
I
ii

n

'2

d
OAK RIDGE
NATIONAL
LABORATORY

MANAGED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

j

i

ORNWM-12779

A Users' Guide to PSTSWM

Patrick H. Worley
Brian Toonen

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Techni-
cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615)
576-8401, FTS 626-840 1.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

~ ~ ~~

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government mr any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any Information, apparatus, product, or process dis-
closed, or represents that its use would not infrlnge prlvetely owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

n ORNL/TM-12779

I

Computer Science and Mathematics Division

Mathematical Sciences Section

A USERS’ GUIDE TO PSTSWM

Patrick H. Worley t
Brian Toonen

Oak Ridge National Laboratory
Mathematical Sciences Section
P. 0. Box 2008
Oak Ridge, T N 37831-6367

Argonne National Laboratory
Mathematics and Computer Science Division
Argonne, IL 60439-4801

Date Published: July, 1995

Research was supported by the Atmospheric and Climate Research
Division and by the Applied Mathematical Sciences Research Pro-
gram, both of the Office of Energy Research, U.S. Department of
Energy

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

LOCKHEED MARTIN ENERGY RESEARCH CORP.
for the

US. DEPARTMENT OF ENERGY
under Contract No. DEAC05-960R22464

CONTENTS

1 Introduction 1

2 History 3

3 General Description 4

4 Problem Description and Specification 6
6
7

4.1 Spectral Transform Method for the Shallow Water,Equations - . .
4.2 Problem Specification . -

5 Parde l Algorithm Description and Specification 10
5.1 Approach to Parallelization .
5.2 Parallel Algorithm Specification . -
5.3 Discussion..

10
11
20

6 Performance Measurement Description and Specification 23
23
24

6.1 Approach to Performance Measurement .
6.2 Performance Measurement Specification -

7 Compile Time Options 26
26
26

7.1 Parameter File Specifications .
7.2 Makefile Parameter Specifications 1. . . -

8 Output 30
30
30

8.1 Model Output .
8.2 TimingData . -

9 Benchmarking Methodology 34

10 Machine Specifics 36

11 Porting the Code 38

12 Conclusions and Future Plans 39

13 Acknowledgments

14 Bibliography

A Problem Input Files

B PVM-only and MPI-only PSTSWM Implementations

40

41

43

47

iii

A USERS’ GUIDE TO PSTSWM

Patrick H. Worley
Brian Toonen

The Parallel Spectral Transform Shallow Water Model (PSTSWM) is a code developed to
evaluate parallel algorithms for the spectral transform method in global atmospheric circulation
models. PSTSWM is also useful for benchmarking parallel platforms that use the message-
passing parallel programming paradigm. In this report, we describe how to obtain, compile,
and use the code. We also discuss what is involved in porting the code to a new parallel
platform.

- v -

1. INTRODUCTION

PSTSWM Version 4.0 is a message-passing benchmark code and parallel algorithm testbed that
solves the nonlinear shallow water equations on a rotating sphere using the spectral transform
method. PSTSWM was developed to evaluate parallel algorithms for the spectral transform
method as it is used in global atmospheric circulation models [6]. Multiple parallel algorithms
are embedded in the code and can be selected at run-time, as can the problem size, number of
processors, and data decomposition. Six different problem test cases are also supported, each
with associated solution and error analysis options.

The extensive selection of run-time options are included to make a fair parallel algorithm
comparison tractable. On each platform, each major algorithm is first tuned to achieve optimum
performance before comparing between the algorithms. Developing, validating, maintaining,
and executing separate versions of the code for each variant of each parallel algorithm would
have been impossible.

The algorithm comparison is also sensitive to problem specifics, motivating the run-time se-
lection of the problem size and problem test case, and to the parallel platform. To avoid
maintaining significantly different versions of the code for outwardly similar parallel architec-
tures, PSTSWM has been structured to be easily ported. PSTSWM is written in Fortran 77
with VMS extensions and a small number of C preprocessor directives. Message passing is
implemented using MPI [2], PICL [8], PVM [7], or native message passing libraries, with the
choice being made at compile time. Additionally, all message passing is encapsulated in three
high level routines for broadcast, global minimum and global maximum, and in two classes of
low level routines representing variants or stages of the swap operation and the send/receive
operation. Porting the code to another message passing system requires either porting the
MPI, PICL, or PVM libraries or implementing the (few) communication routines in PSTSWM
using native message passing primitives. As of 4/1/95, PSTSWM has been run on the Intel
iPSC/2, iPSC/860, DELTA, and Paragon (on both GP and MP nodes and using either the
NX or SUNMOS operating systems), the nCUBE/2 and nCUBE/2S, the IBM SP-1 and SP-2,
the Cray Research T3D, across a network of workstations, and on a Cray vector machine (as a
serial application). In principle, it should also run on any other platform on which MPI, PICL,
or PVM is available.

To aid in tuning and in understanding the parallel performance, PSTSWM has been instru-
mented for the collection of performance data using the PICL trace and profile collection
interface. The PICL implementation of the code must be used in order to collect performance

1

- 2 -

data on interprocessor communication' but a mixed PICL/native implementation is also pro-
vided that can be used to collect data on events not related to message passing. In the mixed
implementation, the performance sensitive message passing uses native commands and PICL
is only used in the collection of the performance data.

The ability to easily port and tune PSTSWM on different message-passing platforms has made
the code valuable as a fair benchmark. By comparing the run-times for the best parallel
algorithm options on each platform, PSTSWM allows the parallel platform to be evaluated
on its ability to run the numerical simulation, not just a particular parallel implementation.
Thus, PSTSWM is a compromise between paper benchmarks [l], where most everything can be
varied, at the cost of developing a parallel simulation code from scratch on each platform, and
fixed benchmarks, where nothing can be varied even if the parallel implementation is unsuitable.
The results on the best algorithm options also provide guidance on how to use a given platform
most efficiently. Note that all parallel algorithms have been carefully implemented, eliminating
unnecessary buffer copying and exploiting our knowledge of the context in which they are called.

In this report, we describe the practical issues of how to use PSTSWM. In a future report,
we will describe the code structure and embedded parallel algorithms in detail. Algorithm
comparison results are described in [6]. Benchmark results are described in [18] and [5]. The
benchmarking philosophy inspired by PSTSWM is described in [17].

The rest of this report is as follows. Chapter 2 gives a brief history of the development of
PSTSWM. Chapter 3 describes how to obtain, build, and run the code. Chapter 4 describes
the underlying problem and problem specification options. Chapter 5 describes the approach
to parallelization and the parallel algorithm specification options. Chapter 6 describes per-
formance data that can be collected and the performance data collection options. Chapter 7
describes the compile time options, which specify maximum problem size and platform-specific
parameters. Chapter 8 describes the model and timing data output produced by running the
code. Chapter 9 briefly describes our benchmarking methodology and features in PSTSWM
that support this usage. Chapter 10 describes how PSTSWM has been adapted to pecu-
liarities of some of the target platforms. Chapter 11 discusses what is involved in porting
PSTSWM to a new platform. Appendix A lists the sample problem input files included with
the PSTSWM source code. Appendix B describes the differences between the general distribu-
tion of PSTSWM, the PVM-only version used in the ParkBench v1.0 suite of benchmark codes,
and the MPI-only version developed for inclusion in the next generation of the ParkBench suite.

*

lThe PICL message passing model is fairly rich, representing a substantial subset of both the NX [12] and
MPI [2] low level primitives, and has been adequate for obtaining eificient message passing performance on most
current message passing systems. But PICL message passing is not as efficient as the native commands on all
systems. For example, the SHMEM remote read/write commands are significantly less expensive to use than
are tagged message passing commands (like those used in PICL) on the T3D.

2. HISTORY

PSTSWM is a parallel implementation of the sequential Fortran 77 code STSWM 2.0, written
by J. J. Hack and R. Jakob at the National Center for Atmospheric Research (NCAR) [lo].
STSWM was developed to provide the reference solutions to the seven test cases proposed by
Williamsonet. al. in [14], which were chosen to test the ability ofnumerical methods to simulate
important flow phenomena. In addition, STSWM was meant to serve as an educational tool
for numerical studies of the shallow water equations, and is available from the netlib software
repository [3] and via the World Wide Web from http://uvn. epm. ornl.gov/chnramp/stswm.

PSTSWM was developed as an experimental vehicle for evaluating parallel algorithms for in-
clusion in PCCM2 [4], the message passing parallel implementation of NCAR’s Community
Climate Model CCM2 [9]. The data structures and algorithms used to solve the shallow water
equations in STSWM are similar to those employed in CCM2 to handle the horizontal dynamics
component of the primitive equations on a single vertical level [9]. By modifying PSTSWM to
solve the shallow water equations on multiple (independent) vertical levels during each timestep
of the simulation, the parallel performance of PCCM2’s horizontal dynamics can be studied in
isolation from the other aspects of the full model.

PSTSWM represents a complete rewrite of STSWM, but the underlying numerical algorithms,
most of the test cases and analysis routines, and much of the user interface are unchanged.
In particular, the primary index and loop orderings are unchanged, preserving the close corre-
spondence to the numerical algorithms in CCM2.

From the user’s point of view, there are four major differences between STSWM and PSTSWM.
First, the graphics options in the analysis routines are not supported in PSTSWM. Second,
reading in the solutions for test cases #5, #6, and #7 and writing out the spectral coefficients
for the calculated solution are not supported in PSTSWjM. This eliminates test case #7, which
depends on reading in real weather data. Both of these changes make PSTSWM easier to
port by eliminating dependence on the NCAR graphics and netCDF libraries that are used to
implement the graphics options and to input and output solution values, respectively.

The other two differences between STSWM and PSTSWM represent additional capabilities.
First, as mentioned above, PSTSWM solves the shallow water equations on multiple (fictitious)
vertical levels. The number of levels is a run-time selectable parameter, allowing the correct
communication and computation granularity for any given 3-D weather or climate code to be
specified. Second, two additional input files are used to specify the numerous parallel algorithm
and performance measurement options, as will be described in Chapter 5 and Chapter 6.

3

http://uvn

3. GENERAL DESCRIPTION

PSTSWM is packaged as a makefile and five subdirectories: bin, doc, input, p i c la . 0, and src.
The bin subdirectory will contain any executables, Le., the makefile puts executables there.
The doc subdirectory contains any documentation, like this document. The input subdirectory
contains sample input files. The picl2.0 subdirectory contains the latest version of the PICL
communication library.

The src subdirectory contains approximately 30,000 lines of source code, about half of which
are comments, divided into approximately 80 separate files. These files are mostly Fortran
source code with C preprocessor directives (*.F), but there are also some include files (*.i)
and C source code files (* .c) . src also contains the l i b subdirectory, which contains the
communication library-specific implementations of the low-level communication routines, and
the makef i l e s subdirectory, which contains one makefile for each different parallel platform
and communication library combination. The (top level) driver makefile is used to define the
compile-time options and to select the appropriate system-specific makefile.

