the destination of the data is known beforehand. 
Thus, all receive requests can be posted before any datais sent, assuming that nonblocking 
receives are supported by the native message passing system. This is the receive-ahead 
option. If nonblocking receives are not specified in PROTFFT or PROTIFT (see below), then 
the receiveahead option is ignored. 
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0 one block distributed FFT using simple swap 

1 one block distributed FFT using ordered swap I 
2 

3 

two block distributed FFT using simple swap 

two block distributed FFT using ordered swap 

Figure 5.3: Distributed FFT algorithm options. 

O(Q) transpose algorithm using simple send/receive and linear schedule 

O(Q) transpose algorithm using ordered send/receive and linear 
schedule 

O(Q) transpose algorithm using simple send/receive with receiveahead 
and linear schedule 

O(Q) transpose algorithm using ordered send/receive with receive- 
ahead and linear schedule 

O(Q) transpose algorithm using simple send/receive with receive- 
ahead, send-ahead, and linear schedule 

O(Q) transpose algorithm using simple swap and exclusive-OR schedule 

O(Q) transpose algorithm using ordered swap and exclusive-OR 
schedule 

O(Q) transpose algorithm using simple swap with receiveahead and 
exclusive-OR schedule 

O(Q) transpose algorithm using ordered swap with receiveahead and 
exclusive-OR schedule 

O(Q) transpose algorithm using simple send/receive with receive- 
ahead, send-dead, and exclusive-OR schedule 

@(log Q) transpose algorithm using simple swaps. Q must be a power 
of two. 

O(1og Q) transpose algorithm using ordered swaps. Q must be a power 
of two. 

Figure 5.4 Transpose algorithm options. 
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0 

1 

interleaved O(Q) distributed LT algorithm using simple send/receive 

interleaved O(Q) distributed LT algorithm using ordered send/receive 

2 

10 

11 

12 

interleaved O(Q) distributed LT algorithm using delayed receive 

localized O(Q) distributed LT algorithm using simple send/receive 

localized O(Q) distributed LT algorithm using ordered send/receive 

localized O(Q) distributed LT algorithm using simple send/receive with 
receiveahead 

13 

Figure 5.5: Distributed forward Legendre transform algorithm options. 

localized O(Q) distributed LT algorithm using ordered send/receive 
with receiveahead 

The exclusiveOR option for O(Q) transpose is most efficient on hypercubes, and has 
similar performance to the h e a r  option on meshes. The send-ahead options can be 
highly efficient for small problems, but can also consume all available system buffer space 
and cause deadlock. 

Like the distributed algorithm, the @(log&) transpose algorithm uses a series of swap 
operations to move data between processors, and these swaps can be implemented in 
two ways: simple or ordered. The amount of data to be received at each step is known 
beforehand, and there is also a receiveahead option. But this option is invoked implicitly 
by specifying additional buffer space via the BUFSFFT or BUFSIFT parameters (ee below). 

- 9: The integer parameter COMMFLT specifies which algorithm variants to  be used in the par- 
allel forward LT algorithms. 

Distributed. The nine options for the distributed algorithms are described in Fig. 5.5. 
The default value is 1. The O(Q) distributed LT algorithm has two options for scheduling 
when interprocessor communication occurs: interleaved and localized. The interleaved 
option intersperses communication with computation in a series of send/receive/compute 
steps. The localized option isolates communication from the body of the computation. If 
the interleaved option is used in the forward or the inverse LT, it must also be used for 
the transform in the other direction. 

For the interleaved algorithm, the send/receive/compute schedule can also be organized 
as send/compute/receive, permitting some communication/computation overlap. This is 
the delayed-receive option. The amount of data to be received at each communication 
step is known beforehand, and there is also a receive-ahead option. This option is invoked 
implicitly by specifying additional buffer space via the BUFSF'LT parameter (see below). 

20 

21 

@(log Q) distributed LT algorithm using simple swap 

@(log &) distributed LT algorithm using ordered swap 
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1 

I 0 I interleaved O(Q) distributed LT algorithm using simple send/receive I 
interleaved O(Q) distributed LT algorithm using ordered send/receive 

>9 

I 2 I interleaved O(Q) distributed LT algorithm using delayed receive 
~~ 1 

do nothing 

Figure 5.6: Distributed inverse Legendre transform algorithm options. 

For the localized algorithm, all data that is received is retained and the destination of 
the data is known beforehand. Thus, all receive requests can be posted before any data 
is sent. This is the receive-ahead option. 

For both interleaved and localized algorithms, each processor receives data from one 
processor and sends data to another during each communication step. Both simple and 
ordered send/receive options are supported. 

The O(1ogQ) distributed LT algorithm uses a series of swaps operations to move data 
between processors, and both the simple and ordered swap options are available. 

Transpose. For the transpose parallel forward LT algorithms, there are the same 12 
options as for the transpose parallel FFT algorithms, listed in Fig 5.4. The default value 
is 1. 

- 10: The integer parameter COMMILT specifies which algorithm variants to be used in the par- 
allel inverse LT algorithms. 

Distributed. The four options for the distributed algorithms are described in Fig. 5.6. 
The default value is 1. If the @(log&) or the localized O(Q) distributed forward LT 
algorithm is used, then no communication is required during the inverse transform. If 
the interleaved algorithm is used for the forward transform, then an interleaved algorithm 
must be used for the inverse, and the same options hold. 

Transpose. For the transpose parallel inverse LT algorithms, there are the same 12 
options as for the transpose parallel FFT algorithms, listed in Fig 5.4. The default value 
is 1. 

