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Abstract 

The effects of solute drag on grain growth kinetics were studied in two dimensional 

(2-D) computer simulations by using a diffuse-interface field model. It is shown that, in 

the low velocity / low driving force regime, the velocity of a grain boundary motion departs 

from a linear relation with driving force (curvature) with solute drag. The nonlinear 

relation of migration velocity and driving force comes from the dependence of grain 

boundary energy and width on the curvature. The growth exponent m of power growth 

law for a polycrystalline system is affected by the segregation of solutes to grain 

boundaries. With the solute drag, the growth exponent m can take any value between 2 

and 3 depending on the ratio of lattice diffusion to grain boundary mobility. The grain size 

and topological distributions are unaffected by solute drag, which are the same as those in a 

pure system. 
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1. Introduction 

Grain growth is a process of grain boundary migration to decrease total grain 

boundary area and total free energy of a system, driven by mean curvatures of grain 

boundaries. The kinetics of grain growth depends strongly on the presence or absence of 

solute or impurity segregation at grain boundaries. In a pure material, the only process 

which occurs during grain growth is local atomic rearrangement. If solute segregation is 

present, the migration of grain boundaries may be controlled by long range diffusion. It is 

well understood that grain growth follows power growth law Rr - hrn = k t with the 

growth exponent m=2 in a pure material 1 ~ 2 9  3, where 4 is the initial average grain size, 

Rt is the average grain size at time t and k is the kinetic coefficient. Experimentally, 

however, the growth exponent m is found to be larger than 2 even if a very low impurity 

level (a few ppm or less) is present in pure metals 194,5. 

Theoretically, Cahn 6 studied the effects of solute drag on migration kinetics of 

grain boundaries by considering the interaction of impurity atmosphere with grain 

boundaries. Cahn predicted that, according to the migration velocity and driving force, the 

migration of grain boundaries with impurity segregation can be classified into different 

regimes: (a) a low velocity / low driving force regime, where long-range diffusion of 

impurity is important; (b) a high velocity / high driving regime, where long-range diffusion 

is not necessary and desorption of solute may occur according to the diffusivity of 

impurity; and (c) a transition region between these two regimes. It was also shown that the 

migration velocity of grain boundaries may not be linearly proportional to the driving force 

if impurity is segregated to grain boundaries, which depends on the migration velocity, 

driving force and the concentration of segregation. Hillert and Sundman 7 obtained similar 

results to those of Cahn by using a free energy dissipation theorem and idealized models 

for interaction energy profiles. Even though the theory explains a number of experimental 

observations, the direct derivation of a grain-growth law from this theory is difficult. 
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Krzanowski and Allen 8, 99 10 studied the effects of segregation on antiphase 

boundary migration kinetics by employing a diffuse-interface theory. They obtained a 

relationship of migration velocity with driving force (here it is the mean curvature of curved 

boundaries) in the low velocity / low driving force regime, which is found to be equivalent 

to that of Cahn 9. They indicated that the value of the interfacial mobility is dependent on 

the presence of segregation and the kinetics of boundary migration is retarded when the 

segregation of solute is present at boundaries. Interestingly, however, they showed that, 

by assuming interfacial energy and interfacial thickness are constant, the growth exponent 

m (=2) is unaffected by the presence of segregation at boundaries 89 9. Their experimental 

results of Fe-A1 alloys seem to support their theoretical predictions 10. Krzanowski and 

Allen 1 1 also found both theoretically and experimentally that, however, the growth 

exponent m will change to 3 if the antiphase domain boundaries are wetted by a thin layer 

of a second phase, indicating that long-range diffusion controls the coarsening kinetics in 

this case. Despite theoretical prediction of the nonlinear relation between the migration 

velocity and the driving force in the presence of solute drag, other researchers predicted that 

the solubility of impurity may also affect the growth exponent m 12, i.e., m is 3 for low 

solubility of impurity and is 2 in high solubility regime. Therefore, from the theoretical 

point of view, it is still unclear if and how the solute drag will affect the growth exponent m 

for polycrystalline materials. 