Obtaining PSTSWM. PSTSWM is available via the World Wide Web from location
http: //m. epm. orn l . gov/chammp/pstsw or via netlib, a software distribution service set
up on the Internet [3]. To obtain source code and documentation for PSTSWM via netlib, send
e-mail to netlibQornl. gov with the message: send index from chammp. A mail handler will
return a list of available files and further instructions by e-mail. If all else fails, you can also
contact the authors at uorleyphQornl .gov or f os terhcs . adi. gov. The code from the World
Wide Web location will generally be the most current. Note that the PVM-only and MPI-only
distributions of PSTSWM are available from the WWW location as well.

Building PSTSWM. For most of the supported systems you simply need to execute make at
the top level of the PSTSWM distribution with the appropriate arguments to build PSTSWM.
Executing make with no arguments will print a brief description of the arguments and the
currently available options. These options are described in detail in Chapter 7.

Certain systems may require that the appropriate makefile in src/m&ef i les be modified to,
for example, point to the correct C preprocessor, compilers, libraries, and/or include files. What
is currently used is what works in the authors’ environments.

4

- 5 -

Multiprocessor
CFU T3D
IBM SP

Intel iPSC

Intel Paragon - OSF

Intel Paragon - SUNMOS
nCUBE 2 series

Load Commands
pstsmn -npes 64
setenw MPSROCS 64
poe pstsum
getcube -c pstsum-cube -t 64
load -c pstsum-cube pstsum
mkpart -sz 8x8 pstsumqartition
pstsum -pn pstsum-partition
yod -proc I -sz 8x8 pstsum
H ~ C -d 6 p s t s m

Figure 3.1: Example commands to load PSTSWM on to 64 processors of a multiprocessor.

Loading PSTSWM. PSTSWM is a hostless parallel program. Loading the program on the
multiprocessor is the responsibility of the user, and what is required differs from platform to
platform and from site to site. Example load commands are listed in Fig. 3.1. Note that there
are numerous environment variables that control parallel execution in the IBM SP environment,
and more may be required than is shown here.

Input. Once loaded, PSTSWM normally looks for three input files: problem, described in
Chapters 4, algorithm, described in Chapter 5, and measurements, described in Chapter 6.
Example algorithm and measurements input files and six example problem input files are lo-
cated in the subdirectory input that comes with the code distribution. To use a particular
example problem input file, you must rename it problem and copy it to where the executable
will look for it, usually in the same directory from which the executable is loaded onto the
multiprocessor. Similarly, the example algorithm and measurements input files must be copied
to the appropriate location.

If the file script is found by PSTSWM, then PSTSWM runs a sequence of experiments, using
a sequence of problem, algorithm, and measurements input files. script indicates how many
experiments to run and the names of the input files to be used in each experiment. See Chapter 9
for more information.

Depending on the value of the algorithm input parameter MESHOPT, PSTSWM may also look
for a file named meshmap, which specifies how the problem should be partitioned over the
processors. See Chapter 5 for details.

Output. PSTSWM sends model output to standard out (Fortran Unit 6). Model output
includes a summary of problem and algorithm specifications and the results of any requested
solution analyses, as described in Chapter 8. If timing measurements are requested, timing
data is appended to a file indicated in measurements, as described in Chapter 6. If PICL
performance data is requested, it is also output to a file indicated in measurements. Error
output is sent to standard error.

4. PROBLEM DESCRIPTION AND SPECIFICATION

4.1. Spectral Transform Method for the Shallow Water Equations

The shallow water equations in the form solved by the spectral transform method describe
the time evolution of three state variables: vorticity, horizontal divergence, and a perturbation
from an average geopotential. The horizontal velocities are computed from these variables.
PSTSWM advances the solution fields in a sequence of timesteps. During each timestep, the
state variables of the problem are transformed between the physical domain, where the physical
forces are calculated, and the spectral domain, where the terms of the differential equation are
evaluated. The physical domain for a given vertical level is a tensor product longitude-latitude
grid. The spectral domain.for a given vertical level is the set of spectral coefficients in a
truncated spherical harmonic expansion of the state variables of the form

where

Here i = fl, ,u = sine, ~9 is latitude, X is longitude, m is the wavenumber or Fourier mode,
P,"(,u) is the associated Legendre function, and {PF(,u)eimA) are the spherical harmonics. In
the truncated expansion, M is the highest Fourier mode and N(m) is the highest degree of the
associated Legendre function in the north-south representation.

Transforming from physical coordinates to spectral coordinates involves performing a real fast
Fourier transform (FFT) for each line of constant latitude, followed by integration over latitude
using Gaussian quadrature (approximating the Legendre transform (LT)) to obtain the spectral
coefficients. The inverse transformation involves evaluating sums of spectral harmonics and
inverse real FFTs, analogous to the forward transform. The basic outline of each timestep is
the following:

1) Evaluate non-linear product and forcing terms.

2) Fourier transform non-linear terms as a block transform.

6

-7-

3) Compute forward Legendre transforms and advance in time the spectral coefficients for
state variables. (Much of the calculation of the time update is ‘%undled” with the Leg-
endre transform for efficiency.)

4) Transform state variables back to gridpoint space using

a) an inverse LT and associated computations, and
b) an inverse real block FFT,

simultaneously calculating the horizontal velocities from the updated state variables.

For more details on the steps in solving the shallow water equations using the spectral transform
algorithm see [lo].

4.2. Problem Specification

Unlike STSWM, all problem parameters in PSTSWM are specified at run-time and are input
from a file named problem. Included with the code distribution are example problem input
files corresponding to the first 6 test cases described in [14] and a common problem resolution.
Figure 4.1 contains the input file corresponding to test case #2. Problem input files for the
other test cases can be found in Appendix A. A brief description of each of the problem
parameters follows:

- 1: CHEXP is a 4 character string used to label the experiment. Typically, it is a numeric
label indicating which test case is being run (see ICOHD below). The default is a string of
blanks.

- 2-4: The integer parameters MM, NN, and KK define the total number of spectral coefficients and
the spectral truncation used. MM is the maximum number of wavenumbers retained, i.e.,
is equivalent to M in equation 4.1, acd

N(m)= { N H + m ifHN+m<KK;
KK otherwise.

Note that KK must be at least as large as both MM and NH, but no larger than MM + NN.
All the included problem input files use a triangular truncation MM = HN = KK, so called
because the (m,n) indices of the spectral coefficients for a single vertical layer form a
triangular grid. The default values are MM = 21, NN = 21, and KK = 21.

- 5-7: The integer parameters NLAT, NLOH, and NVER define the tensor-product physical grid of
size NLON x NLAT x NVER. NLAT must be an even number no less than (3NN+ 1)/2 if NN = KK,
and no less than (3NN + 2MM + 1)/2 otherwise. NLOH must be a power of two no less than
3MM + 1. NVER must be a positive integer. The default values are NLAT = 32, NLOH = 64,
and NVER = 9.

-8-

'0002'
42
42
42
64
128
16

/ CHEXP
/ MM
/ NE
/ K K
/ NLAT
/ NLOB
/ H E R
/ NGWHS
/ A
/ OMEGA
/ GRAV
/ HDC

.78539816339744830961 / ALPHA
2000.0 / DT
999 f 0 / EGWRQ
1.0 / ERRFRQ
999.0 / SPCFRQ
120.0 / TAUE

/ AFC

/ FORCED
/ MOMENT

.TRUE. . / SITS

2 / 1com

Figure 4.1: Examp2 problem input file for test case #2.

- 8: The parameter HGRPHS is not used currently, and should not be set.

9-11: The floating point parameters A, OMEGA, and GRAV are the radius, angular velocity, and
gravitational acceleration of the sphere, respectively. The default values are those for the
Earth.

- 12: The floating point parameter HDC is the h e a r diffusion constant K4. For a description,
see [15]. The default value is 0.0.

- 13: The floating point parameter ALPHA is the rotation angle of the coordinate system in
radians. It is used in test cases #1, #2, and #3. The defadt value is 7r/4 for these test
Cases.

- 14: The floating point parameter DT is the timestep in seconds used in advancing the state
variables. The size of the timestep is subject to a stability condition defined by the
resolution of the computational grids, the numerical method, and the test case. A stability
condition estimate is printed as part of the output of the model run. A necessary condition
for stability is that the condition estimate be less than 1.0. Due to unresolved problems
with the estimator, this is not a sufficient condition when using explicit timestepping
(see SITS below). For test cases #2-#6, a condition number less than 0.5 does appear
to be sufficient. For test case #1, the estimate should be kept below 0.1. As a first

- 9 -

approximation, the condition estimate scales linearly with the timestep, and a reasonable
timestep can be determined quickly. The default value is 2400.0.

15-17: The floating point parameters EQYFRQ, ERRFRQ, and SPCFRQ specify the time interval in
simulation hours between output of conservation, error, and spectral analyses of the model
state, respectively. The default values are all 999.0. These parameters are ignored when
doing timing runs, so that calculation and output of these analyses will not affect the
timings.

- 18: The floating point parameter TAUE is the duration of the model run in simulation hours.
The default value is 120.0, representing a 5 day simulation.

- 19: The floating point parameter AFC is the Asselin filter coefficient, which is used to pre-
vent the modal splitting between even and odd timesteps that can occur in the leapfrog
timestepping procedure. The default value is 0.0.

- 20: The logical parameter SITS specifies whether to use semi-implicit timestepping (.TRUE.)
or explicit timestepping (.FALSE.). The default value is .TRUE. - Note that explicit
timestepping must be used with test case #1, and that stability restrictions require that
explicit timestepping use smaller timesteps than are needed by semi-implicit timestep-
ping for the same problem. Also note that the stability condition estimate for explicit
timestepping is not reliable, as described earlier.

- 21: The logical parameter FORCING specifies whether or not to enable external forcing. The
default value is .FALSE. . Note that forcing must be used with test case #4, and will
invalidate the error analysis if used in test cases #2 and #3.

- 22: The logical parameter MOMENT specifies whether to use momentum forcing (.TRUE.) or
vorticity-divergence forcing (.FALSE.) in test case #4. The default value is .FALSE..

- 23: The integer parameter ICOm specifies the test case to be executed. Currently the following
cases are supported:

#1- advection equation for solid body flow
#2 - solid body rotation steady state flow
#3 - jetstream steady state flow
#4 - forced low in jetstream
#5 - zonal flow over isolated mountain
#6 - Rossby-Haurwitz waves '

For full descriptions of these cases, see [14]. Note that a 5 day simulation of test case #2
is the designated parallel benchmark test.