11-12: The integer parameters BUFSFFT and BUFSIFT specify the number of communication 
buffers to be used in receive-ahead variants of the parallel forward and inverse FFT algo- 
rithms, respectively. They have an effect only for the @(log Q) transpose algorithm. The 
other algorithms do not need extra buffer space to enable receive-ahead, which is invoked 
instead by the COMMFFT and COMHIFT parameters. Receive-ahead for the @(log Q) trans- 
pose in the forward FFT is invoked by specifying nonblocking receives (see PROTFFT 
below) and BUFSFFT > 3 if HPLON is a power of two and BUFSFFT > 5 otherwise. Similarly, 
specify BUFSIFT > 3 or BUFSIFT > 5 and nonblocking receives to invoke receiveahead for 
the inverse FFT. At most log2(HPLON) + 1 buffers can be used if NPLOH is a power of two, 
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Algorithm 
Forward Fourier Transform 

@(log Q) transpose - NPLOH a power of two 

Inverse Fourier Transform 
- NPLON not a power of two 

minimum I maximum 
BUFSFFT 

4 1 + log, NPLON 
6 3 + 2 log2 HPLON 

BUFSIFT 

4 
6 

@(log Q) transpose 
- NPLON a power of two 
- NPLOH not a power of two 

Forward Legendre Transform 
@(log Q) transpose 
- PLAT a power of two 
- NPLAT not a power of two 

Interleaved O(Q) distributed 
@(log Q) distributed 

Inverse Legendre Transform 
@(log Q) transpose 

- NPLAT not a power of two 
Interleaved O(Q) distributed 

- NPLAT a power of two 

1 + log, HPLON 
3 + 2 ~OJZ., NPLON -" 

BUFSFLT 

4 1 + log2 NPLAT 
6 
2 NPLAT 
2 3 

BUFSILT 

3 + 2 log2 HPLAT 

4 1 + log2 NPLAT 
6 
3 NPLAT + 1 

3 + 2 log2 NPLAT 

Figure 5.7: Number of buffers required to enable receive-ahead algorithms. 

and at most 2 log,(HPLON) +3 buffers can be used otherwise. If more buffers are specified, 
only the maximum allowable will be used. See Fig. 5.7 for a summary of this information. 

- 13: The integer parameter BUFSFLT specifies the number of communication buffers to be used 
in receive-ahead variants of the parallel forward LT algorithms. The localized O(Q) dis- 
tributed algorithm and O(Q) transpose algorithm do not need additional buffers to enable 
receivsahead, which is invoked instead by COMMFLT. For the interleaved O(Q) distributed 
algorithm, receive-ahead is invoked by specifying BUFSFLT > 1 and nonblocking receives 
(see PROTF'LT). Up to BUFSFLT - 1 receive requests can be posted early, and each request 
requires an additional buffer. At most HPLAT buffers can be used. If more than this are 
specified, only NPLAT will be used. 

To invoke receiveahead for the @(log&) distributed algorithm, BUFSE'LT should be set 
to 2 if HPUT is a power of two and to 3 otherwise, and nonblocking receives should be 
specified. Receive-ahead for the @(log Q) transpose is invoked by specifying BUFSFLT > 2 
and nonblocking receives, with the same bounds as for BUFSFFT except that NPLON is 
replaced by HPLAT. 

See Fig. 5.7 for a summary of this information. 

- 14: The integer parameter BUFSILT specifies the number of communication buffers to be 
used in receive-ahead variants of the parallel inverse LT algorithms. BUFSILT has an 
effect only in the interleaved O(Q) distributed algorithm and in the @(log Q) transpose 
algorithm. The other algorithms either do not need additional buffers to enable receive- 

-. 
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0 

1 

blocking send/blocking receive 

nonblocking send/blockiig receive 

2 

3 

4 

5 

6 

Figure 5.8: Communication protocol options. 

blocking send/nonblocking receive 

nonblocking send/nonblocking receive 

blocking ready send/nonblocking receive 

nonblocking ready send/nonblocking receive 

synchronous blocking send/blocking receive (for ordered operation 
only). 

ahead, or perform no interprocessor communication during the inverse transform. For 
the interleaved O(Q) distributed algorithm, BUFSILT - 2 receive requests can be posted 
early, and receive-ahead is invoked by specifying BUFSILT > 2 and nonblocking receives 
(see PROTILT). At most HPLAT+ 1 buffers can be used. 
Receive-ahead for the @(log&) transpose is invoked by specifying BUFSILT > 2 and 
nonblocking receives, with the same bounds as for BUFSILT. 

See Fig. 5.7 for a summary of this information. 

15-18: The integer parameters PROTFFT, PROTIFT, PROTFLT, PROTILT specify the communication 
protocol to be used with the parallel algorithms for the forward FFT, the inverse FFT, 
the forward LT, and the inverse LT, respectively. The five options for simple send/receive 
and swap operations and the six options for the ordered operations are listed in Fig. 5.8. 
The default value is 6. 
The interpretation of blocking and nonblocking is somewhat system dependent. For 
PSTSWM, nonblocking commands are assumed to spawn communication requests that 
then proceed independent of the main thread of control. With respect to the parallel 
algorithms in PSTSWM, blocking commands are faster and are available on all platforms. 
The nonblocking commands are somewhat slower and are not universally supported, but 
they enable the overlap of communication and computation. The nonblocking commands 
also do not require system buffering in order to avoid deadlock when using the simple swap 
and simple send-receive orderings. The ready send option, available on Intel iPSC systems 
(native or PICL) and when using MPI, uses a different communication protocol, one 
which is faster for large messages in PSTSWM. In the synchronous option, handshaking 
messages are sent to guarantee that each processor is ready to receive a message before 
it is sent. 