Recently, the authors have developed a diffuse-interface field model for simulating 

the grain growth in pure materials 13, 14 and for studying the microstructure evolution in 

volume-conserved two-phase systems 153 16. A significant feature of this model is that the 

microstructural complexity and long-range diffusion can be taken into account conveniently 

and simultaneously. Computer simulations using this model allow one not only to monitor 

the detailed temporal microstructure evolution during grain growth but also to obtain all the 

information about the average grain size and size distributions. In this paper, we modify 

3 



this diffuse-interface field model to study the effects of solute drag on grain growth 

kinetics. We focus on the grain growth in the low velocity / low driving force regime, in 

which the driving force for grain boundary migration is the mean curvature (capillarity) and 

solute atmosphere moves with grain boundaries. The migration of grain boundaries with 

solute drag was studied by computer simulations and the effects of segregation on growth 

exponent were analyzed for polycrystalline materials. 

2. Diffuse-Interface Field Model 

We assume a binary alloy consisting of elements X and Y for studying grain 

growth in a solid solution with solute drag. At a certain temperature T, there are two 

possible stable solid solutions a and p with the equilibrium concentrations Ca and Cp 

respectively in this system. By choosing the average alloy concentration c within the 

solid solutionregions ( 5 Ca or C 2 Cp ), the grain growth with solute drag can be 

studied. 

- 

In this diffuse-interface field model, an arbitrary polycrystalline microstructure is 

described by a set of continuous field variables, 

771 ( ' 1 9  V 2 ( r ) j . * * * * * J  Vp( ' )  

where p is the number of possible orientations in space and qi (i = 1, ..., p) are called 

orientation field variables which distinguish the different orientations of grains and are 

continuous in space, and r is the position in the space. Their values continuously vary 

from -1.0 to 1.0. In real materials, the number of orientations is infinite (p = 00 >. 
. However, it was shown that a finite number of p (p > 30) might be sufficient to realistically 

simulate grain growth 13-15. 
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To study the effects of solute segregation, a concentration field C( r )  is introduced, 

which describes the spatial distribution of solute atoms. Within the diffuse interface theory 

l7, the total free energy of an inhomogeneous system can be written as: 

+"c(vc(r))2 + C$(V?& p K. ( r ) )  
i=l 2 

,where VC and Vqi are gradients of concentration and orientation fields, KC and K~ are 

the corresponding gradient energy coefficients, and f, is the local free energy density 

which, in this work, is assumed to be, 

in which 

where Ca and Cp are the solubilities X or Y in a and p phases respectively, Cm = (C,  + 
Cp)/2, A, By Day DP, 'y, 6, and E~ are phenomenological parameters. A main requirement 

for fo is that it has 2p degenerate minima at equilibrium concentration Ca or Cp to 

distinguish the 2p orientation differences of grains in space. The parameters are chosen in 

such a way that fo has 2p degenerate minima with equal depth located at (ql, q2, ..., VP) = 

(l,O, ..., 0), (O,l,...yO), ..., (OyO,...,l) at the equilibrium concentration C, or Cp. This 

requirement ensures that each point in space can only belong to a grain with a given 
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orientation of a given phase. The justification for using such a free energy model in the 

study of coarsening was discussed previously 13-15. 

The energy of a planar grain boundary, 0 between a grain of orientation i and gb’ 

another grain of orientation j for two stable a grains, can be written as follows, 

in which 

where qj,eJ Ca) represents the free energy density minimized with respect to 

qi and q . at the equilibrium composition of a phase C,. If average concentration c 2 
Cp, C, is replaced by Cp in equation (4) since p phase is the only stable phase. 

I 

The evolution of orientation and concentration field variables are described by the 

time-dependent Ginzburg-Landau (TDGL) 18 and Cahn-Hilliard l9 equations, 

i = l ,  2, ..., p,  

dC(rJt)  
dt = V{DV[&]} 

where Li and D are kinetic coefficients related to the grain boundary mobilities and atomic 

diffusion coefficients, t is time, and F is the total free energy given in equation (1). The 
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microstructural evolution of grain growth with solute drag can be studied by numerically 

solving eqn. 5a and 5b coupled kinetic equations. 

3. Numerical methodology 

To numerically olve the set of kinetic equations (5), one needs to discretize them 

with respect to space. We discretize the Laplacian using the following approximation, 

where is any function, Ax is the grid size, j represents the set of first nearest neighbors of 

i, and j' is the set of second nearest neighbors of i. For discretization with respect time, we 

employed the following simple Euler technique, 

(7) d@ . .  