5. PARALLEL ALGORITHM DESCRIPTION AND

SPECIFICATION

5.1. Approach to Parallelization

The parallel algorithms in PSTSWM are based on decompositions of the physical and spectral
computational domains over a logical two-dimensional processor mksh of size Px x Py . Initially,
the longitude dimension of the physical domain is decomposed over the processor mesh “row”
dimension and the latitude dimension is decomposed over the “column” dimension. Thus,
FFTs in different processor rows are independent, and each row of Px processors collaborates
in computing a block FFT. Similarly, the Legendre transforms in different processor columns are
independent, and each column of P y processors collaborates in computing a block of Legendre
transforms. The computation of the nonlinear terms at a given location on the physical grid is
independent of that at other locations, and the domain decomposition requires no collaboration
between processors for this phase of the algorithm. The spectral domain decomposition is a
function of the parallel algorithm used.

Two classes of parallel algorithms are available for each transform: distributed algorithms,
using a fixed data decomposition and computing results where they are assigned, and transpose
algorithms, remapping the domains to allow the transforms to be calculated sequentially. These
represent four classes of parallel algorithms:

1) distributed FFT/distributed LT

2) transpose FFT/distributed LT

3) distributed FFT/transpose LT

4) transpose FFT/transpose LT

There are two transpose algorithms, which differ primarily in the number of messages sent and
the cumulative message volume. Assume that the transpose algorithms are implemented on Q
processors and that each processor contains D data to be transposed. Then the per processor
communication costs for the two algorithms can be characterized by

O(Q) messages, O(D) total volume

10

- 11 -

e O(1ogQ) messages, O(D1ogQ) total volume

respectively. In the first (O(Q) transpose) algorithm, every processor sends data to every other
processor. In the second (@(log Q) transpose) algorithm, every processor exchanges data with
its neighbors in a logical log, Q dimensional hypercube.

There are also two distributed LT algorithms. Assume that the Legendre transform is paral-
lelized over Q processors and that each processor will contain D spectral coefficients when the
transform is complete. Then the per processor communication costs for these two algorithms
can be characterized by

e O(Q) messages, O(DQ) total volume

e @(log Q) messages, O(DQ) total volume

respectively. The O(Q) algorithm works on a logical ring, sending messages to and receiving
them from nearest neighbors only. The O(1ogQ) algorithm uses the same communication
pattern as the @(log Q) transpose algorithm.

There is only one distributed FFT algorithm. It has the same characterization of communication
costs and communication pattern as the @(log Q) transpose algorithm.

All parallel algorithms execute essentially the same computations, and, modulo load imbalances,
differ only in communication costs. Load balance issues are discussed in detail in [6]. Each FFT
and LT parallel algorithm also has a number of implementation options that can be selected at
runtime, as indicated below.

5.2. Parallel Algorithm Specification

The parallel algorithm specification is input from a file named algorithm. Included with the
code distribution is the example algorithm input file given in Fig. 5.1. A brief description of
each of the algorithm parameters follows.

- 1-2: The integer parameters HPLOH and HPLAT define the logical processor grid PX x Py,
determining how many processors are allocated to the parallel FFT and the parallel LT,
respectively. The default values are both 1.

- 3: The integer parameter MESHOPT indicates how to map the logical processor mesh

[0, HPLOH - 13 X [0, BPLAT - 11

to the “physical” processors numbered 0 to (BPLOH-BPLAT) - 1. The nine options currently
supported are listed in Fig. 5.2. The default value is 1. For more details, see the comments
in the source code file map. F.

- 12 -

I
I
I
1
0
0
I
I
I
I
0
0
0
0
6
6
6
6
0
0

/ NPLOH
/ BPLAT
/ MESHOPT
/ RIHGOPT
/ FTOPT
/ LTOPT
/ COMMF'FT
/ COMMIFT
/ COMMFLT
/ COMMILT
/ BUFSFFT
/ BUFSIFT
/ BUFSFLT
/ BUFSILT
/ PROTFFT
/ PROTIFT
/ PROTFLT
/ PROTILT
/ SUMOPT
/ EXCHSIZE

Figure 5.1: Sample algorithm input file.

Options -1 and 1 are generally the best options on mesh based machines. The sign of the
option should be set to map the long logical dimension to the long physical dimension. On
platforms with hypercube interconnects, use a linear encoding of the longitude coordinate
(options f 1 and f 2) for the distributed FFT or @(log&) transpose FFT algorithms
and a Gray code encoding (options It 3 and f 4) for the @(&) transpose FFT algorithm.
Similarly, use a linear encoding of the latitude coordinate (options f 1 and f 3) for the
e(1ogQ) transpose LT or distributed LT algorithms and a Gray code encoding (options
=t 2 and f 4) for the @(Q) LT algorithm. Note that options -5 and 5 decrease the com-
munication cost of the parallel LT or FFT, respectively, on mesh-based multiprocessors,
but at the expense of increasing the communication cost of the other parallel transform.

- 4: The integer parameter RINGOPT is not used currently.

- 5: The integer parameter FTOPT specifies whether to use a distributed parallel FFT algorithm
(0), a single transpose parallel FFT algorithm (l), or a double transpose parallel FFT
algorithm (2). The single transpose algorithm undecomposes the longitude dimension,
to d o w the use of a serial FFT, by instead decomposing over the vertical dimension.
This can lead to severe load imbalances if there are not enough vertical layers in the
model. The double transpose algorithm decomposes over both vertical levels and fields,
improving load balance, but requires an additional transpose at the end of the FFT to
undecompose the vertical dimension and fields, since the fields must be together for the
Legendre transform. HPLON must be a power of two to use the distributed algorithm or
the @(log&) transpose algorithm. The default value is 0.

- 13 -

MESHOPT

0

-1

1

-2

2

-3

3

-4

4

-5

5

Mapping

Read mapping from the file meshmap in row major order:

where meshmap contains a list of physical node numbers, one per line.

Use linear code encoding for both coordinates and column major or-
dering

(i , j) - + j + i . H P L O H .

Use linear code encoding for both coordinates and row major ordering

(i,j) + i+j -HPLAT.

Use linear encoding for longitude coordinate, Gray code encoding for
latitude coordinate, and column major ordering

(i, j) + GRAY(j + BPLAT mod HPLAT) + (i - BPLON mod HPLOH) - HPLAT .

Use linear encoding for longitude coordinate, Gray code encoding for
latitude coordinate, and row major ordering

(i , j) -+ (i - HPLOH mod BPLON) + GRAY(j + HPLAT mod HPLAT) - HPLOH .

Use Gray code encoding for longitude coordinate, linear encoding for
latitude coordinat, and column major ordering.

Use Gray code encoding for longitude coordinate, linear encoding for
latitude coordinat, and row major ordering.

Use Gray code encoding for both coordinates and column major
ordering.

Use Gray code encoding for both coordinates and row major ordering.

Map latitude coordinate j to a square subgrid in the logical NPLOB x
NPLAT grid, scattering longitude coordinate.

Map longitude coordinate i to a square subgrid in the logical WLOH x
NPLAT grid, scattering latitude coordinate.

Figure 5.2: Options for mapping logical processor grid onto physical multiprocessor.

- 14 -

- 6: The integer parameter LTOPT specifies whether to use a distributed LT algorithm (0) or
a transpose-based parallel LT algorithm (1). P L A T must be a power-of-two to use the
@(log Q) transpose algorithm. The transpose-based parallel LT algorithm cannot be used
with the double transpose parallel FFT. This an uninteresting algorithm combination,
and is unlikely ever to be supported. The default value is 0.

- 7-8: The integer parameters C O W T and COMMIFT specify which algorithm variants to be used
in the parallel forward and inverse FFT algorithms, respectively.

Distributed. The four options for the distributed algorithm are listed in Fig. 5.3, where
the default value is 1. The distributed algorithm uses a series of swap operations (between
pairs of processors) to move data between processors. These swaps can be implemented
in two ways: send/receive (simple)

Processor a Processor b

send t o b send to a

receive from b receive from a

or send/receive by one processor and receivelsend by the other (ordered)

Processor a Processor b

send t o b receive from a

receive from b send to a

Also, if the block transform is divided into two blocks, communication and computation
can be overlapped: during each stage of the transform one block is being communicated
while the other block is being used in computation.

Transpose. The twelve options for the transpose algorithms are listed in Fig. 5.4, where
the default value is 1. The O(Q) transpose parallel algorithm has two options for schedul-
ing how the information is sent and received, linear and exclusive-OR. During step k of
the h e a r schedule, processor q sends data to processor (q + k mod Q) and receives data
from (q - k mod Q). During step k of the exclusive-OR schedule, processor q swaps
data with processor XOR(q, k). The send/receives and swaps in these algorithms can both
be implemented in two ways: simple or ordered, as in the distributed FFT. (For the
h e a r ordering, the ordered option uses send/receive by even numbered processors and
receive/send by odd numbered processors.)

In the O(Q) transpose algorithm, what is being sent is known beforehand and all of the
data can be sent before any data is received. This is the send-ahead option. Similarly,
all data that is received is retained and the destination of the data is known beforehand.
Thus, all receive requests can be posted before any datais sent, assuming that nonblocking
receives are supported by the native message passing system. This is the receive-ahead
option. If nonblocking receives are not specified in PROTFFT or PROTIFT (see below), then
the receiveahead option is ignored.

- 15 -

0 one block distributed FFT using simple swap

1 one block distributed FFT using ordered swap I
2

3

two block distributed FFT using simple swap

two block distributed FFT using ordered swap

Figure 5.3: Distributed FFT algorithm options.

O(Q) transpose algorithm using simple send/receive and linear schedule

O(Q) transpose algorithm using ordered send/receive and linear
schedule

O(Q) transpose algorithm using simple send/receive with receiveahead
and linear schedule

O(Q) transpose algorithm using ordered send/receive with receive-
ahead and linear schedule

O(Q) transpose algorithm using simple send/receive with receive-
ahead, send-ahead, and linear schedule

O(Q) transpose algorithm using simple swap and exclusive-OR schedule

O(Q) transpose algorithm using ordered swap and exclusive-OR
schedule

O(Q) transpose algorithm using simple swap with receiveahead and
exclusive-OR schedule

O(Q) transpose algorithm using ordered swap with receiveahead and
exclusive-OR schedule

O(Q) transpose algorithm using simple send/receive with receive-
ahead, send-dead, and exclusive-OR schedule

@(log Q) transpose algorithm using simple swaps. Q must be a power
of two.

O(1og Q) transpose algorithm using ordered swaps. Q must be a power
of two.

Figure 5.4 Transpose algorithm options.

- 16 -

0

1

interleaved O(Q) distributed LT algorithm using simple send/receive

interleaved O(Q) distributed LT algorithm using ordered send/receive

2

10

11

12

interleaved O(Q) distributed LT algorithm using delayed receive

localized O(Q) distributed LT algorithm using simple send/receive

localized O(Q) distributed LT algorithm using ordered send/receive

localized O(Q) distributed LT algorithm using simple send/receive with
receiveahead

13

Figure 5.5: Distributed forward Legendre transform algorithm options.

localized O(Q) distributed LT algorithm using ordered send/receive
with receiveahead

The exclusiveOR option for O(Q) transpose is most efficient on hypercubes, and has
similar performance to the h e a r option on meshes. The send-ahead options can be
highly efficient for small problems, but can also consume all available system buffer space
and cause deadlock.