- 19: The integer parameter SUMOPT specifies the order of summation in local calculations. 
Options are in-place linear ordering (0) and binary tree ordering (1). In-place is generally 
faster, because of better data locality. When used with the O(1ogQ) distributed LT 
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algorithm, the binary tree algorithm insures the “reproducibility” of results, i.e., the 
same order of operations holds independent of the number of processors used. Note 
that reproducibility automatically holds for the transpose algorithms is impossible to 
(efficiently) impose on the O(Q) distributed LT algorithm. The default value is 0. 

- 20: The @(log Q) distributed LT algorithm is a hybrid algorithm that switches from a high(er) 
latency/low(er) communication volume algorithm to a low latency/high volume algo- 
rithm, depending on the length of the vectors it is operating on [13]. The integer param- 
eter EXCHSIZE specifies the length at which it switckes. The optimal value is primarily 
a function of the platform characteristics and the algorithm and communication protocol 
options, and so can be estimated once for each platform for algorithm options of interest. 
The default value is 0, i.e., do not switch to the lower latency algorithm. 

5.3. Discussion 

A s  evident in the previous section, there are many parallel algorithm options. Not all of 
the options work on all platforms or for all problem sizes or numbers of processors, and not all 
options are consistent with one another. Consistency problems are checked for internally, as are 
options that are illegal on a given platform. The only problems that cannot be identified within 
the code prior to running an experiment have to do with algorithm and protocol options that 
require additional system or user communication buffers in order to avoid deadlock conditions. 
The potential for such problems is identifiable a priori, and the code prints warning messages 
to this effect before starting a run. Additional detail on algorithm option restrictions follows. 

Communication Protocols. All but communication protocol options 0 and 6 require non- 
blocking communication commands. The Intel NX, IBM MPL, and the MPI communication 
libraries provide these, but nCUBE VERTEX and PVM do not. Thus options 1-5 are illegal 
when using the latter two systems. 

On the Cray Research T3D, the native messaging is implemented on top of SHMEM, using 
the remote read/write commands, and the available protocols are “defined” to be 1, 2, and 6, 
representing nonblocking send/blocking receive, blocking send/nonblocking receive, and syn- 
chronous, respectively. PSTSWM can also be run on the T3D using the PICL library, which is 
layered on top of Cray Research’s implementation of PVM and works with protocol options 0 
and 6. 

Note that PICL is a compatibility library, and thus inherits the restrictions of the underly- 
ing native communication library. For example, on nCUBE machines, only communication 
protocols 0 and 6 are legal, while on Intel machines, all protocols are legal. 

Protocol options 4 and 5, as defined, use the ready send command, which sends messages 
without any handshaking. If the destination is not ready to receive a ready message (by 
already having posted a receive request), then the message is thrown away. Options 4 and 5 
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provide the necessary additional handshaking, with the sender waiting for a go-ahead message 
before initiating the ready send. In actuality, if the ready send command is not supported in 
the given communication library, options 4 and 5 simply use normal blocking and nonblocking 
sends with this explicit handshaking protocol. 

Figure 5.9 summarizes this information. 

Message Buffering. Using simple swap and simple send/receive orderings and blocking 
send require that messages be buffered, usually at the sender. Under MPL, NX, PVM, and 
VERTEX, system buffers are used, and either deadlock or a program abort can occur if the 
buffer space fills up. The amount of system buffer space under NX or VERTEX can be specified 
at load time. The amount of system buffer space under MPL can be specified at run time 
(once), and PSTSWM calculates the amount needed and makes this request. If a sequence of 
experiments are being run (see Chapter 9) and a later experiment needs more space than the 
first, then the code may yet deadlock. MPI uses user space for buffering messages. PSTSWM 
passes a pointer to unused work space to MPI for this purpose (see WORKSPACE in Chapter 7). 
If there is not enough space to guarantee correct execution, then a warning message is output, 
but execution is still attempted. 

Receive-ahead Algorithms. The receiveahead variants of the parallel algorithms post one 
or more receive requests before the message is likely to be sent. Receiveahead requires that 
nonblocking receives be used and that space in which to receive the message(s) be set aside. 
For some of the parallel algorithms, this space is available naturally and the receiveahead 
variant is chosen explicitly via the COMMFFT, COMMIFT, COMMFLT, or COMMILT parameters. For 
other algorithms, the receiveahead variants require additional buffer space, and the number 
of receive requests posted early is determined by the number of extra buffers allocated. For 
these algorithms, the receive-ahead variant is chosen implicitly by specifying both nonblocking 
receives and enough extra buffer space, as indicated in Fig 5.7. Figure 5.10 summarizes which 
algorithms enable receive-ahead explicitly, and which do so implicitly. 
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Figure 5.9: Legal communication protocol options. 
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Figure 5.10: Parallel algorithms specifying receive-ahead explicitly and implicitly 



6. PERFORMANCE MEASUREMENT DESCRIPTION 

AND SPECIFICATION 

6.1. Approach to Performance Measurement 

Three types of performance data can be collected automatically. The first type is execution 
time, both per timestep and total time, measured using real time clocks. The per timestep 
data reports the minimum and maximum times over all processors for that timestep. Since 
the code is only loosely synchronous, the individual timestep timings are not guaranteed to 
be accurate. The total time reports the maximum total time over all processors. Since the 
processors are synchronized before beginning timing, the total time measurement is accurate. 
Note that timing begins only when the timestepping begins. The code set-up phase (input 
and calculation of initial values) is not included, as this is an artifact of the experiment and 
is not representative of production codes. (Separate benchmarks are needed to  measure 1/0 
performance for meteorological codes.) Execution time data is either appended to the output 
file indicated in the measurements input file, or is appended to the file timings (the default). 

