Sol-gel replicated optics made from single point diamond turned masters exhibit fractal surface roughness

PDF Version Also Available for Download.

Description

Deterministic optics manufacturing, notably single point diamond turning (SPDT) has matured such that the current generation of machines is capable of producing refractive and reflective optics for the visible wavelength region that are quite acceptable for many applications. However, spiral tool marks are still produced that result in unwanted diffractive scattering from grating-like features having a spatial frequency determined by the machine feed, tool radius, and other influences such as vibration and material removal effects. Such regular artifacts are the characteristic of deterministic manufacturing methods such as SPDT. The authors present some initial findings suggesting that fractal, or non-deterministic surfaces ... continued below

Physical Description

4 p.

Creation Information

Bernacki, B.E.; Miller, A.C. Jr.; Evans, B.M. III; Moreshead, W.V. & Nogues, J.L.R. May 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 83 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Deterministic optics manufacturing, notably single point diamond turning (SPDT) has matured such that the current generation of machines is capable of producing refractive and reflective optics for the visible wavelength region that are quite acceptable for many applications. However, spiral tool marks are still produced that result in unwanted diffractive scattering from grating-like features having a spatial frequency determined by the machine feed, tool radius, and other influences such as vibration and material removal effects. Such regular artifacts are the characteristic of deterministic manufacturing methods such as SPDT. The authors present some initial findings suggesting that fractal, or non-deterministic surfaces can be produced by SPDT through sol-gel replication. The key is the large isotropic shrinkage that occurs through monolithic sol-gel replication (a factor of 2.5) that results in all features, including tooling marks, being reduced by that amount. The large shrinkage itself would be a laudable-enough feature of the replication process. However, by an as-yet-not understood manner, the replication process itself seems to alter the roughness character of the replicated surface such that it appears to be fractal when analyzed using contact profilometry and the power spectrum approach.

Physical Description

4 p.

Notes

OSTI as DE96009740

Source

  • Optical Society of America (OSA) meeting on integrated photonics research, Boston, MA (United States), 29 Apr - 3 May 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96009740
  • Report No.: CONF-960493--4
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 231636
  • Archival Resource Key: ark:/67531/metadc669212

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Jan. 29, 2016, 6:58 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 83

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bernacki, B.E.; Miller, A.C. Jr.; Evans, B.M. III; Moreshead, W.V. & Nogues, J.L.R. Sol-gel replicated optics made from single point diamond turned masters exhibit fractal surface roughness, article, May 1, 1996; Tennessee. (digital.library.unt.edu/ark:/67531/metadc669212/: accessed August 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.