Like the distributed algorithm, the @(log&) transpose algorithm uses a series of swap
operations to move data between processors, and these swaps can be implemented in
two ways: simple or ordered. The amount of data to be received at each step is known
beforehand, and there is also a receiveahead option. But this option is invoked implicitly
by specifying additional buffer space via the BUFSFFT or BUFSIFT parameters (ee below).

- 9: The integer parameter COMMFLT specifies which algorithm variants to be used in the par-
allel forward LT algorithms.

Distributed. The nine options for the distributed algorithms are described in Fig. 5.5.
The default value is 1. The O(Q) distributed LT algorithm has two options for scheduling
when interprocessor communication occurs: interleaved and localized. The interleaved
option intersperses communication with computation in a series of send/receive/compute
steps. The localized option isolates communication from the body of the computation. If
the interleaved option is used in the forward or the inverse LT, it must also be used for
the transform in the other direction.

For the interleaved algorithm, the send/receive/compute schedule can also be organized
as send/compute/receive, permitting some communication/computation overlap. This is
the delayed-receive option. The amount of data to be received at each communication
step is known beforehand, and there is also a receive-ahead option. This option is invoked
implicitly by specifying additional buffer space via the BUFSF'LT parameter (see below).

20

21

@(log Q) distributed LT algorithm using simple swap

@(log &) distributed LT algorithm using ordered swap

- 17 -

1

I 0 I interleaved O(Q) distributed LT algorithm using simple send/receive I
interleaved O(Q) distributed LT algorithm using ordered send/receive

>9

I 2 I interleaved O(Q) distributed LT algorithm using delayed receive
~~ 1

do nothing

Figure 5.6: Distributed inverse Legendre transform algorithm options.

For the localized algorithm, all data that is received is retained and the destination of
the data is known beforehand. Thus, all receive requests can be posted before any data
is sent. This is the receive-ahead option.

For both interleaved and localized algorithms, each processor receives data from one
processor and sends data to another during each communication step. Both simple and
ordered send/receive options are supported.

The O(1ogQ) distributed LT algorithm uses a series of swaps operations to move data
between processors, and both the simple and ordered swap options are available.

Transpose. For the transpose parallel forward LT algorithms, there are the same 12
options as for the transpose parallel FFT algorithms, listed in Fig 5.4. The default value
is 1.

- 10: The integer parameter COMMILT specifies which algorithm variants to be used in the par-
allel inverse LT algorithms.

Distributed. The four options for the distributed algorithms are described in Fig. 5.6.
The default value is 1. If the @(log&) or the localized O(Q) distributed forward LT
algorithm is used, then no communication is required during the inverse transform. If
the interleaved algorithm is used for the forward transform, then an interleaved algorithm
must be used for the inverse, and the same options hold.

Transpose. For the transpose parallel inverse LT algorithms, there are the same 12
options as for the transpose parallel FFT algorithms, listed in Fig 5.4. The default value
is 1.

11-12: The integer parameters BUFSFFT and BUFSIFT specify the number of communication
buffers to be used in receive-ahead variants of the parallel forward and inverse FFT algo-
rithms, respectively. They have an effect only for the @(log Q) transpose algorithm. The
other algorithms do not need extra buffer space to enable receive-ahead, which is invoked
instead by the COMMFFT and COMHIFT parameters. Receive-ahead for the @(log Q) trans-
pose in the forward FFT is invoked by specifying nonblocking receives (see PROTFFT
below) and BUFSFFT > 3 if HPLON is a power of two and BUFSFFT > 5 otherwise. Similarly,
specify BUFSIFT > 3 or BUFSIFT > 5 and nonblocking receives to invoke receiveahead for
the inverse FFT. At most log2(HPLON) + 1 buffers can be used if NPLOH is a power of two,

- 18 -

Algorithm
Forward Fourier Transform

@(log Q) transpose - NPLOH a power of two

Inverse Fourier Transform
- NPLON not a power of two

minimum I maximum
BUFSFFT

4 1 + log, NPLON
6 3 + 2 log2 HPLON

BUFSIFT

4
6

@(log Q) transpose
- NPLON a power of two
- NPLOH not a power of two

Forward Legendre Transform
@(log Q) transpose
- PLAT a power of two
- NPLAT not a power of two

Interleaved O(Q) distributed
@(log Q) distributed

Inverse Legendre Transform
@(log Q) transpose

- NPLAT not a power of two
Interleaved O(Q) distributed

- NPLAT a power of two

1 + log, HPLON
3 + 2 ~OJZ., NPLON -"

BUFSFLT

4 1 + log2 NPLAT
6
2 NPLAT
2 3

BUFSILT

3 + 2 log2 HPLAT

4 1 + log2 NPLAT
6
3 NPLAT + 1

3 + 2 log2 NPLAT

Figure 5.7: Number of buffers required to enable receive-ahead algorithms.

and at most 2 log,(HPLON) +3 buffers can be used otherwise. If more buffers are specified,
only the maximum allowable will be used. See Fig. 5.7 for a summary of this information.

- 13: The integer parameter BUFSFLT specifies the number of communication buffers to be used
in receive-ahead variants of the parallel forward LT algorithms. The localized O(Q) dis-
tributed algorithm and O(Q) transpose algorithm do not need additional buffers to enable
receivsahead, which is invoked instead by COMMFLT. For the interleaved O(Q) distributed
algorithm, receive-ahead is invoked by specifying BUFSFLT > 1 and nonblocking receives
(see PROTF'LT). Up to BUFSFLT - 1 receive requests can be posted early, and each request
requires an additional buffer. At most HPLAT buffers can be used. If more than this are
specified, only NPLAT will be used.

To invoke receiveahead for the @(log&) distributed algorithm, BUFSE'LT should be set
to 2 if HPUT is a power of two and to 3 otherwise, and nonblocking receives should be
specified. Receive-ahead for the @(log Q) transpose is invoked by specifying BUFSFLT > 2
and nonblocking receives, with the same bounds as for BUFSFFT except that NPLON is
replaced by HPLAT.

See Fig. 5.7 for a summary of this information.

- 14: The integer parameter BUFSILT specifies the number of communication buffers to be
used in receive-ahead variants of the parallel inverse LT algorithms. BUFSILT has an
effect only in the interleaved O(Q) distributed algorithm and in the @(log Q) transpose
algorithm. The other algorithms either do not need additional buffers to enable receive-

-.

- 19 -

0

1

blocking send/blocking receive

nonblocking send/blockiig receive

2

3

4

5

6

Figure 5.8: Communication protocol options.

blocking send/nonblocking receive

nonblocking send/nonblocking receive

blocking ready send/nonblocking receive

nonblocking ready send/nonblocking receive

synchronous blocking send/blocking receive (for ordered operation
only).

ahead, or perform no interprocessor communication during the inverse transform. For
the interleaved O(Q) distributed algorithm, BUFSILT - 2 receive requests can be posted
early, and receive-ahead is invoked by specifying BUFSILT > 2 and nonblocking receives
(see PROTILT). At most HPLAT+ 1 buffers can be used.
Receive-ahead for the @(log&) transpose is invoked by specifying BUFSILT > 2 and
nonblocking receives, with the same bounds as for BUFSILT.

See Fig. 5.7 for a summary of this information.

15-18: The integer parameters PROTFFT, PROTIFT, PROTFLT, PROTILT specify the communication
protocol to be used with the parallel algorithms for the forward FFT, the inverse FFT,
the forward LT, and the inverse LT, respectively. The five options for simple send/receive
and swap operations and the six options for the ordered operations are listed in Fig. 5.8.
The default value is 6.
The interpretation of blocking and nonblocking is somewhat system dependent. For
PSTSWM, nonblocking commands are assumed to spawn communication requests that
then proceed independent of the main thread of control. With respect to the parallel
algorithms in PSTSWM, blocking commands are faster and are available on all platforms.
The nonblocking commands are somewhat slower and are not universally supported, but
they enable the overlap of communication and computation. The nonblocking commands
also do not require system buffering in order to avoid deadlock when using the simple swap
and simple send-receive orderings. The ready send option, available on Intel iPSC systems
(native or PICL) and when using MPI, uses a different communication protocol, one
which is faster for large messages in PSTSWM. In the synchronous option, handshaking
messages are sent to guarantee that each processor is ready to receive a message before
it is sent.

- 19: The integer parameter SUMOPT specifies the order of summation in local calculations.
Options are in-place linear ordering (0) and binary tree ordering (1). In-place is generally
faster, because of better data locality. When used with the O(1ogQ) distributed LT

- 20 -

algorithm, the binary tree algorithm insures the “reproducibility” of results, i.e., the
same order of operations holds independent of the number of processors used. Note
that reproducibility automatically holds for the transpose algorithms is impossible to
(efficiently) impose on the O(Q) distributed LT algorithm. The default value is 0.

- 20: The @(log Q) distributed LT algorithm is a hybrid algorithm that switches from a high(er)
latency/low(er) communication volume algorithm to a low latency/high volume algo-
rithm, depending on the length of the vectors it is operating on [13]. The integer param-
eter EXCHSIZE specifies the length at which it switckes. The optimal value is primarily
a function of the platform characteristics and the algorithm and communication protocol
options, and so can be estimated once for each platform for algorithm options of interest.
The default value is 0, i.e., do not switch to the lower latency algorithm.

5.3. Discussion

A s evident in the previous section, there are many parallel algorithm options. Not all of
the options work on all platforms or for all problem sizes or numbers of processors, and not all
options are consistent with one another. Consistency problems are checked for internally, as are
options that are illegal on a given platform. The only problems that cannot be identified within
the code prior to running an experiment have to do with algorithm and protocol options that
require additional system or user communication buffers in order to avoid deadlock conditions.
The potential for such problems is identifiable a priori, and the code prints warning messages
to this effect before starting a run. Additional detail on algorithm option restrictions follows.

Communication Protocols. All but communication protocol options 0 and 6 require non-
blocking communication commands. The Intel NX, IBM MPL, and the MPI communication
libraries provide these, but nCUBE VERTEX and PVM do not. Thus options 1-5 are illegal
when using the latter two systems.

On the Cray Research T3D, the native messaging is implemented on top of SHMEM, using
the remote read/write commands, and the available protocols are “defined” to be 1, 2, and 6,
representing nonblocking send/blocking receive, blocking send/nonblocking receive, and syn-
chronous, respectively. PSTSWM can also be run on the T3D using the PICL library, which is
layered on top of Cray Research’s implementation of PVM and works with protocol options 0
and 6.

Note that PICL is a compatibility library, and thus inherits the restrictions of the underly-
ing native communication library. For example, on nCUBE machines, only communication
protocols 0 and 6 are legal, while on Intel machines, all protocols are legal.