The second type of performance data is profile data, indicating the amount of time spent in 
various user and system level events. The user level events (and associated event types) are 

0: total time, 

1: evaluation of nonlinear terms in physical space, 

2: forward FFT, 

3: forward Legendre transform, 

4: calculation of tendencies (time update) in spectral space, 

5: addition of linear diffusion (in spectral space) and first half of Asselin filter (in 

6: inverse Legendre transform, 

7: inverse FFT, 

physical space), 

8: second half of Asselin filter (in physical space), and 

l O O + i :  timestep i 
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.FALSE. 
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i 
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'pstsum. trace' 

/ TIMING 
/ TRACING 
/ TRACEFILE 
/ VERBOSE 
/ TRSIZE 
/ TRSTART 
/ TRSTOP 
/ TLI 
/ TL2 
/ TL3 
/ TOUTPUT 
/ TMPNAME 
/ PERMNAME 
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Figure 6.1: Sample measurements input file. 

The system level events profiled are primarily PICL communication calls and have negative 
event types, as documented in [16]. 

The third type of performance data is event traces, indicating when each of the above mentioned 
events started and stopped. This data can be visualized with the performance visualization tool 
ParaGraph [ll]. Both profile and trace data are saved in a file indicated in the measurements 
input file. 

Both profile and trace data are collected using PICL instrumentation logic. To collect user event 
data requires that either a mixed PICL/native or a pure PICL implementation of PSTSWM 
be used. System event data data can only be collected from a pure PICL implementation. 

6.2. Performance Measurement Specification 

The performance measurement specification is input from the measurements input file. In- 
cluded with the code distribution is the example measurements input file given in Fig. 6.1. A 
brief description of each of the measurement parameters follows. 

- 1: The logical parameter TIMING specifies whether to time the current run of PSTSWM. If 
so, all model output during timestepping is disabled, and both per timestep and total 
execution time is measured. The default value is .FALSE. . 

- 2: The logical parameter TRACING specifies whether to trace the execution of PSTSWM. 
Instrumentation has been added to the PSTSWM source code, marking each timestep 
calculation and the major phases of each timestep as separate tasks. When TRACING = 
.TRUE., the PICL trace collection facility is used to collect trace and profile data on 
these user-defined events and on PICL communication calls, as specified by tracing level 
parameters. The default value is .FALSE. . 
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- 3: The logical parameter TRACEFILE specifies whether a trace file should be opened. If not, 
then any profile or trace data is lost. The default value is .FALSE. . 

- 4: The integer parameter VERBOSE specifies the format in which the trace data is written to 
disk. The options are: 

(0): a compact form that can be read by the performance visualization program 

(1): a verbose form with labels that make the trace output more human-readable 
ParaGraph [ll] 

- 5: PICL trace data is saved in internal buffers, to minimize the perturbation of the perfor- 
mance measurements. The integer parameter TRSIZE specifies how much buffer space to 
allocate for trace data on each node. The default value is 0. 

- 6-7: The integer parameters TRSTART and TRSTOP specify the timestep at which trace collection 
is to begin and the timestep at which it is to end, respectively. The default values are 
both -1. 

- 8-9: The integer parameters TLI, TL2, and TL3 specify what PICL trace data is collected. TLI 
controls the collection of data on PICL communication events, TL2 controls the collection 
of data on user-defined events, and TL3 controls the collection of data on tracing events. 
All three have the following options: 

(-1): Do not collect data. 
(0): Collect profile data. 
(1): Collect both profile data and detailed trace data. 

- 10: The character string parameter TMPBAME is not used currently. 

- 11: The character string parameter PERMHAME is the name of the disk file where the profile 
and trace data is to be written at the end of the execution of PSTSWM (if TRACEFILE = 
.TRUE.). If PERMNAME = ' I ,  then the data is not saved. Note that only the first 32 characters 
are used, and that the default value is the blank string ("), i.e., do not save the profile 
and trace data. 



7. COMPILE TIME OPTIONS 

7.1. Parameter File Specifications 

Unlike STSWM, PSTSWM need not be recompiled to run different, problem sizes. But, to 
increase portability, PSTSWM does not allocate memory dynamically. (Neither dynamic mem- 
ory allocation nor the Fortran to C interface is part of the Fortran 77 standard.) Instead, 
parameter values in the include file params. i are used to specify the maximum problem sizes 
and number of processors, and the storage is allocated accordingly. An edited version of the 
params. i file included in the code distribution is given in Fig. 7.1. A brief description of each 
of the parameters follows. 

- 1-3: The integer parameters MMX, HHX, and KKX specify the maximum values for MM, HB, and 
KK, respectively. 

- 46:  The integer parameters HLATX, HLONX, and HVERX specify the maximum values for NLAT, 
NLOB, and HVER, respectively. 

- 7-8: The integer parameters BPROCSX and LGPROCSX specify the maximum number of proces- 
sors and the base-2 logarithm of the maximum number of processors, respectively. 

- 9: The integer parameter NGRPHSX specifies the amount of storage to allocate for time series 
data of solution and error analysis statistics. These statistics are not collected currently, 
but the logic (from STSWM) is retained for future development. 

7.2. Makefile Parameter Specifications 

The above mentioned compile time parameters are used only for declaring one dimensional ar- 
rays. For good performance on RISC-based microprocessors, it is crucial that multidimensional 
arrays be packed into contiguous storage (to increase data locality). To ensure this, all field 
arrays =e allocated from a single large buffer, whose size is specified by a makefile command- 
l i e  parameter. The default value is 500000 floating point values, or 4 megabytes if using 64 
bit precision. 
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C*********************************************************************** 

C*********************************************************************** 
C* Include file 'params.i' * 

INTEGER MMX, HNX, KKX, NLATX, HLOHX, HVERX 
PARAMETER 

% (MMX=340, 
% ETHX=340, 
% KKX=340, 
& NLATX=512, 
& HLOHX=1024, 
% NVERX=72) 

C* * 
INTEGER ETPROCSX, LGPROCSX, NGRPHSX 
PARAMETER 

% (NPROCSX=I024, 
% LGPROCSX=IO, 
& NGRPHSX=IOO) 

C* * 
........................................................................ 
C* end include file * 
........................................................................ 

