Completely automated nuclear reactors for long-term operation

PDF Version Also Available for Download.

Description

The authors discuss new types of nuclear fission reactors optimized for the generation of high-temperature heat for exceedingly safe, economic, and long-duration electricity production in large, long-lived central power stations. These reactors are quite different in design, implementation and operation from conventional light-water-cooled and -moderated reactors (LWRs) currently in widespread use, which were scaled-up from submarine nuclear propulsion reactors. They feature an inexpensive initial fuel loading which lasts the entire 30-year design life of the power-plant. The reactor contains a core comprised of a nuclear ignitor and a nuclear burn-wave propagating region comprised of natural thorium or uranium, a pressure ... continued below

Physical Description

12 p.

Creation Information

Teller, E.; Ishikawa, M. & Wood, L. January 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The authors discuss new types of nuclear fission reactors optimized for the generation of high-temperature heat for exceedingly safe, economic, and long-duration electricity production in large, long-lived central power stations. These reactors are quite different in design, implementation and operation from conventional light-water-cooled and -moderated reactors (LWRs) currently in widespread use, which were scaled-up from submarine nuclear propulsion reactors. They feature an inexpensive initial fuel loading which lasts the entire 30-year design life of the power-plant. The reactor contains a core comprised of a nuclear ignitor and a nuclear burn-wave propagating region comprised of natural thorium or uranium, a pressure shell for coolant transport purposes, and automatic emergency heat-dumping means to obviate concerns regarding loss-of-coolant accidents during the plant`s operational and post-operational life. These reactors are proposed to be situated in suitable environments at {approximately}100 meter depths underground, and their operation is completely automatic, with no moving parts and no human access during or after its operational lifetime, in order to avoid both error and misuse. The power plant`s heat engine and electrical generator subsystems are located above-ground.

Physical Description

12 p.

Notes

INIS; OSTI as DE96010832

Source

  • Joint American Physical Society and the America Association of Physics Teachers Texas meeting, Lubbock, TX (United States), 26-28 Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96010832
  • Report No.: UCRL-JC--122708
  • Report No.: CONF-9510363--1
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 231377
  • Archival Resource Key: ark:/67531/metadc669077

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Feb. 23, 2016, 1:20 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Teller, E.; Ishikawa, M. & Wood, L. Completely automated nuclear reactors for long-term operation, article, January 1, 1996; California. (digital.library.unt.edu/ark:/67531/metadc669077/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.