Protocol options 4 and 5, as defined, use the ready send command, which sends messages
without any handshaking. If the destination is not ready to receive a ready message (by
already having posted a receive request), then the message is thrown away. Options 4 and 5

- 21 -

provide the necessary additional handshaking, with the sender waiting for a go-ahead message
before initiating the ready send. In actuality, if the ready send command is not supported in
the given communication library, options 4 and 5 simply use normal blocking and nonblocking
sends with this explicit handshaking protocol.

Figure 5.9 summarizes this information.

Message Buffering. Using simple swap and simple send/receive orderings and blocking
send require that messages be buffered, usually at the sender. Under MPL, NX, PVM, and
VERTEX, system buffers are used, and either deadlock or a program abort can occur if the
buffer space fills up. The amount of system buffer space under NX or VERTEX can be specified
at load time. The amount of system buffer space under MPL can be specified at run time
(once), and PSTSWM calculates the amount needed and makes this request. If a sequence of
experiments are being run (see Chapter 9) and a later experiment needs more space than the
first, then the code may yet deadlock. MPI uses user space for buffering messages. PSTSWM
passes a pointer to unused work space to MPI for this purpose (see WORKSPACE in Chapter 7).
If there is not enough space to guarantee correct execution, then a warning message is output,
but execution is still attempted.

Receive-ahead Algorithms. The receiveahead variants of the parallel algorithms post one
or more receive requests before the message is likely to be sent. Receiveahead requires that
nonblocking receives be used and that space in which to receive the message(s) be set aside.
For some of the parallel algorithms, this space is available naturally and the receiveahead
variant is chosen explicitly via the COMMFFT, COMMIFT, COMMFLT, or COMMILT parameters. For
other algorithms, the receiveahead variants require additional buffer space, and the number
of receive requests posted early is determined by the number of extra buffers allocated. For
these algorithms, the receive-ahead variant is chosen implicitly by specifying both nonblocking
receives and enough extra buffer space, as indicated in Fig 5.7. Figure 5.10 summarizes which
algorithms enable receive-ahead explicitly, and which do so implicitly.

- 22 -

Communication
Library 0 1 2 3 4 5 6

.

Figure 5.9: Legal communication protocol options.

e(Q) transpose
Q(log Q) transpose
distributed

O(Q) transpose
@(log Q) transpose
distributed

O(Q) transpose
@(log Q) transpose
Interleaved O(Q) distributed

Inverse Fourier Transform

Forward Legendre Transform

O(Q) transpose
O(1og Q) transpose
Interleaved O(Q) distributed

ExDlicit I Imdicit

,x
X

X

: p X

Figure 5.10: Parallel algorithms specifying receive-ahead explicitly and implicitly

6. PERFORMANCE MEASUREMENT DESCRIPTION

AND SPECIFICATION

6.1. Approach to Performance Measurement

Three types of performance data can be collected automatically. The first type is execution
time, both per timestep and total time, measured using real time clocks. The per timestep
data reports the minimum and maximum times over all processors for that timestep. Since
the code is only loosely synchronous, the individual timestep timings are not guaranteed to
be accurate. The total time reports the maximum total time over all processors. Since the
processors are synchronized before beginning timing, the total time measurement is accurate.
Note that timing begins only when the timestepping begins. The code set-up phase (input
and calculation of initial values) is not included, as this is an artifact of the experiment and
is not representative of production codes. (Separate benchmarks are needed to measure 1/0
performance for meteorological codes.) Execution time data is either appended to the output
file indicated in the measurements input file, or is appended to the file timings (the default).

The second type of performance data is profile data, indicating the amount of time spent in
various user and system level events. The user level events (and associated event types) are

0: total time,

1: evaluation of nonlinear terms in physical space,

2: forward FFT,

3: forward Legendre transform,

4: calculation of tendencies (time update) in spectral space,

5: addition of linear diffusion (in spectral space) and first half of Asselin filter (in

6: inverse Legendre transform,

7: inverse FFT,

physical space),

8: second half of Asselin filter (in physical space), and

l O O + i : timestep i

23

.FALSE.

. FALSE.

.FALSE.
0
100000
i
10000
0
0
0

'pstsum. trace'

/ TIMING
/ TRACING
/ TRACEFILE
/ VERBOSE
/ TRSIZE
/ TRSTART
/ TRSTOP
/ TLI
/ TL2
/ TL3
/ TOUTPUT
/ TMPNAME
/ PERMNAME

- 24 -

Figure 6.1: Sample measurements input file.

The system level events profiled are primarily PICL communication calls and have negative
event types, as documented in [16].

The third type of performance data is event traces, indicating when each of the above mentioned
events started and stopped. This data can be visualized with the performance visualization tool
ParaGraph [ll]. Both profile and trace data are saved in a file indicated in the measurements
input file.

Both profile and trace data are collected using PICL instrumentation logic. To collect user event
data requires that either a mixed PICL/native or a pure PICL implementation of PSTSWM
be used. System event data data can only be collected from a pure PICL implementation.

6.2. Performance Measurement Specification

The performance measurement specification is input from the measurements input file. In-
cluded with the code distribution is the example measurements input file given in Fig. 6.1. A
brief description of each of the measurement parameters follows.

- 1: The logical parameter TIMING specifies whether to time the current run of PSTSWM. If
so, all model output during timestepping is disabled, and both per timestep and total
execution time is measured. The default value is .FALSE. .

- 2: The logical parameter TRACING specifies whether to trace the execution of PSTSWM.
Instrumentation has been added to the PSTSWM source code, marking each timestep
calculation and the major phases of each timestep as separate tasks. When TRACING =
.TRUE., the PICL trace collection facility is used to collect trace and profile data on
these user-defined events and on PICL communication calls, as specified by tracing level
parameters. The default value is .FALSE. .

- 25 -

- 3: The logical parameter TRACEFILE specifies whether a trace file should be opened. If not,
then any profile or trace data is lost. The default value is .FALSE. .

- 4: The integer parameter VERBOSE specifies the format in which the trace data is written to
disk. The options are:

(0): a compact form that can be read by the performance visualization program

(1): a verbose form with labels that make the trace output more human-readable
ParaGraph [ll]

- 5: PICL trace data is saved in internal buffers, to minimize the perturbation of the perfor-
mance measurements. The integer parameter TRSIZE specifies how much buffer space to
allocate for trace data on each node. The default value is 0.

- 6-7: The integer parameters TRSTART and TRSTOP specify the timestep at which trace collection
is to begin and the timestep at which it is to end, respectively. The default values are
both -1.

- 8-9: The integer parameters TLI, TL2, and TL3 specify what PICL trace data is collected. TLI
controls the collection of data on PICL communication events, TL2 controls the collection
of data on user-defined events, and TL3 controls the collection of data on tracing events.
All three have the following options:

(-1): Do not collect data.
(0): Collect profile data.
(1): Collect both profile data and detailed trace data.

- 10: The character string parameter TMPBAME is not used currently.

- 11: The character string parameter PERMHAME is the name of the disk file where the profile
and trace data is to be written at the end of the execution of PSTSWM (if TRACEFILE =
.TRUE.). If PERMNAME = ' I , then the data is not saved. Note that only the first 32 characters
are used, and that the default value is the blank string ("), i.e., do not save the profile
and trace data.

7. COMPILE TIME OPTIONS

7.1. Parameter File Specifications

Unlike STSWM, PSTSWM need not be recompiled to run different, problem sizes. But, to
increase portability, PSTSWM does not allocate memory dynamically. (Neither dynamic mem-
ory allocation nor the Fortran to C interface is part of the Fortran 77 standard.) Instead,
parameter values in the include file params. i are used to specify the maximum problem sizes
and number of processors, and the storage is allocated accordingly. An edited version of the
params. i file included in the code distribution is given in Fig. 7.1. A brief description of each
of the parameters follows.

- 1-3: The integer parameters MMX, HHX, and KKX specify the maximum values for MM, HB, and
KK, respectively.

- 46: The integer parameters HLATX, HLONX, and HVERX specify the maximum values for NLAT,
NLOB, and HVER, respectively.

- 7-8: The integer parameters BPROCSX and LGPROCSX specify the maximum number of proces-
sors and the base-2 logarithm of the maximum number of processors, respectively.

- 9: The integer parameter NGRPHSX specifies the amount of storage to allocate for time series
data of solution and error analysis statistics. These statistics are not collected currently,
but the logic (from STSWM) is retained for future development.

7.2. Makefile Parameter Specifications

The above mentioned compile time parameters are used only for declaring one dimensional ar-
rays. For good performance on RISC-based microprocessors, it is crucial that multidimensional
arrays be packed into contiguous storage (to increase data locality). To ensure this, all field
arrays =e allocated from a single large buffer, whose size is specified by a makefile command-
l i e parameter. The default value is 500000 floating point values, or 4 megabytes if using 64
bit precision.

26

- 27 -

C***

C***
C* Include file 'params.i' *

INTEGER MMX, HNX, KKX, NLATX, HLOHX, HVERX
PARAMETER

% (MMX=340,
% ETHX=340,
% KKX=340,
& NLATX=512,
& HLOHX=1024,
% NVERX=72)

C* *
INTEGER ETPROCSX, LGPROCSX, NGRPHSX
PARAMETER

% (NPROCSX=I024,
% LGPROCSX=IO,
& NGRPHSX=IOO)

C* *
..
C* end include file *
..

Figure 7.1: Compile time parameters in include Ne.

Makefile command-line parameters are also used to specify the target platform, the commu-
nication library, the precision of the different variable types, and the word alignment used
when allocating arrays. Executing make without specifying any parameters will generate the
description of these parameters listed in Fig. 7.2.

Figure 7.3 summarizes the parallel platform/communication library combinations that are sup-
ported currently. Both native and PICL are supported on all parallel platforms listed, and
the underlying communication library for the native and PICL implementations is listed in the
figure. Also, the particular MPI library implementation is listed in the MPI column.

Note that some of the MPI. and PVM combinations are missing for platforms on which these
libraries are supported. To add support for these combinations merely requires the generation
of an appropriate makefile. Additional comments follow.

1) Currently, PVM is not an explicit communication library choice, but rather is the native
communication library for sun-pvm and rs6k-pvm (for SUN and IBM RS/SOOO worksta-
tions, respectively). The Cray Research implementation of PVM is also the basis for the
PICL communication library on the T3D. The native T3D implementation is a mix of
PVM and SHMEM library calls.

2) The paragon platform uses the OSF operating system and NX is the native communi-
cation library. The paragon-sunmos uses the SUNMOS operating system and the low
level SUNMOS communication commands are used in the native implementation. The

- 28 -

1 Platform native I MPI PrcL
PVM I ClUT3D SHMEM+PVM I -

% make

PVM
. -

To compile : make MACH=Cmachine>
To clean up: make MACH=Cmachine> clean

CFU vector (serial) I
IBM SP MPL

Optional make parameters a re
COMM=<communication l ibrary>
WORKSPACE=<nnmber of REAL9
PRECISION=<418>
ALIGN=<number of REALS>

- - -
mpich I MPL -

HACH i s the platform being compiled f o r , currently one of
crayvector, ipsc2, ipsc860, ncube2, ncube2S, paragon,
paragon-sunmos, paragon-mp, rs6k-pvm, sp, sun-pvm, t3d

native, mpich, mpif, p i c l , mixed,
(mixed uses native routines f o r performance sensit ive code and PICL

COMM is the communicationlibraryto use, one of

f o r the r e s t . To col lect prof i le data, choose mixed or pic l . To
col lect event t races , choose p ic l . native is the default .)