Figure 7.1: Compile time parameters in include Ne. 

Makefile command-line parameters are also used to specify the target platform, the commu- 
nication library, the precision of the different variable types, and the word alignment used 
when allocating arrays. Executing make without specifying any parameters will generate the 
description of these parameters listed in Fig. 7.2. 

Figure 7.3 summarizes the parallel platform/communication library combinations that are sup- 
ported currently. Both native and PICL are supported on all parallel platforms listed, and 
the underlying communication library for the native and PICL implementations is listed in the 
figure. Also, the particular MPI library implementation is listed in the MPI column. 

Note that some of the MPI. and PVM combinations are missing for platforms on which these 
libraries are supported. To add support for these combinations merely requires the generation 
of an appropriate makefile. Additional comments follow. 

1) Currently, PVM is not an explicit communication library choice, but rather is the native 
communication library for sun-pvm and rs6k-pvm (for SUN and IBM RS/SOOO worksta- 
tions, respectively). The Cray Research implementation of PVM is also the basis for the 
PICL communication library on the T3D. The native T3D implementation is a mix of 
PVM and SHMEM library calls. 

2) The paragon platform uses the OSF operating system and NX is the native communi- 
cation library. The paragon-sunmos uses the SUNMOS operating system and the low 
level SUNMOS communication commands are used in the native implementation. The 
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1 Platform native I MPI PrcL 
PVM I ClUT3D SHMEM+PVM I - 

% make 

PVM 
. - 

To compile : make MACH=Cmachine> 
To clean up: make MACH=Cmachine> clean 

CFU vector (serial) I 
IBM SP MPL 

Optional make parameters a re  
COMM=<communication l ibrary> 
WORKSPACE=<nnmber of REAL9 
PRECISION=<418> 
ALIGN=<number of REALS> 

- - - 
mpich I MPL - 

HACH i s  the platform being compiled f o r ,  currently one of 
crayvector, ipsc2, ipsc860, ncube2, ncube2S, paragon, 
paragon-sunmos, paragon-mp, rs6k-pvm, sp, sun-pvm, t3d 

native,  mpich, mpif, p i c l ,  mixed, 
(mixed uses native routines f o r  performance sensit ive code and PICL 

COMM is  the communicationlibraryto use, one of 

f o r  the r e s t .  To col lect  prof i le  data,  choose mixed or pic l .  To 
col lect  event t races ,  choose p ic l .  native is  the default .)  

WORKSPACE is the amount of space (in REALS) t o  be allocated f o r  

PRECISION specif ies  whether REALs are  4 bytes or 8 bytes long. 

ALIGN is the  (REAL) word boundary the starting address of each a r r ay  

problem storage. I f  omitted, a default  value of 500000 is used. 

The default  is 8. / 

must f a l l  on. A L I G N  must be I or  a multiple of 2. The default  is 2. 

Intel iPSC 

Figure 7.2: make command-line arguments 

- NX - NX 
I 

Intel Paragon - SUNMOS 
nCUBE 2 series 

SUNMOS - NX - 
VERTEX - VERTEX I - 

I PVM SUN - I PVM I - 
1 workstation networks I I I I I 

~ 

Figure 7.3: Supported parallel platform/communication library combinations. 
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paragon-mp is the same as paragon except that certain tasks are spawned to be run on 
the additional compute processor. Note that specifying paragon will work correctly on an 
MP system. We have not yet developed a paragon-mp-sunmos implementation, although 
it will be simple to do. 

3) mpich is the Argonne/Mississippi State implementation of MPI, and we have run it on 
the Intel Paragon and on the IBM SP2. It should also run on most of the other platforms, 
but we have not developed the corresponding makefiles yet. mpif is the experimental IBM 
version of MPI for the SP, MPI-F. 

4) As mentioned above, not all platform/communication library combinations are currently 
supported. If an unsupported combination is requested, then the information in Fig. 7.2 
is generated. 



8. OUTPUT 

8.1. Model Output 

Except for trace and timing data and error messages, all PSTSWM output is generated by one 
process and is sent to the standard output (unit number 6). Figure 8.1 contains the (edited) 
output from a &day model run of test case #2 using a 2 x 4 processor grid on an Intel iPSC/860 
‘and 32-bit precision. 

The first part of the output summarizes the problem and algorithm specifications. Note that 
both the value of COWS2 and the amount of space actually used are given. 

The second part of the output contains the solution field analysis, which is identical to that 
provided by STSWM. The COURANT NUMBER is the stability estimate, which must be less than 
1.0, but is safest ifit is no more than 0.5. HEIGHT refers to a normalized value of the geopotential. 

For this model run, both error analysis (ERRFRQ = 1.0) and timing (TIMING = .TRUE.) were 
enabled. This disabled all but the first and last error analysis output. The error in the 
simulation is a function of the test case, the problem resolution, the machine precision (MACHINE 
EPSILON), and the number of timesteps. The following guidelines refer to runs of no longer than 
5 simulated days (120 hours). 

For test case #1, the error should not exceed 10-1 for T21 (MM = 1pN = KR = 21), and the 
error should be reduced by an additional factor of 10-1 for each doubling of the resolution: 
T42, T85, T170, etc. For test cases #2 and #3, the error should be within a few orders of 
magnitude of the machine precision. For test case #4, the L1, L2, and Zoo errors should not 
exceed approximately For test cases #5 and #6, the exact solutions are not known, 
and the conservation and spectral analyses must be used to evaluate the solutions. Sample 
output files generated on a Cray Y-MP for all test cases are included with the STSWM code 
distribution. 