@( t + At) = @( t ) + - X At 
dt 

where At is the time step for integration. All the results discussed below were obtained by 

using Ax = 2.0, At = 0.1 to ensure numerical stability. The kinetic equations are 

discretized in 2-D by using 5 12 x 5 12 square grid points with periodic boundary conditions 

applied along both directions. The total number of orientation field variables are 36 ( p = 

36). 

The following parameters for the free energy function ( eq. 2 ) were assumed in this 
study: A = 2.0, B = 9.88, Ca = 0.05, Cp = 0.95, Da = Dp = 1.52, y =  2.0, 6 =  1.0, E..  = 9 

3 .O, which give two equilibrium solid solutions and satisfy the requirements mentioned in 

section 2 for free energy function fo . We also assumed isotropic grain boundary energies 
?ci = K . = K = 2.0 and KC = 2.0. The mobilities are chosen as Ll = = L = 1.0, which 

.l 

give isotropic grain boundary mobility. In this study, the average concentration of the alloy 
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was chosen as c = 0.04, which is less than the solubility of a phase ( ? < Ca ) and hence 

ensures that the microstructure consists of single phase a grains with the segregation of Y 

atoms at grain boundaries. 

To generate the initial microstructure, a single phase grain growth simulation was 

first performed to obtain a fine grain structure. Grains are then randomly assigned with the 

average concentration c and an orientation field. The concentration of solute atoms is 

conserved during the simulations of grain growth, e.g., average concentration is a 

constant and solute atoms can only diffuse within the system. The initial segregation was 

obtained by relaxing the system for certain time steps (100 time steps), which gives a grain 

structure with solute segregation at grain boundaries. The kinetics of grain growth with 

solute drag was then studied. The area of each grain at a given time step is directly 

calculated from the microstructure by counting the number of grid points within a grain and 

grain size R is obtained from the area by assuming a circular shape for all grains, therefore, 

Area = xR2. The average grain radius at a given time step is then obtained by averaging 

over all the grains in a system. All the kinetic data and size distributions were obtained 

using 5 12 x 5 12 grid points and averaged from independent runs. There are more than 

3000 grains at the beginning of collecting data for calculating the statistics and there are 

about 200 at the end. 

4. Migration of A Grain Boundary with Solute drag 

To study the effects of solute drag on the migration of a grain boundary, we 

consider a circular grain ( q)  embedded in another grain ( q2). We employed 200 x 200 

square lattice points to spatially discretize the kinetic equations with periodic boundary 

conditions applied along both Cartesian coordinate axes. The initial radius of the circular 

grain was chosen to have 60 grid points. 
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Th microstructural evolution of the circular grain is shown in Fig. 1. It can be seen from 

Fig. 1 that the grain boundary is very smooth and circular at all times, indicating that the 

parameters chosen for numerical simulations are proper and no apparent lattice anisotropy 

is introduced by discretizing the continuous equations (5). The snap shots of concentration 

profiles across the middle of the circular grain are shown in Fig. 2. The segregation of 

solutes at grain boundary is obvious and the solute atmosphere moves with grain 

boundary, which indicates a low velocity / low driving force condition (case (a)). It should 

be noted that, in this dynamic system, the velocity of grain boundary is not constant and 

there is no time for the concentration profile to relax to its equilibrium shape at a given time 

and velocity. Therefore, many runs are needed to calculated the average segregation 

concentration at a given time step. 

The driving force for the grain boundary movement is the mean curvature, which is 

1/R in this case (R is the radius of the circular grain). It was shown that, if without solute 

drag, the kinetics of a circular grain follows the equation @ - R2 = 2 L ~ t  18$ 20, 21, 

where % is the original radius of the circular grain, R is the radius at time t, gradient 

coefficient I C ~ =  ~ 2 =  K and the mobility L1 = & = L . In this case, the area of the circular 

grain decreases linearly with respect to time t. However, the migration of grain boundary 

with solute drag may not follow this linear relationship. To study the effects of kinetic 

conditions on grain boundary migration kinetics, two kinetic conditions are employed. 

First, the ratio between the kinetic coefficient D, which is related to the solute diffusivity in 

lattice, and the kinetic coefficient L, which is related to grain boundary mobility, is chosen 

to be 1 .O. Under this condition, the lattice diffusion rate is fast enough so that solute atoms 

can move with grain boundaries without significantly delaying the grain boundary motion. 