WORKSPACE is the amount of space (in REALS) t o be allocated f o r

PRECISION specif ies whether REALs are 4 bytes or 8 bytes long.

ALIGN is the (REAL) word boundary the starting address of each a r r ay

problem storage. I f omitted, a default value of 500000 is used.

The default is 8. /

must f a l l on. A L I G N must be I or a multiple of 2. The default is 2.

Intel iPSC

Figure 7.2: make command-line arguments

- NX - NX
I

Intel Paragon - SUNMOS
nCUBE 2 series

SUNMOS - NX -
VERTEX - VERTEX I -

I PVM SUN - I PVM I -
1 workstation networks I I I I I

~

Figure 7.3: Supported parallel platform/communication library combinations.

- 29 -

paragon-mp is the same as paragon except that certain tasks are spawned to be run on
the additional compute processor. Note that specifying paragon will work correctly on an
MP system. We have not yet developed a paragon-mp-sunmos implementation, although
it will be simple to do.

3) mpich is the Argonne/Mississippi State implementation of MPI, and we have run it on
the Intel Paragon and on the IBM SP2. It should also run on most of the other platforms,
but we have not developed the corresponding makefiles yet. mpif is the experimental IBM
version of MPI for the SP, MPI-F.

4) As mentioned above, not all platform/communication library combinations are currently
supported. If an unsupported combination is requested, then the information in Fig. 7.2
is generated.

8. OUTPUT

8.1. Model Output

Except for trace and timing data and error messages, all PSTSWM output is generated by one
process and is sent to the standard output (unit number 6). Figure 8.1 contains the (edited)
output from a &day model run of test case #2 using a 2 x 4 processor grid on an Intel iPSC/860
‘and 32-bit precision.

The first part of the output summarizes the problem and algorithm specifications. Note that
both the value of COWS2 and the amount of space actually used are given.

The second part of the output contains the solution field analysis, which is identical to that
provided by STSWM. The COURANT NUMBER is the stability estimate, which must be less than
1.0, but is safest ifit is no more than 0.5. HEIGHT refers to a normalized value of the geopotential.

For this model run, both error analysis (ERRFRQ = 1.0) and timing (TIMING = .TRUE.) were
enabled. This disabled all but the first and last error analysis output. The error in the
simulation is a function of the test case, the problem resolution, the machine precision (MACHINE
EPSILON), and the number of timesteps. The following guidelines refer to runs of no longer than
5 simulated days (120 hours).

For test case #1, the error should not exceed 10-1 for T21 (MM = 1pN = KR = 21), and the
error should be reduced by an additional factor of 10-1 for each doubling of the resolution:
T42, T85, T170, etc. For test cases #2 and #3, the error should be within a few orders of
magnitude of the machine precision. For test case #4, the L1, L2, and Zoo errors should not
exceed approximately For test cases #5 and #6, the exact solutions are not known,
and the conservation and spectral analyses must be used to evaluate the solutions. Sample
output files generated on a Cray Y-MP for all test cases are included with the STSWM code
distribution.

8.2. Timing Data

Figure 8.2 contains the timing output for this run, which is written into a file specified in
measurements. If this file does not already exist, it is created and the column labels are

30

- 31 -

PARALLEL SPECTRAL TRANSFORM SHALLOW WATER MODEL, VERSION 4.0
(BASED ON SPECTRAL TRANSFORM SHALLOW HATER MODEL, VERSION 2.0

COPYRIGHT (C) 1992
UNIVERSITY CORPORATION FOR ATMOSPHERIC RESEARCH
ALL RIGHTS RESERVED)

READING PARAMETERS FROM FILE problem:

EXPERIMENT 0002

SPECTRAL TRUNCATION TYPE: TRIANGULAR
M = N = K = 42

NUMBER OF GRIDPOINTS IN MODEL
NORTH-SOUTH GAUSSIAN GRID: NLAT = 64
EAST-HEST EQUIDISTANT GRID: NLON = 128
VERTICAL LAYERS: NVER = 16

READING PAFWETERS FROM FILE algorithm:

NUMBER OF PROCESSORS IN PARALLELIZATION
ROW PROCESSORS: PX = 2
COLUMN PROCESSORS: PY = 4

PARALLEL ALGORITHMS
FT: DISTRIBUTED
LT: DISTRIBUTED (OVERLAPPED RING VECTOR SUM)

AVAILABLE WORK SPACE (IN BYTES): 5200000
REQUIRED WORK SPACE : 1843552

MACHINE EPSILON (1.0 + EPS > 1.0) = 1.1920929OOE-07

TEST CASE #2: STEADY STATE NONLINEAR GEOSTROPHIC FLOW
ROTATED BY AN ANGLE ALPHA = 0.785
MAX. WIND = 3.8610683OOE+Ol
COURANT NUMBER = 0.5091

GLOBAL MEAN STEADY GEOPOTENTIAL = 2.317216400E+04

ERRANL: INITIAL VALUES FOR NORMALIZATION OF RELATIVE ERRORS
(SLIGHTLY GRID DEPENDENT!)
HEIGHT MIN./MAX. = 1.093466800E+03/ 2.998115500E+03
HEIGHT AVG./VAR. = 2.363021500E+03/ 3.226756200E+05

ERRANL: ERROR ESTIMATES FOR NSTEP = 216, TAU = 120.00 HRS
HEIGHT ERROR
Ll = 2.377001000E-06, L2 = 2.8574079OOE-06 L(INF) = 8.1431363OOE-06
VECTOR WIND ERROR
L1 = 3.304713400E-05, L2 = 3.8535167OOE-05 L(INF) = 1.2345129OOE-04
HEIGHT MIN./MAX. = l.O9345400OE+03/ 2.998118200E+03
HEIGHT AVG./VAR. = 2.363021000E+03/ 3.226713100E+05

Figure 8.1: Sample model output.

- 32 -

t o t a l m i n max overhead nstep
0.38209E+03 0.17586E+01 0.17836E+01 O.OOOOOE+OO 216

spectral space physical space problem processors map
(42, 42, 42) (128, 64, 16) (2,T,F,F) (2, 4) 2

paral le l f t paral le l It sum exchsize
(0, 0, 0, 1, l , O , O > (0, 0, 0, I, 2,0,0) 0 0

Figure 8.2: Sample timing output.

output. If the file already exists, subsequent timings are appended to the file. Note that model
timing data is output on a single line. In Fig. 8.2, this is broken into three pieces.

- 1: t o t a l is the total execution time for this model run, where timing begins after initial-
ization: reading in problem and algorithm specifications, setting up the work space, and
calculating initial data.

- 2-3: m i n and max are the minimum and maximum execution time for a single timestep, re-
spectively, taken over all processors.

- 4: overhead is not measured currently.

- 5: nstep is the number of timesteps required to reach TAUE, which equals 120.0 hours for
this run.

- 6: spectral space gives MM, NN, and KK.

- 7: physical space gives HLON, NLAT, and NVER.

- 8: processors gives lPLOEl and HPLAT.

- 9: map is MESHOPT.

- 10: paral le l f t gives FTOPT, COMMFFT, COMMIFT, BUFSFFT, BUFSIFT, PROTFFT, and PROTIFT.
Note that the number of buffers listed is the actual number used, not the number re-
quested. Each parallel algorithm has a minimum number of buffers it needs and a maxi-
mum number that it can use.

- 11: paral le l It gives LTOPT, COMMFLT, COMMILT, BUFSFLT, BUFSILT, PROTFLT, and PROTILT.

- 12: sum is SUMOPT.

- 11: exchsize is EXCHSIZE.

The information saved in the timings file is important for interpreting performance experi-
ments, but is not sufficient for specifying the model run. For example, while TAUE or DT are

- 33 -

flops
4,129,674
24,235,196
153,013,770

important when interpreting the accuracy of the solution, performance is solely a function of
nstep, and only nstep is recorded.

MM HH KK E O N HLAT NVER

42 42 42 128 64 1
85 85 85 256 128 1
170 170 170 512 256 1

The computation required to compute a single timestep of a model run is a function of the test
case and of the problem resolution. The hardware performance monitor on a single processor
of a Cray C-90 measured the following number of floating point operations (flops) per timestep
for test case #2 using semi-implicit timestepping for the indicated resolutions:

The measurements were run with the Cray compiler options that indicated the smallest number
of flops. The complexity scales linearly with HVER, but is a more complicated function of the
other parameters. These counts will increase when forcing is enabled, and will decrease (slightly)
when explicit timestepping is used.

9. BENCHMARKING METHODOLOGY

We have developed a particular methodology for fair algorithm comparison and benchmarking:

t o t h e extent feasible, compare tuned algorithms

PSTSWM was designed with this in mind, and is partially a product of research into what is
"feasible". When using the code on a new platform, or after the platform has undergone a
significant modification, we follow the following procedure:

1. determine best communication options and protocols for each parallel algorithm;

2. determine the best combination of tuned parallel FFT and parallel LT algorithms and
the corresponding logical processor mesh for each total number of processors;

3. compare performance of the optimal parallel algorithms on each machine when making
intermachine comparisons.

For more details, see [17] and [MI.

These steps all involve running numerous experiments using one or a small number of problem
input files, but many different algorithm input files. To support this methodology, PSTSWM
mil1 look for a file named script before reading in problem, algorithm, and measurements.
script should contain, first, the number of experiments to run. Each subsequent line should
contain the names of the files specifying the problem, algorithm, and measurements options for
an experiment, as indicated in the following example.

3
"problem.t42.16" ~'alg.16.I.O.I.O'' "mea.42.16"
"problem. t42.16" "alg .16. I. 0.2.0" "mea.42.16"
"problem. t42.16" "alg. 16. I. 0.3.0" "mea.42.16"

Figure 9.1: Example experiment script file.

Not only does this make extensive parameter studies possible, but it also eliminates the necessity
of reloading PSTSWM for every experiment. On some systems, loading the executable is very
expensive, especially relative to the short execution times required in most of the parameter

34

- 35 -

studies. Note that the sequence of experiments controlled by script must all use the same
total number of processors, but that the logical aspect ratio used can be varied.

I

10. MACHINE SPECIFICS

For PSTSWM, we have attempted to make a portable code that will run efficiently on a variety
of machines. These goals are somewhat conflicting, but, when possible, we have supported
machine-specific peculiarities if they do not have negative impacts on the performance on other
platforms. The following list is not exhaustive, listing Intel-motivated modifications primarily,
but it indicates some of the issues that have been addressed in the code.