8.2. Timing Data 

Figure 8.2 contains the timing output for this run, which is written into a file specified in 
measurements. If this file does not already exist, it is created and the column labels are 
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PARALLEL SPECTRAL TRANSFORM SHALLOW WATER MODEL, VERSION 4.0 
(BASED ON SPECTRAL TRANSFORM SHALLOW HATER MODEL, VERSION 2.0 

COPYRIGHT (C) 1992 
UNIVERSITY CORPORATION FOR ATMOSPHERIC RESEARCH 
ALL RIGHTS RESERVED) 

READING PARAMETERS FROM FILE problem: 

EXPERIMENT 0002 

SPECTRAL TRUNCATION TYPE: TRIANGULAR 
M = N = K =  42 

NUMBER OF GRIDPOINTS IN MODEL 
NORTH-SOUTH GAUSSIAN GRID: NLAT = 64 
EAST-HEST EQUIDISTANT GRID: NLON = 128 
VERTICAL LAYERS: NVER = 16 

READING PAFWETERS FROM FILE algorithm: 

NUMBER OF PROCESSORS IN PARALLELIZATION 
ROW PROCESSORS: PX = 2 
COLUMN PROCESSORS: PY = 4 

PARALLEL ALGORITHMS 
FT: DISTRIBUTED 
LT: DISTRIBUTED (OVERLAPPED RING VECTOR SUM) 

AVAILABLE WORK SPACE (IN BYTES): 5200000 
REQUIRED WORK SPACE : 1843552 

MACHINE EPSILON (1.0 + EPS > 1.0) = 1.1920929OOE-07 

TEST CASE #2: STEADY STATE NONLINEAR GEOSTROPHIC FLOW 
ROTATED BY AN ANGLE ALPHA = 0.785 
MAX. WIND = 3.8610683OOE+Ol 
COURANT NUMBER = 0.5091 

GLOBAL MEAN STEADY GEOPOTENTIAL = 2.317216400E+04 

ERRANL: INITIAL VALUES FOR NORMALIZATION OF RELATIVE ERRORS 
(SLIGHTLY GRID DEPENDENT! ) 
HEIGHT MIN./MAX. = 1.093466800E+03/ 2.998115500E+03 
HEIGHT AVG./VAR. = 2.363021500E+03/ 3.226756200E+05 

ERRANL: ERROR ESTIMATES FOR NSTEP = 216, TAU = 120.00 HRS 
HEIGHT ERROR 
Ll = 2.377001000E-06, L2 = 2.8574079OOE-06 L(INF) = 8.1431363OOE-06 
VECTOR WIND ERROR 
L1 = 3.304713400E-05, L2 = 3.8535167OOE-05 L(INF) = 1.2345129OOE-04 
HEIGHT MIN./MAX. = l.O9345400OE+03/ 2.998118200E+03 
HEIGHT AVG./VAR. = 2.363021000E+03/ 3.226713100E+05 

Figure 8.1: Sample model output. 
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t o t a l  m i n  max overhead nstep 
0.38209E+03 0.17586E+01 0.17836E+01 O.OOOOOE+OO 216 

spectral space physical space problem processors map 
( 42, 42, 42) ( 128, 64, 16) (2,T,F,F) ( 2, 4) 2 

paral le l  f t  paral le l  It sum exchsize 
(0, 0, 0, 1, l , O , O >  (0, 0, 0, I, 2,0,0) 0 0 

Figure 8.2: Sample timing output. 

output. If the file already exists, subsequent timings are appended to the file. Note that model 
timing data is output on a single line. In Fig. 8.2, this is broken into three pieces. 

- 1: t o t a l  is the total execution time for this model run, where timing begins after initial- 
ization: reading in problem and algorithm specifications, setting up the work space, and 
calculating initial data. 

- 2-3: m i n  and max are the minimum and maximum execution time for a single timestep, re- 
spectively, taken over all processors. 

- 4: overhead is not measured currently. 

- 5: nstep is the number of timesteps required to reach TAUE, which equals 120.0 hours for 
this run. 

- 6: spectral space gives MM, NN, and KK. 

- 7: physical space gives HLON, NLAT, and NVER. 

- 8: processors gives lPLOEl and HPLAT. 

- 9: map is MESHOPT. 

- 10: paral le l  f t  gives FTOPT, COMMFFT, COMMIFT, BUFSFFT, BUFSIFT, PROTFFT, and PROTIFT. 
Note that the number of buffers listed is the actual number used, not the number re- 
quested. Each parallel algorithm has a minimum number of buffers it needs and a maxi- 
mum number that it can use. 

- 11: paral le l  It gives LTOPT, COMMFLT, COMMILT, BUFSFLT, BUFSILT, PROTFLT, and PROTILT. 

- 12: sum is SUMOPT. 

- 11: exchsize is EXCHSIZE. 

The information saved in the timings file is important for interpreting performance experi- 
ments, but is not sufficient for specifying the model run. For example, while TAUE or DT are 
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flops 
4,129,674 
24,235,196 
153,013,770 

important when interpreting the accuracy of the solution, performance is solely a function of 
nstep, and only nstep is recorded. 

MM HH KK E O N  HLAT NVER 

42 42 42 128 64 1 
85 85 85 256 128 1 
170 170 170 512 256 1 

The computation required to compute a single timestep of a model run is a function of the test 
case and of the problem resolution. The hardware performance monitor on a single processor 
of a Cray C-90 measured the following number of floating point operations (flops) per timestep 
for test case #2 using semi-implicit timestepping for the indicated resolutions: 

The measurements were run with the Cray compiler options that indicated the smallest number 
of flops. The complexity scales linearly with HVER, but is a more complicated function of the 
other parameters. These counts will increase when forcing is enabled, and will decrease (slightly) 
when explicit timestepping is used. 



