The role of catalyst activation on the activity and attrition of precipitated iron Fischer-Tropsch catalysts

PDF Version Also Available for Download.

Description

The results of this work indicate that magnetite is not catalytically active for Fischer-Tropsch Synthesis (FTS) in precipitated, unsupported iron catalysts, but the formation of the carbide phase is necessary to obtain FTS activity. The transformation of magnetite to carbide, though essential to obtain FTS activity, also causes the catalyst to break down. This can lead to severe problems during operation in a commercial slurry phase reactor. The results presented here imply that activation and attrition are simultaneous and complementary processes. In another study, we show that the catalyst can also under go attrition on a micron scale which is ... continued below

Physical Description

6 p.

Creation Information

Datye, A.K.; Shroff, M.D.; Harrington, M.S.; Coulter, K.E.; Sault, A.G. & Jackson, N.B. December 31, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times , with 5 in the last month . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The results of this work indicate that magnetite is not catalytically active for Fischer-Tropsch Synthesis (FTS) in precipitated, unsupported iron catalysts, but the formation of the carbide phase is necessary to obtain FTS activity. The transformation of magnetite to carbide, though essential to obtain FTS activity, also causes the catalyst to break down. This can lead to severe problems during operation in a commercial slurry phase reactor. The results presented here imply that activation and attrition are simultaneous and complementary processes. In another study, we show that the catalyst can also under go attrition on a micron scale which is caused by lack of strength of the forces binding the catalyst primary particles in the agglomerates. Both these processes can make wax separation and product recovery extremely difficult. In this study, we have also shown that H{sub 2} reduction of this catalyst to metallic iron is detrimental to subsequent catalyst activity and causes a loss of surface area due to sintering of the iron crystallites. Reduction to metallic Fe also causes impurities such as S to segregate to the surface causing a complete loss of FTS activity. It has been shown that even submonolayer amounts of S can cause a dramatic decrease in FTS activity, hence reduction to metallic Fe should be avoided during activation of these catalysts. We have shown, however, that a mild H{sub 2} reduction to magnetite does not lead to S segregation to the surface, and is therefore acceptable.

Physical Description

6 p.

Notes

OSTI as DE96010927

Source

  • 4. international natural gas conversion symposium, Kruger National Park (South Africa), 19-23 Nov 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96010927
  • Report No.: CONF-9511172--2
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/237401 | External Link
  • Office of Scientific & Technical Information Report Number: 237401
  • Archival Resource Key: ark:/67531/metadc669136

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 14, 2016, 12:31 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 5
Total Uses: 15

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Datye, A.K.; Shroff, M.D.; Harrington, M.S.; Coulter, K.E.; Sault, A.G. & Jackson, N.B. The role of catalyst activation on the activity and attrition of precipitated iron Fischer-Tropsch catalysts, report, December 31, 1995; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc669136/: accessed November 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.