1. The Intel i860 family of microprocessors support IEEEstandard denormalized numbers,
but very inefficiently. The spectral transform method often works with very small num-
bers, ones which have no effect on the solution accuracy. To avoid unnecessary perfor-
mance degradation, a special routine is provided to set denormalized numbers to zero
on 860 based machines. (In general, the -noieee compiler option also improves the
performance of PSTSWM on Intel i86O-based platforms.)

2. On the current version of the Intel Paragon, the first time through a timestep is much
slower than later ones due to paging the instructions, data, and work storage into local
memory. This is partially an artifact of the current state of the operating system, and is
unimportant for long runs. To eliminate this, the first timestep is calculated once before
timing is enabled, then the initial conditions are restored, timing is enabled, and the first
timestep is calculated again.

3. The real solution to the paging problem on the Paragon, and a mechanism that improves
performance throughout the model simulation, is to allocate the work space dynami-
cally, using the ALLOCATE extension to Fortran. This requires a modification to two
lines of code, but is nonportable, and is included on the Paragon machines using the C
preprocessor and compile time switches.

4. An additional preprocessor test is used to include the multithreading constructs used on
the Paragon MP node systems.

5. Performance on the T3D is sensitive to the number of distinct arrays (or cache lines)
being updated in a single loop. To improve performance, some compute intensive loops
have been split so that only one or two arrays are being updated simultaneously.

Note that we are willing to make additional changes to PSTSWM to make it run efficiently
on other platforms (on a case-by-case basis). We also encourage vendors and other researchers

36

- 37 -

to insert library calls for the global communication routines, or other similar modifications
to PSTSWM, to increase efficiency on a given platform. PSTSWM as it is written currently
represents a generic version of the code. As part of our methodology research, we are interested
in how much efficiency we give up by taking our approach.

11. PORTING THE CODE

\

After passing PSTSWM source code through the C preprocessor /lib/cpp, it is a Fortran 77
code with the following “standard” extensions:

1. IMPLICIT NONE

2. DO WHILE ._ ENDDO

3. DO .. ENDDO

4. variable names greater than 6 characters long

5. variables names containing underscore

6. COMMON containing both character and noncharacter variables

The code also calls the intrinsic function XOR. For systems that do not provide this function,
like the nCUBE/2, a Fortran-callable C routine must be written.

All other porting issues deal with message-passing. If the MPI, PICL, or PVM libraries have
already been implemented on the machine, then the port of PSTSWM should be simply a
matter of generating a new machine-specific makefile. If these communication libraries do
not exist, then the most useful approach, to the authors, is to port the PICL message-passing
library, since this retains the full performance data collection functionality. If this is not feasible,
reimplementing the basic message-passing routines is straightforward. Example native ports can
be found in the s r c / l i b subdirectory. Note that the only performance-sensitive interprocessor
communication is in sendrecv. f and snap. f. If sendrecv. f and snap. f are reimplemented,
please check for unsupported communication protocol options and output meaningful error
messages.

’

Note that all of the message-passing routines, and all of PSTSWM, contain extensive internal
documentation, specifying exactly what the code is doing, and why.

38

12. CONCLUSIONS AND FUTURE PLANS

PSTSWM was developed for, and has been used in, numerous research projects, primarily in
parallel algorithm research, the evaluation of early systems. benchmarking methodology, and
performance modeling. It has also been used very effectively for finding bugs and performance
problems in communication libraries. Other than ports to additional systems, PSTSWM’s
development is essentially complete, but we expect to continue using the code to test and
evaluate parallel platforms and communication libraries.

Much of the code for the collective communication operations in PSTSWM is also being used
in other application codes, in particular PCCMS, the message passing version of the Commu-
nity Climate Model, providing these codes with both efficient communication algorithms and
portability.

We are also developing new parallel algorithm testbeds for other numerical methods used in
atmospheric circulation models, and many of the ideas (and some of the code) from PSTSWM
will be reused.

39

13. ACKNOWLEDGMENTS

We are grateful to Ian Foster for his collaboration in developing the parallel algorithms that
are embodied in PSTSWM, and acknowledge that, without his participation, this code would
not have been written.

We are grateful to members of the CHAMMP Interagency Organization for Numerical Simu-
lation, a collaboration involving Argonne National Laboratory, the National Center for Atmo-
spheric Research, and Oak Ridge National Laboratory, for sharing codes and results. In par-
ticular, we thank Ruediger Jakob for his initial help in obtaining and understanding STSWM.

This research was performed using Intel iPSC/2 and iPSC/860 and IBM SP-2 multiprocessor
systems at Oak Ridge National Laboratory; Intel Paragon XP/S 5, XP/S 35, and XP/S 150 sys-
tems located in the Oak Ridge National Laboratory Center for Computational Sciences, funded
by the Department of Energy’s Mathematical, Information, and Computational Sciences Divi-
sion of the Office of Computational and Technology Research; the IBM SP-1, IBM SP-2, and
Intel iPSC/860 at Argonne National Laboratory; the IBM SP-2 at NASA Ames; the nCUBE/2
and Intel Paragon systems at Sandia National Laboratories; the nCUBE/2 and nCUBE/2S sys-
tems at Ames National Laboratory; the Intel Touchstone DELTA System operated by Caltech
on behalf of the Concurrent Supercomputing Consortium; a Cray T3D and a Cray Y/MP at
Cray Research; and a Cray Y/MP at the National Energy Research Supercomputer Center.

40

14. BIBLIOGRAPHY

[l] D. H. BAILEY, E. BARSZCZ, J. T. BARTON, D. S. BROWNING, R. L. CARTER,
L. DAGUM, R. A. FATOOHI, P. 0. FREDERICKSON, T. A. LASINSKI, R. S. SCHREIBER,
H. D. SIMON, V. VENKATAKRISHAN, AND S. K. WEERATUNGA, The NAS Parallel Bench-
marks, Internat. J. Supercomputer Applications, 5 (1991), pp. 63-73.

[2] M. COMMITTEE, MPI: a message-passing interface standard, Internat. J. Supercomputer
Applications, 8 (1994), pp. 165-416.

[3] J. J. DONGARRA AND E. GROSSE, Distribution of mathematical software via electronic
mail, Comm. Assoc. Comput. Mach., 30 (1987), pp. 403-407.

[4] J. B. DRAKE, I. T. FOSTER, J. J. HACK, J. G. MICHALAKES, B. D. SEMERARO,
B. TOONEN, D. L. WILLIAMSON, AND P. H. WORLEY, PCCM2: A GCM adapted for
scalable parallel computer, in Fifth Symposium on Global Change Studies, American Me-
teorological Society, Boston, 1994, pp. 91-98.

[5] I. T. FOSTER, B. TOONEN, AND P. H. WORLEY, Performance of parallel computers
for spectral atmospheric models, Tech. Report ORNL/TM-12986, Oak Ridge National
Laboratory, Oak Ridge, TN, April 1995.

[6] I. T. FOSTER AND P. H. WORLEY, Parallel algorithms for the spectral transform method,
Tech. Report ORNL/TM-12507, Oak Ridge National Laboratory, Oak Ridge, TN, May
1994.

[7] G. A. GEIST, A. L. BEGUELIN, J. J. DONGARRA, W. JIANG, R. J. MANCHEK, AND

V. S. SUNDERAM, PVM: Parallel Virtual Machine - A Users Guide and Tutorial for
Network Parallel Computing, MIT Press, Boston, 1994.

[SI G. A. GEIST, M. T. HEATH, B. W. PEYTON, AND P. H. WORLEY, PICL: a portable
instrumented communication library, C reference manual, Tech. Report ORNL/TM-11130,
Oak Ridge National Laboratory, Oak Ridge, TN, July 1990.

[9] J. J. HACK, B. A. BOVILLE, B. P. BRIEGLEB, J. T. KIEHL, P. J. RASCH, AND D. L.
WILLIAMSON, Description of the NCAR Community Climate Model (CCM2), NCAR Tech.
Note NCAR/TN-382+STR, National Center for Atmospheric Research, Boulder, Colo.,
1992.

41

- 42 -

[lo] J. J. HACK AND R. JAKOB, Description of a global shallow water model based on the
spectral transform method, NCAR Tech Note NCAR/TN-343+STRY National Center for
Atmospheric Research, Boulder, COY February 1992.

[l l] M. T. HEATH AND J. A. ETHERIDGE, Visualizing the performance of parallel programs,
IEEE Software, 8 (1991), pp. 29-39.

[12] P. PIERCE, The NX message passing interface, Parallel Computing, 20 (1994), pp. 463-
480.

[13] R. A. VAN DE GEIJN, On global combine operations, LAPACK Working Note 29, Computer
Science Department, University of Tennessee, Knoxville, T N 37996, April 1991.

[14] D. L. WILLIAMSON, J. B. DRAKE, J. J. HACK, R. JAKOB, AND P. N. SWARZTRAUBER,
A standard test set for numerical approximations t o the shallow water equations on the
sphere, J. Computational Physics, 102 (1992), pp. 211-224.

[15] D. L. WILLIAMSON, J. T. KIEHL, V. RAMANATHAN, R. E. DICKINSON, AND J . J. HACK,
Description of NCAR community climate model (CCMl), NCAR Tech. Note NCAR/TN-
285+STR, NTIS PB87-203782/ASY National Center for Atmospheric Research, Boulder,
CO, June 1987.

[16] P. H. WORLEY, A new PICL trace file format, Tech. Report ORNL/TM-12125, Oak
Ridge National Laboratory, Oak Ridge, TN, October 1992.

[17] P . H. WORLEY AND I. T. FOSTER, Parallel Spectral TransfomL Shallow Water Model: a
runtime-tunable parallel benchmark code, in Proc. Scalable High Performance Computing
Cod., IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 207-214.

[18] P. H. WORLEY, 1; T. FOSTER, AND B. TOONEN, Algorithm comparison and benchmark-
ing using a parallel spectral transform shallow water model, in Parallel Supercomputing
in Atmospheric Science: Proceedings of the Sixth ECMWF Workshop on Use of Paral-
lel Processors i n Meteorology, World Scientific Publishing Co. Pte. Ltd., Singapore. (in
P r 4 -

A. PROBLEM INPUT FILES

'0001'
42
42
42
64
128
16

0.0
2400.0
999.0
1.0
999.0
120.0

.FALSE.

1.

/ CIIEXP
/ M M
/ N N
/ KK
/ NLAT
/ NLON
/ NVER
/ NGRPHS
/ A
/ OMEGA
/ GRAV
/ HDC
/ ALPHA
/ DT
/ EGYFRQ
/ ERRFRQ
/ SPCFRQ
1 TAUE
/ AFC
/ SITS
/ FORCED
/ MOMENT
/ ICOND

Figure A.l: Example problem input file for test case #l.

I 43

. .

- 44 -

'0002'
42
42
42
64
128
16

0.0
2000.0
999.0
1.0
999.0
120.0

.TRUE.

2

'0003'
42
42
42
64
128
16

1.5207963
2000.0
999.0
1.0
999.0
120.0

.TRUE.