9. BENCHMARKING METHODOLOGY 

We have developed a particular methodology for fair algorithm comparison and benchmarking: 

t o  t h e  extent feasible, compare tuned algorithms 

PSTSWM was designed with this in mind, and is partially a product of research into what is 
"feasible". When using the code on a new platform, or after the platform has undergone a 
significant modification, we follow the following procedure: 

1. determine best communication options and protocols for each parallel algorithm; 

2. determine the best combination of tuned parallel FFT and parallel LT algorithms and 
the corresponding logical processor mesh for each total number of processors; 

3. compare performance of the optimal parallel algorithms on each machine when making 
intermachine comparisons. 

For more details, see [17] and [MI. 

These steps all involve running numerous experiments using one or a small number of problem 
input files, but many different algorithm input files. To support this methodology, PSTSWM 
mil1 look for a file named script before reading in problem, algorithm, and measurements. 
script should contain, first, the number of experiments to run. Each subsequent line should 
contain the names of the files specifying the problem, algorithm, and measurements options for 
an experiment, as indicated in the following example. 

3 
"problem.t42.16" ~'alg.16.I.O.I.O'' "mea.42.16" 
"problem. t42.16" "alg .16. I. 0.2.0" "mea.42.16" 
"problem. t42.16" "alg. 16. I. 0.3.0" "mea.42.16" 

Figure 9.1: Example experiment script file. 

Not only does this make extensive parameter studies possible, but it also eliminates the necessity 
of reloading PSTSWM for every experiment. On some systems, loading the executable is very 
expensive, especially relative to the short execution times required in most of the parameter 
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studies. Note that the sequence of experiments controlled by script must all use the same 
total number of processors, but that the logical aspect ratio used can be varied. 



I 

10. MACHINE SPECIFICS 

For PSTSWM, we have attempted to make a portable code that will run efficiently on a variety 
of machines. These goals are somewhat conflicting, but, when possible, we have supported 
machine-specific peculiarities if they do not have negative impacts on the performance on other 
platforms. The following list is not exhaustive, listing Intel-motivated modifications primarily, 
but it indicates some of the issues that have been addressed in the code. 

1. The Intel i860 family of microprocessors support IEEEstandard denormalized numbers, 
but very inefficiently. The spectral transform method often works with very small num- 
bers, ones which have no effect on the solution accuracy. To avoid unnecessary perfor- 
mance degradation, a special routine is provided to set denormalized numbers to zero 
on 860  based machines. (In general, the -noieee compiler option also improves the 
performance of PSTSWM on Intel i86O-based platforms.) 

2. On the current version of the Intel Paragon, the first time through a timestep is much 
slower than later ones due to paging the instructions, data, and work storage into local 
memory. This is partially an artifact of the current state of the operating system, and is 
unimportant for long runs. To eliminate this, the first timestep is calculated once before 
timing is enabled, then the initial conditions are restored, timing is enabled, and the first 
timestep is calculated again. 

3. The real solution to the paging problem on the Paragon, and a mechanism that improves 
performance throughout the model simulation, is to allocate the work space dynami- 
cally, using the ALLOCATE extension to Fortran. This requires a modification to  two 
lines of code, but is nonportable, and is included on the Paragon machines using the C 
preprocessor and compile time switches. 

4. An additional preprocessor test is used to include the multithreading constructs used on 
the Paragon MP node systems. 

5.  Performance on the T3D is sensitive to the number of distinct arrays (or cache lines) 
being updated in a single loop. To improve performance, some compute intensive loops 
have been split so that only one or two arrays are being updated simultaneously. 

Note that we are willing to make additional changes to PSTSWM to make it run efficiently 
on other platforms (on a case-by-case basis). We also encourage vendors and other researchers 
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to insert library calls for the global communication routines, or other similar modifications 
to PSTSWM, to increase efficiency on a given platform. PSTSWM as it is written currently 
represents a generic version of the code. As part of our methodology research, we are interested 
in how much efficiency we give up by taking our approach. 



11. PORTING THE CODE 

\ 

After passing PSTSWM source code through the C preprocessor /lib/cpp, it is a Fortran 77 
code with the following “standard” extensions: 

1. IMPLICIT NONE 

2. DO WHILE ._ ENDDO 

3. DO .. ENDDO 

4. variable names greater than 6 characters long 

5. variables names containing underscore 

6. COMMON containing both character and noncharacter variables 

The code also calls the intrinsic function XOR. For systems that do not provide this function, 
like the nCUBE/2, a Fortran-callable C routine must be written. 

All other porting issues deal with message-passing. If the MPI, PICL, or PVM libraries have 
already been implemented on the machine, then the port of PSTSWM should be simply a 
matter of generating a new machine-specific makefile. If these communication libraries do 
not exist, then the most useful approach, to the authors, is to port the PICL message-passing 
library, since this retains the full performance data collection functionality. If this is not feasible, 
reimplementing the basic message-passing routines is straightforward. Example native ports can 
be found in the s r c / l i b  subdirectory. Note that the only performance-sensitive interprocessor 
communication is in sendrecv. f and snap. f. If sendrecv. f and snap. f are reimplemented, 
please check for unsupported communication protocol options and output meaningful error 
messages. 

’ 

Note that all of the message-passing routines, and all of PSTSWM, contain extensive internal 
documentation, specifying exactly what the code is doing, and why. 
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12. CONCLUSIONS AND FUTURE PLANS 

PSTSWM was developed for, and has been used in, numerous research projects, primarily in 
parallel algorithm research, the evaluation of early systems. benchmarking methodology, and 
performance modeling. It has also been used very effectively for finding bugs and performance 
problems in communication libraries. Other than ports to additional systems, PSTSWM’s 
development is essentially complete, but we expect to continue using the code to test and 
evaluate parallel platforms and communication libraries. 