Second, the ratio of kinetic coefficients D and L is chosen to be 0.5 by keeping L fixed at 

its value for case one and decreasing the kinetic coefficient D. The time evolution of the 

areas of the circular grain with solute drag is shown in Fig. 3. It can be seen that areas of 

the circular grain decrease slightly nonlinearly with time for D/L=1.0 conditions. The 
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smaller the D/L ratio, the more obvious the nonlinearity. When the diffusion of solute 

atoms in the lattice is fast enough ( condition D L  = 1.0 ), long-range lattice diffusion of 

solute atoms has less effect on grain boundary migration. In this case, the relation between 

grain areas and time is very close to a linear one (Fig. 3). However, if the rate of lattice 

diffusion of solute is much smaller than the motion of grain boundaries ( condition D/L = 

0.5), long-range diffusion becomes the controlling factor for grain boundary migration and 

the shrinkage kinetics of the circular grain departs from the linear relation. 

For the single phase grain growth (without solute drag), the velocity of grain 

boundary migration can be expressed as 18,209 21: 

where v is the velocity, (K1+ K2) is the mean curvature of the grain boundary, and M is a 

kinetic constant dependent on coefficients L and K. For a 2-D circular grain, v = dR/dt, 

(K1 +K2) = 1/R, and equation (9) can be easily integrated into the relation 

& - R = 2LK t ,  Le., a linear relation between grain area and time t. However, the 

”. 

2 2  

velocity expression obtained for grain growth with solute drag was given by 6 9: 

where B is the grain boundary energy, 6 is grain boundary thickness, and p is a 

coefficient which is a function of diffusivity, surface excess energy and other 

thermodynamic factors. If we assume that cry S and p are independent of the curvature 

(or grain radius R), equation (10) can also be integrated into a similar relation 

made the 

same assumptions and obtained the growth law with growth exponent m = 2 for the 

polycrystalline grain growth with solute drag. With these assumptions, the only difference 

- R2 = 2puot/6 for a circular grain. Actually, Krzanowski and Allen *, 
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between grain growth with and without solute drag is the kinetic coefficient of the growth 

law, while the growth exponent m will not be affected. 

However, Fig. 3 indicates that the velocity with solute drag is not linearly related to 

the driving force ( (K1+ K2) or 1/R for a circular grain). To directly visualize the relation 

of the velocity with the driving force for grain boundary migration, we plot dWdt with 1/R 

(curvature) in Fig. 4 for the shrinkage of a circular grain in simulations. The dWdt values 

were obtained by fitting the R-t curve with a smooth function and then taking derivatives of 

that function at time t. The relation of dWdt and 1/R for gain boundary motion without 

solute drag is also plotted in Fig. 4 for comparison. Fig. 4 shows that the velocity of grain 

boundary migration without solute drag keeps a good linear relation with curvature (driving 

force), which ensures that the growth exponent m is 2 in the power law. On the other 

hand, as solute atoms segregate to grain boundaries, the velocity starts to depart from the 

linear relationship, which results in the change of growth exponent m and a nonlinear 

relation between the average grain area and time. It is also shown that the migration 

velocity is dramatically decreased by solute drag, i.e., at a certain driving force (curvature), 

the velocities with solute drag are much smaller than that without solute drag (Fig. 4). The 

smaller the diffusivity, the more severely the grain boundary motion will be retarded. This 

slowing-down actually confirms the Krzanowski and Allen's formulation in the low 

velocity / low driving force regime. 

_. 

To investigate which parameter affects the linear relation of velocity and driving 

force, the dependence of grain boundary energy on curvature is plotted in Fig. 6.  It can be 

seen that grain boundary energy CT decreases as 1/R increases and there is no simple 

relation can be extracted from the simulation data. Since o decreases as curvature 

increases, the slope of the velocity - curvature curve will decrease as curvature increases ( 

equation (9) ), Le., the v - 1/R relation will curve down when solute segregation occurs. 