3

/ CHEXP
/ M M
/ N N
/ KK
/ NLAT
/ NLON
/ MlER
/ NGRPHS
/ A
/ OMEGA
/ GRAV
/ HDC
/ ALPHA
/ DT
/ EGYFRq
/ ERRFRq
/ SPCFRq
/ TAUE
/ AFC
/ S I T S
/ FORCED
/ MOHENT
/ ICOND

Figure A.2: Example problem input file for test case #2.

/ CHEW
/ M M
/ NN
/ KK
/ NLAT
/ NLOB
/ r n R
/ NGRPHS
/ A
/ OMEGA
/ GRAV
/ HDC
/ ALPHA
/ DT
/ EGYFRQ
/ ERRFRq
/ SPCFRQ
/ TAUE
/ AFC
/ S I T S
/ FORCED
/ MOENT
/ ICOND

Figure A.3: Example problem input file for test case #3

- 45 -

'0004'
42
42
42
64
128
16

0.0
2000.0
999.0
1.0
999.0
120.0

. TRUE.

.TRUE.

.FALSE.
4

'0005'
42
42
42
64
128
16

0.0
4000.0
1.0
999.0
1.0
120.0

.TRUE.

5

/ CHEXP
/ M M
/ NN
/ KK
/ NLAT
/ NLON
/ NVER
/ NGRPHS
/ A
/ OMEGA
/ GRAV
/ mc
/ ALPHA
/ DT
/ EGYFRq
/ ERRFRQ
/ SPCFRq
/ TAUE
/ AFC
/ SITS
/ FORCED
/ MOMENT
/ ICOND

Figure A.4: Example problem input file for test case #4

/ CHEXP
/ M M
/ NN
/ KK
/ NLAT
/ NLON
/ NVER
/ NGFPHS
/ A
/ OMEGA
/ GRAV
/ HDC
/ ALPHA
/ DT
/ EGYFRq
/ ERRFRq
/ SPCFRq
/ TAUE
/ AFC
/ SITS
/ FORCED
/ MOENT
/ ICOND

Figure A.5: Example problem input file for test case #5

- 46 -

'0005'
42
42
42
64
128
16

0. SEI6
0.0
800.0
1.0
999.0
1.0
120.0

.TRUE.

6

/ CHEXP
/ m
/ I N
/ KK
/ NLAT
/ NLON
/ NVER
/ NGRPHS
/ A
/ OMEGA
/ GRAV
/ HDC
/ ALPHA
/ DT
/ EGYFRq
/ ERRFRq
/ SPCFRq
/ TAUE
/ AFC
/ SITS
/ FORCED
/ BOMENT
/ ICOND

Figure A.6: Example problem input file for test case #6

B. PVM-ONLY AND MPI-ONLY PSTSWM

IMPLEMENTATIONS

A network PVM-only distribution of PSTSWM is available from

http://aav.epm.ornl.gov/chammp/pstsm

and from the PARKBENCH benchmark suite distribution on netlib. The source code in this
version is identical to that of the full distribution except that only the PVM implementations of
the communication routines are retained. The distribution comes with an extensive README
file, a driver makefile, and 3 subdirectories: bin, input, and src. The input subdirectory
contains three example problem input files, corresponding to the small, medium, and large
problems associated with all PARKBENCH compact application codes. It also contains the
usual example algorithm and measurements input files. The src subdirectory contains no
subdirectories, with the communication library-specific files and the platform-specific makefiles
residing with all of the (other) source code. Currently, makefiles are provided only for the SUN
and IBM RS/SOOO workstations.

An MPI-only distribution of PSTSWM is also available from

http://van. epm.ornl.gov/chammp/pstsnm.

The MPI-only distribution has the same structure as the PVM-only distribution. Currently,
makefiles are provided only for the Intel Paragon, using mpich, and the IBM SP, using mpich
or MPI-F.

47

http://aav.epm.ornl.gov/chammp/pstsm
http://van

1. T. S. Darland
2. J. B. Drake
3. G. A. Geist
4. K. L. Kliewer

5-9. M. R. Leuze
10. D. R. Mackay
11. C. E. Oliver

12-16. S. A. Raby
17-21. R. F. Sincovec

- 49 -

ORNL/TM-12779

INTERNAL DISTRIBUTION

22. D. W. Walker

28. Central Research Library
29. Laboratory Records - RC

30-31. Laboratory Records Depart.
32. K-25 Applied Technology Li-

33. ORNL Patent Office
34. Y-12 Technical Library

23-27. P. H. Worley

brary

EXTERNAL DISTRJBUTION

35. David C. Bader, Environmental Sciences Division, Office of Health and Environ-
mental Research, Office of Energy Research, ER-76, U.S. Department of Energy,
Washington, DC 20585

Moffet Field, CA 94035

National Laboratory, Albuquerque, NM 87185

38. Robert E. Benner, Sandia National Laboratories, MS 1109, Parallel Computing
Science Dept. 1424, P. 0. Box 5800, Albuquerque, NM 87185

39. Michael Berry, Department of Computer Science, University of Tennessee, 107
Ayres Hall, Knoxville, T N 37996-1301

40. Roger W. Brockett, Wang Professor of EE and CS, Division of Applied Sciences,
29 Oxford Street, Harvard University, Cambridge, MA 02138

36. David H. Bailey, NASA Ames, Mail Stop 258-5, NASA Ames Research Center,

37. Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia

41. Edward Brocklehurst, DITC, Bldg. 93, National Physical Laboratory, Teddington,
Middlesex TWll OLW, UNITED KINGDOM

42. Thomas A. Callcott, Director, The Science Alliance Program, 53 Turner House,
University of Tennessee, Knoxville, T N 37996

43. Larry Dowdy, Computer Science Department, Vanderbilt University, Nashville,
T N 37235

44. Ian Foster, Mathematics and Computer Science Division, Argonne National Lab-

45. Geoffrey C. Fox, NPAC, 111 College Place, Syracuse University, Syracuse, NY

46. J. Alan George, Vice President, Academic and Provost, Needles Hall, University

oratory, 9700 South Cas Avenue, Argonne, IL 60439

13244-4100

of Waterloo, Waterloo, Ontario N2L 3G1, CANADA

- 50 -

47. Myron Ginsberg, EDS Advanced Computing Center, 30500 Mound Road, Bldg.
1-6, Warren, MI 48090-9055

48. Gene Golub, Computer Science Department, Stanford University, Stanford, CA
94305

49. John Gustafson, 236 Wilhelm, Ames Laboratory, Iowa State University, Ames, IA
50011

50. James J. Hack, National Center for Atmospheric Research, P. 0. Box 3000, Boul-

51. Christian Halloy, Assistant Director of JICS, 104 South College, Joint Institute

der, CO 80307

for Computational Science, University of Tennessee, Knoxville, T N 37996-1301

52. Michael T. Heath, National Center for Supercomputing Applications, 4157 Beck-
man Institute University of Illinois, 405 North Mathews Avenue, Urbana, IL

53. Tom Henderson, NOAA/Forecast Systems Laboratory, R/E/FS5, 325 Broadway,

61801-2300

Boulder, CO 80303

54. John L. Hennessy, CIS 208, Stanford University, Stanford, CA 94305

55. Anthony J. G. Hey, Dept. of Electronics and Computer Science, University of
Southampton, Highfield, Southampton SO9 5NH, UNITED KINGDOM

56. Dan Hitchcock, ER-31, Mathematical, Information, and Computational Sciences
Division, Office of Computational and Technology Research, Office of Energy Re-
search, U S . Department of Energy, Washington, DC 20585

57. Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Bldg. 221, Argonne, IL 60439

58. Kenneth Kennedy, Department of Computer Science, Rice University, P. 0. Box
1892, Houston, Texas 77001

59. Tom Kitchens, ER-31, Mathematical, Information, and Computational Sciences
Division, Office of Computational and Technology Research, Office of Energy Re-
search, Washington, DC 20585

60. Peter D. Lax, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012

61. Robert Malone, Los Alamos National Laboratory, (2-3, Mail Stop B265, Los
Alamos,NM 87545

62. James McGraw, Lawrence Livermore National Laboratory, L-306, P. 0. Box 808,
Livermore, CA 94550

63. David B. Nelson, Associate, Director, Office of Computational and Technology
Research, ER-30, Office of Energy Research, U.S. Department of Energy, Wash-
ington, DC 20585

64. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA
94305

- 51 -

65. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

66. James C. T. Pool, Deputy Director, Caltech Concurrent Supercomputing Facility,
California Institute of Technology, MS 158-79, Pasadena, CA 91125

67. Daniel A. Reed, Computer Science Department, University of Illinois, Urbana, IL
61801

68. Ahmed Sameh, Department of Computer Science, 200 Union Street, S.E., Univer-
sity of Minnesota, Minneapolis, MN 55455

69. Richard K. Sato, National Center for Atmospheric Research, P. 0. Box 3000,
Boulder, CO 80307

ton, OR 97006
70. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-

71. Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field,
CA 94035

72. Burton Smith, Tera Computer Company, 400 North 34th Street, Suite 300, Seattle,
WA 98103

73. David Snelling, Centre for Novel Computing, Department of Computer Science,

74. Paul N. Swarztrauber, National Center for Atmospheric Research, P. 0. Box 3000,

University of Manchester, Manchester M13 9PL, UNITED KINGDOM

Boulder, CO 80307

Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
75-79. Brian Toonen, Mathematics and Computer Science Division, Argonne National

80. Jim Tuccillo, Cray Research, Inc., 200 Westpark Drive, Suite 270, Peachtree City,
GA 30269

81. Robert Ward, Head, Computer Science Department, University of Tennessee, 107
Ayres Hall, Knoxville, T N 37996-1301

82. Andrew B. White, Los Alamos National Laboratory, P. 0. Box 1663, MS-265, Los
Alamos, NM 87545

83. Hans Zima, University of Vienna, Institute for Statistics and Computer Science,
Brunner Str. 72, 1210 Vienna, AUSTRIA

84. Office of Assistant Manager for Energy Research and Development, US. Depart-
ment of Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Ridge, TN
37831-8600

85-86. Office of Scientific & Technical Information, P. 0. Box 62, Oak Ridge, T N 37831

	1 Introduction
	2 History
	3 General Description
	4 Problem Description and Specification
	Spectral Transform Method for the Shallow Water,Equations -

	5 Pardel Algorithm Description and Specification
	Approach to Parallelization
	Parallel Algorithm Specification -
	Discussion

	6 Performance Measurement Description and Specification
	Approach to Performance Measurement

	7 Compile Time Options
	7.1 Parameter File Specifications
	Makefile Parameter Specifications 1 -

	8 Output
	Model Output
	TimingData

	9 Benchmarking Methodology
	10 Machine Specifics
	11 Porting the Code
	12 Conclusions and Future Plans
	13 Acknowledgments
	14 Bibliography
	A Problem Input Files
	B PVM-only and MPI-only PSTSWM Implementations

