Multidisciplinary modeling and GIS for landscape management

PDF Version Also Available for Download.

Description

Ecological dynamics in human-influenced landscapes are strongly affected by the socioeconomic factors that influence land-use decisions. Incorporating these factors into a spatially-explicit landscape-change model requires the integration of multidisciplinary data. We developed a model that simulates the effects of land use on landscape structure in the Little Tennessee River Basin in western North Carolina. This model uses a variety of data, including interpreted remotely-sensed imagery, census and ownership maps, topography, and results from econometric models. Data are integrated by using a geographic information system and translated into a common format, maps. Simulations generate new maps of land cover representing the ... continued below

Physical Description

19 p.

Creation Information

Flamm, R.O. & Turner, M.G. December 31, 1993.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Ecological dynamics in human-influenced landscapes are strongly affected by the socioeconomic factors that influence land-use decisions. Incorporating these factors into a spatially-explicit landscape-change model requires the integration of multidisciplinary data. We developed a model that simulates the effects of land use on landscape structure in the Little Tennessee River Basin in western North Carolina. This model uses a variety of data, including interpreted remotely-sensed imagery, census and ownership maps, topography, and results from econometric models. Data are integrated by using a geographic information system and translated into a common format, maps. Simulations generate new maps of land cover representing the amount of land-cover change that occurs. With spatially-explicit projections of landscape change, issues such as biodiversity conservation, the importance of specific landscape elements to conservation goals, and long-term landscape integrity can be addressed. In order for management to use the model to address these issues, a computer-based landscape-management decision aid is being developed. This tool integrates the models, associated data bases, and a geographic information system to facilitate the evaluation of land-use decisions and management plans. This system will estimate landscape-level consequences of alternative actions and will serve to focus coordination among different land-owners and land-use interests in managing the regional landscape.

Physical Description

19 p.

Notes

OSTI as DE96010637

Source

  • Remote-sensing/GIS applications to forest ecosystem management meeting, Oak Ridge, TN (United States), 22-23 Mar 1993

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96010637
  • Report No.: CONF-9303191--2
  • Grant Number: AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 243484
  • Archival Resource Key: ark:/67531/metadc669299

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1993

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • June 24, 2016, 1:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Flamm, R.O. & Turner, M.G. Multidisciplinary modeling and GIS for landscape management, article, December 31, 1993; Tennessee. (digital.library.unt.edu/ark:/67531/metadc669299/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.