This is what exactly observed in Fig. 4. 
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The segregation concentration of solute at grain boundaries will affect the grain 

boundary energy 22 . Therefore, the variation of solute concentration with curvature is 

shown in Fig. S . ,  In this plot, the dots are measured maximum concentrations at moving 

grain boundaries and the solid line is a fit to the average of these data. It was reported 22 

that a linear relation exists between grain boundary energy o and segregation 

concentration. However, there is no such linear relation can be extracted from current 

simulations. It can be seen that the segregation concentration increases with the increase of 

curvature ( 1/R ) in current simulations. This result seems to show a different trend from 

that obtained by Cahn 6 .  He showed that as grain boundaries speed up, they always 

desorb more and more solute. Therefore, one may expect that in simulations, as a circular 

grain shrinks, its velocity increases and there should be a smaller amount of solute at 

smaller grain size. 

We believe that this difference comes from the fact that, in Cahn's work, the 

concentration profile at a boundary is only influenced by the part of the boundary still 

approaching and it reflects no influence of the parts already past 6.  As a result, more and 

more solute is left behind the boundary as it speeds up. However, in the current model, the 

desorption of solute from the moving boundary increases the concentration of solute in the 

-. 

bulk of grain past, which drives the bulk of grain away from its thermodynamic 

equilibrium and significantly increases the total free energy of the system. To minimize the 

total free energy, the solute is pushed back to the grain boundary region by diffusion, 

which is only possible in the low velocity / low driving regime. The diving force for this 

process is the chemical potential difference in the supersaturated solid solution and in the 

boundary region. As the circular grain shrinks, there is less total grain boundary area in the 

system. Therefore, there are more solute segregated at the grain boundary as the system 

evolves, since we employed a conserved system. The significance of this process is that a 

much larger solute drag effect is imposed on grain boundaries than that predicted by Cahn. 

This raises an interesting point that the solute drag effect may be also dependent on the 
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shape of the free energy curve as a function of concentration ( i.e., the value of &/dc ) 

for the solid solution at a given temperature. If the change of the free energy curve with 

concentration is sharp, the solute is not likely to desorb from the grain boundary, which 

imposes a greater drag or pinning effect on grain boundaries. Of course, the desorption of 

the solute from boundaries occurs much more easily if this process does not affect the bulk 

free energy severely. 

The grain boundary width (full width) may also change with curvature since the 

segregation concentration at grain boundary varies with curvature. The relation of 

calculated grain boundary width and curvature is shown in Fig. 7. It is shown that the 

grain boundary width increases with the increase of curvature. According to equation (9), 

the increase of grain boundary width with curvature will also make the v - 1/R curve bend 

down. However, the effect of grain boundary width on migration velocity of a grain 

boundary may be important only if the grain size is compatible to grain boundary width, 

Le., for nanocrystals. For a normal system in which grain size is much larger than the 

width of grain boundaries, the variation of grain boundary energy with curvature may be 

the dominant reason for the deviation of the linear relation between velocity and curvature. 

Therefore, it can be concluded that the migration velocity of grain boundaries with solute 

drag is not linearly proportional to the driving force. The nonlinear relation of migration 

velocity and driving force comes from the dependence of grain boundary energy and the 

width on the curvature, which may result in the change of growth exponent m in the 

growth law. 

5. Effect of Solute drag on Grain Growth of Polycrystals 

With solute drag, the grain boundary motion will be retarded and the velocity will 

depart from linear relation with driving force. In this section, the effect of solute drag on 
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power growth law, grain size distributions and topological distributions in 2-D 

polycrystalline systems were studied. We chose a 5 12 x 5 12 cell with 36 orientation field 

variables (p=36), which is sufficient to realistically simulate grain growth l3-15. 

A typical microstructural evolution of grain growth with solute drag is shown in 

Fig. 8. The characteristics of these microstructures are essentially similar to those of grain 

growth in a pure system. The only noticeable difference is that the life time of a 

quadrijunction ( a junction of four grains which is thermodynamically unstable in these 

systems ) with solute drag is longer than that in a pure system, which is resulted from the 

fact that microstructural evolution is controlled by diffusion in solute drag systems. 

Therefore, some quadrijunctions have been captured in microstructures at different time 

steps, which is seldom observed in simulation and experimental microstructures of a pure 

system 1 3. 