Much of the code for the collective communication operations in PSTSWM is also being used 
in other application codes, in particular PCCMS, the message passing version of the Commu- 
nity Climate Model, providing these codes with both efficient communication algorithms and 
portability. 

We are also developing new parallel algorithm testbeds for other numerical methods used in 
atmospheric circulation models, and many of the ideas (and some of the code) from PSTSWM 
will be reused. 
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A. PROBLEM INPUT FILES 

'0001' 
42 
42 
42 
64 
128 
16 

0.0 
2400.0 
999.0 
1.0 
999.0 
120.0 

.FALSE. 

1. 

/ CIIEXP 
/ M M  
/ N N  
/ KK 
/ NLAT 
/ NLON 
/ NVER 
/ NGRPHS 
/ A  
/ OMEGA 
/ GRAV 
/ HDC 
/ ALPHA 
/ DT 
/ EGYFRQ 
/ ERRFRQ 
/ SPCFRQ 
1 TAUE 
/ AFC 
/ SITS 
/ FORCED 
/ MOMENT 
/ ICOND 

Figure A.l: Example problem input file for test case #l. 
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'0002' 
42 
42 
42 
64 
128 
16 

0.0 
2000.0 
999.0 
1.0 
999.0 
120.0 

.TRUE. 

2 

'0003' 
42 
42 
42 
64 
128 
16 

1.5207963 
2000.0 
999.0 
1.0 
999.0 
120.0 

.TRUE. 

3 

/ CHEXP 
/ M M  
/ N N  
/ KK 
/ NLAT 
/ NLON 
/ MlER 
/ NGRPHS 
/ A  
/ OMEGA 
/ GRAV 
/ HDC 
/ ALPHA 
/ DT 
/ EGYFRq 
/ ERRFRq 
/ SPCFRq 
/ TAUE 
/ AFC 
/ S I T S  
/ FORCED 
/ MOHENT 
/ ICOND 

Figure A.2: Example problem input file for test case #2. 

/ CHEW 
/ M M  
/ NN 
/ KK 
/ NLAT 
/ NLOB 
/ r n R  
/ NGRPHS 
/ A  
/ OMEGA 
/ GRAV 
/ HDC 
/ ALPHA 
/ DT 
/ EGYFRQ 
/ ERRFRq 
/ SPCFRQ 
/ TAUE 
/ AFC 
/ S I T S  
/ FORCED 
/ MOENT 
/ ICOND 

Figure A.3: Example problem input file for test case #3 
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'0004' 
42 
42 
42 
64 
128 
16 

0.0 
2000.0 
999.0 
1.0 
999.0 
120.0 

. TRUE. 

.TRUE. 

.FALSE. 
4 

'0005' 
42 
42 
42 
64 
128 
16 

0.0 
4000.0 
1.0 
999.0 
1.0 
120.0 

.TRUE. 

5 

/ CHEXP 
/ M M  
/ NN 
/ KK 
/ NLAT 
/ NLON 
/ NVER 
/ NGRPHS 
/ A  
/ OMEGA 
/ GRAV 
/ mc 
/ ALPHA 
/ DT 
/ EGYFRq 
/ ERRFRQ 
/ SPCFRq 
/ TAUE 
/ AFC 
/ SITS 
/ FORCED 
/ MOMENT 
/ ICOND 

Figure A.4: Example problem input file for test case #4 

/ CHEXP 
/ M M  
/ NN 
/ KK 
/ NLAT 
/ NLON 
/ NVER 
/ NGFPHS 
/ A  
/ OMEGA 
/ GRAV 
/ HDC 
/ ALPHA 
/ DT 
/ EGYFRq 
/ ERRFRq 
/ SPCFRq 
/ TAUE 
/ AFC 
/ SITS 
/ FORCED 
/ MOENT 
/ ICOND 

Figure A.5: Example problem input file for test case #5 
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'0005' 
42 
42 
42 
64 
128 
16 

0. SEI6 
0.0 
800.0 
1.0 
999.0 
1.0 
120.0 

.TRUE. 

6 

/ CHEXP 
/ m  
/ I N  
/ KK 
/ NLAT 
/ NLON 
/ NVER 
/ NGRPHS 
/ A  
/ OMEGA 
/ GRAV 
/ HDC 
/ ALPHA 
/ DT 
/ EGYFRq 
/ ERRFRq 
/ SPCFRq 
/ TAUE 
/ AFC 
/ SITS 
/ FORCED 
/ BOMENT 
/ ICOND 

Figure A.6: Example problem input file for test case #6 



B. PVM-ONLY AND MPI-ONLY PSTSWM 

IMPLEMENTATIONS 

A network PVM-only distribution of PSTSWM is available from 

http://aav.epm.ornl.gov/chammp/pstsm 

and from the PARKBENCH benchmark suite distribution on netlib. The source code in this 
version is identical to that of the full distribution except that only the PVM implementations of 
the communication routines are retained. The distribution comes with an extensive README 
file, a driver makefile, and 3 subdirectories: bin, input, and src. The input subdirectory 
contains three example problem input files, corresponding to the small, medium, and large 
problems associated with all PARKBENCH compact application codes. It also contains the 
usual example algorithm and measurements input files. The src subdirectory contains no 
subdirectories, with the communication library-specific files and the platform-specific makefiles 
residing with all of the (other) source code. Currently, makefiles are provided only for the SUN 
and IBM RS/SOOO workstations. 

An MPI-only distribution of PSTSWM is also available from 

http://van. epm.ornl.gov/chammp/pstsnm. 

The MPI-only distribution has the same structure as the PVM-only distribution. Currently, 
makefiles are provided only for the Intel Paragon, using mpich, and the IBM SP, using mpich 
or MPI-F. 
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