Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li{sup +} ion beam-driven hohlraums

PDF Version Also Available for Download.

Description

X-ray-producing hohlraums are being studied as indirect drives for Inertial Confinement Fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The UFO unfold code and its suite of auxiliary functions were used extensively in obtaining time- resolved x-ray spectra and radiation temperatures from this diagnostic. UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters ... continued below

Physical Description

13 p.

Creation Information

Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R. & Leeper, R.J. July 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

X-ray-producing hohlraums are being studied as indirect drives for Inertial Confinement Fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The UFO unfold code and its suite of auxiliary functions were used extensively in obtaining time- resolved x-ray spectra and radiation temperatures from this diagnostic. UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le} 100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time-history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum.

Physical Description

13 p.

Notes

INIS; OSTI as DE96011693

Source

  • 11. annual high-temperature plasma diagnostics conference, Monterey, CA (United States), 12-16 May 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96011693
  • Report No.: SAND--96-0459C
  • Report No.: CONF-960543--21
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 254937
  • Archival Resource Key: ark:/67531/metadc669180

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 14, 2016, 8:13 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R. & Leeper, R.J. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li{sup +} ion beam-driven hohlraums, article, July 1, 1996; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc669180/: accessed November 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.