Exhaust remediation using non-thermal (plasma) aftertreatments: A review

PDF Version Also Available for Download.

Description

There are four post combustion (nonthermal) plasma treatments on the table for reducing NOx in exhaust streams. This paper compares these techniques and suggests what appears to be a novel (8 inventions) and optimum path for development of auseful ehaust treatment system. We propose to use 5 GHz microwaves which will have a risetime of 20 ps, 100 times shorter than present state of the art and result in the best chemistry path by reduction ofplasma shielding, greater availability of atomic nitrogen, elimination of surface charging of dielectrics, avoidance of low threshold fields, and higher breakdown limit. We also propose ... continued below

Physical Description

12 p.

Creation Information

Whealton, J.H. & Graves, R.L. December 31, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

There are four post combustion (nonthermal) plasma treatments on the table for reducing NOx in exhaust streams. This paper compares these techniques and suggests what appears to be a novel (8 inventions) and optimum path for development of auseful ehaust treatment system. We propose to use 5 GHz microwaves which will have a risetime of 20 ps, 100 times shorter than present state of the art and result in the best chemistry path by reduction ofplasma shielding, greater availability of atomic nitrogen, elimination of surface charging of dielectrics, avoidance of low threshold fields, and higher breakdown limit. We also propose combining a surface intrinsically into the plasma discharge. Novel embodiments are proposed for the pebbel bed discharge allowing an order of amgnitude increase of eidl-volume over the closest packing configuration.

Physical Description

12 p.

Notes

OSTI as DE96008617

Source

  • 1995 diesel engine emissions reduction workshop, San Diego, CA (United States), 24-27 Jul 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96008617
  • Report No.: CONF-9507234--1
  • Grant Number: AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 217653
  • Archival Resource Key: ark:/67531/metadc669258

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Jan. 19, 2016, 1:28 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Whealton, J.H. & Graves, R.L. Exhaust remediation using non-thermal (plasma) aftertreatments: A review, article, December 31, 1995; Tennessee. (digital.library.unt.edu/ark:/67531/metadc669258/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.