To study the kinetics of grain growth with solute drag, two kinetic conditions, 

D/L=1.0 and D/L=0.5, were chosen, which are the same as previous sections. The 

average grain radius as a function of time for the D b 1 . 0  system is shown in Fig. 9. To 

extract growth exponent m and coefficient k, the data were then fitted to the equation 

qrn - Grn = kt by a multi-parameter nonlinear least-square fitting routine. The growth 

exponent m for this system is found to be 2.1 f 0.01, which is very close to m=2 in a pure 

system. In this system, the lattice diffusion rate is compatible to the diffusion rate across 

grain boundaries, therefore, long-range lattice diffusion is not the limiting factor for grain 

boundary motion. It is shown in above section that grain boundary velocity slightly 

departs from linear relation with driving force. As a result, the growth exponent m for this 

system is not significantly affected by the solute drag. 

The time dependence of average grain size in the D k 0 . 5  system is shown in Fig. 

10. It can be seen that growth exponent m has changed to 2.49 & 0.01, significantly 

different from that in D k 1  .O system. It is well understood that growth exponent m is 2 
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fc grain growth of a pure system m 17 2 ~ 1 3 ,  and it is 3 for Ostwald ripening process in 

two-phase systems, in which long-range diffusion controls coarsening kinetics 15. 

Clearly, growth exponent m in grain growth with solute drag can not be easily determined, 

which is dependent on diffusion mechanisms in a system. In the D/L=0.5 system, lattice 

diffusion rate is not fast enough to follow the grain boundary migration and the motion of 

grain boundaries is pinned by solute atoms. Therefore, coarsening kinetics is controlled by 

lattice diffusion and growth exponent m departs significantly from that in a pure system. 

It is clear that, according to the ratio of lattice diffusion and grain boundary 

mobility, long-range diffusion plays different roles in determining the growth law of a 

polycrystalline system. It can be expected that, if lattice diffusion is much slower than 

grain boundary migration, the growth exponent can be very close to 3, in which grain 

boundary motion is totally controlled by lattice diffusion. Therefore, with solute drag, the 

growth exponent m can have a value anywhere between 2 and 3 depending on the ratio of 

lattice diffusion and grain boundary mobility. This result seems to explain a variety of 

growth exponents m obtained experimentally from different alloys systems T ~ ~  in which 

the growth exponent values vary from m=2 to m=3 with an average of 2.5k0.4 and 

diffusion mechanisms vary significantly. 

_.. 

The time dependences of grain size distributions in D/L=l .O and D/L=0.5 systems 

are shown in Fig. 11 and Fig. 12, respectively. For comparison, a typical grain size 

distribution obtained from 2-D simulations for a pure system (without solute drag) is also 

shown in Fig. 11. Two conclusions can be drawn from these two figures. First, both 

systems have reached a scaling or steady state, Le., the shape of grain size distribution is 

time-invariant. Second, by comparing these figures, it can be seen that the shapes of grain 

size distributions are the same in these two systems, which are almost identical to that in a 

pure system (Fig. 1 1) 13. The topological distributions in D/L=l .O and D/L=0.5 systems 

are shown in Fig. 13 and Fig. 14 at different time steps. A topological distribution for a 
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pure system is compared in Fig. 13. It is also clear that topological distributions are time- 

invariant. Comparison of two systems shows that the shapes of topological distributions 

are identical to each other, indicating that topological distributions are unaffected by solute 

drag. The peak of topological distributions in both systems is located at 5-sided grains, 

which is identical to that for a pure system (Fig. 13) 14 while the peak can change to 6- 

sided grains in a two-phase system 16, 20. Therefore, even though the grain growth 

kinetics is very sensitive to solute drag and diffusion mechanisms, the grain size and 

topological distributions will not be altered by solute drag and diffusion mechanisms, 

which are the same as those in a system without solute drag. 

6. Conclusions 

Our computer simulations of grain boundary migration with solute drag show that 

the motion of a grain boundary is greatly retarded by solute segregation at grain boundary. 
-. 

In the low velocity / low driving force regime, the velocity of a mobile grain boundary 

departs from a linear relation with driving force (curvature) with solute drag. The 

diffusivity and diffusion mechanisms will affect the migration velocity and grain growth 

kinetics. The nonlinear relation of migration velocity and driving force comes from the 

dependence of grain boundary energy and width on the curvature. We have shown that the 

growth exponent m of power growth law for a polycrystalline system will be affected by 

the segregation of solute to grain boundaries. With the solute drag, the growth exponent m 

can take any value between 2 and 3 depending on the ratio of lattice diffusion and grain 

boundary mobility. It is found that the grain size and topological distributions are 

unaffected by solute drag and diffusion mechanisms, which are the same as those in a pure 

system. 
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Figure Captions 

Fig. 1. The microstructural evolution of a circular grain. 

Fig. 2. The time dependence of concentration profiles across the grain boundary of a 

circular grain. Dotted line: t = 1000; double dotted line t = 3000; solid line: t = 5000. 

Fig. 3. The time dependence of the grain area of a circular grain with kinetic condition 

D/L=l.O and D/L=0.5. 

Fig. 4. The relationship of driving force ( curvature 1/R) with the migration velocity of 

grain boundary in a pure system and in systems with segregation under kinetic conditions 

D/L=0.5 and D/M=1 .O. 

Fig. 5. The calculated relation of the peak concentration of segregation at grain boundary 

with the curvzture of a circular grain. 

Fig. 6.  The calculated dependence of grain boundary energy on the mean curvature of a 

circular grain. 

Fig. 7. The calculated dependence of grain boundary width on the mean curvature of a 

circular grain. 

Fig. 8. The microstructural evolution of grain growth with solute drag in a 2-D 

polycrystalline system. (a) t = 5000; (b) t = 10000; (c) t = 15000; (d) t = 20000. 

Fig. 9. The time dependence of average grain size under kinetic condition D/L=1.0. The 

solid line is a nonlinear fit to power growth law Rt & = kt , which gives m=2.1+0.01. --m ---m 

Fig. 10. The time dependence of average grain size under kinetic condition D/L=0.5. The 

solid line is a nonlinear fit to power growth law Rp - &$$ = k t ,  which gives 

m=2.49f0.01. 
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Fig. 1 1 The time dependence of grain size distributions under kinetic condition D/L=l .O. 

The solid line is a typical grain size distribution in a pure system (without solute drag). 

Fig. 12. The time dependence of grain size distributions under kinetic condition D L 0 . 5 .  

Fig. 13, The time dependence of grain topological distributions under kinetic condition 

D k 1 . 0 .  A topological distribution for a pure system (without solute drag) is shown in 

this figure for comparison. 

Fig. 14, The time dependence of grain topological distributions under kinetic condition 

D b 0 . 5 .  
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0 0 

Fig. 1 The temporal evolution of a circular grain with solute-drag. 
(a) time step = 1000;(b) time step = 3000;(c) time step = 5000;(d) time step = 7000. 
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Fig. 2 The time dependence of concentration profiles across the grain boundary 
of a circular grain. Dotted line: t = 1000; double dotted line t = 3000; 
solid line: t = 5000. 
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Fig. 3. The time dependence of the grain area of a circular grain 
with kinetic condition D/L=1.0 and D L d . 5 .  
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Fig. 4. The relationship of driving force ( curvature 1/R) with the migration 
velocity of grain boundary in a pure system and in systems with segregation 
under kinetic conditions D L a . 5  and D/M= 1 .O. 
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Fig. 5.  The calculated relation of the peak concentration of segregation 
at grain boundary with the curvature of a circular grain. 
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Fig. 6. The calculated dependence of grain boundary energy 
on the mean curvature of a circular grain. 
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Fig. 7. The calculated dependence of grain boundary width 
on the mean curvature of a circular grain. 



Fig. 8, The microstructural evolution of grain growth with solute-drag in a 2-D polycrystalline 

system. (a) t = 5000; (b) t = 1OOOO; (c) t = 15000; (d) t = 2oooO. 
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Fig. 9. The time dependence of average grain size under kinetic condition D k I . 0 .  
The solid line is a nonlinear fit to power growth law Rtm - R 
which gives m=2.1&0.01. 
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Fig. 10. The time dependence of average grain size under kinetic condition D/L=0.5. 
The solid line is a nonlinear fit to power growth law Rtm - Ron = kt, 
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Fig. 1 1 The time dependence of grain size distributions wder kinetic condition D/L= 1 .O. 
The solid line is a typical grain size distribution in a pure system (without solute-drag). 
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Fig. 12. The time dependence of grain size distributions under kinetic condition D/L=0.5. 
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Fig. 13, The time dependence of grain topological distributions under kinetic condition 
D/L=l .O. A topological distribution for a pure system (without solute-drag) 
is shown in this figure for comparison. 
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Fig. 14, The time dependence of grain topological distributions under kinetic condition D/L=0.5. 


