Evaluation of metal and radionuclide data from neutron activation and acid-digestion-based spectrometry analyses of background soils: Significance in environmental restoration

PDF Version Also Available for Download.

Description

A faster, more cost-effective, and higher-quality data acquisition procedure for natural background-level metals and radionuclides in soils is needed for remedial investigations of contaminated sites. In this project, a total of 120 soil samples were collected from uncontaminated areas on and near the Oak Ridge Reservation. The samples were taken at three different depths and from three different geologic groups to establish background concentrations of metals and radionuclides. The objective of this presentation is to discuss the advantages and disadvantages of neutron activation analysis (NAA) compared with those of acid-digestion-based spectrometry (ADS) methods; the advantages and disadvantages were evaluated from ... continued below

Physical Description

13 p.

Creation Information

Lee, S.Y.; Watkins, D.R.; Jackson, B.L.; Schmoyer, R.L.; Lietzke, D.A.; Burgoa, B.B. et al. December 31, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A faster, more cost-effective, and higher-quality data acquisition procedure for natural background-level metals and radionuclides in soils is needed for remedial investigations of contaminated sites. In this project, a total of 120 soil samples were collected from uncontaminated areas on and near the Oak Ridge Reservation. The samples were taken at three different depths and from three different geologic groups to establish background concentrations of metals and radionuclides. The objective of this presentation is to discuss the advantages and disadvantages of neutron activation analysis (NAA) compared with those of acid-digestion-based spectrometry (ADS) methods; the advantages and disadvantages were evaluated from Al, Sb, As, Cr, Co, Fe, Mg, Mn, Hg, K, Ag, {sup 232}Th, {sup 235}U, {sup 238}U, V, and Zn data. The ADS methods used for this project were inductively coupled plasma (ICP), ICP-mass spectrometry (ICP-MS), and alpha spectrometry. The scatter plots showed that the NAA results for As, Co, Fe, Mn, {sup 232}Th, and {sup 238}U are reasonably correlated with the results from the other analytical methods. Compared to NAA, however, the ADS methods underestimated Al, Cr, Mg, K, V, and Zn. The skew distributions were caused by incomplete dissolution of the analytes during acid digestion of the soil samples. Because of the high detection limits of the spectrometric methods, the NAA results and the ADS results for some elements, including Sb, Hg, and Ag, did not show a definite relationship. The NAA results were highly correlated with the alpha spectrometry results for {sup 232}Th and {sup 238}U but poorly correlated for {sup 235}U, probably because of a larger counting error associated with the lower activity of the isotope. The NAA methods, including the delayed neutron counting method, were far superior techniques for quantifying background levels of radionuclides ({sup 232}Th, {sup 235}U, and {sup 238}U) and metals (Al, Cr, Mg, K, V, and Zn) in soils.

Physical Description

13 p.

Notes

INIS; OSTI as DE96004929

Source

  • 9. international conference on modern trends in activation analysis, Seoul (Korea, Republic of), 24-30 Sep 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96004929
  • Report No.: CONF-9509287--1
  • Grant Number: AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 188566
  • Archival Resource Key: ark:/67531/metadc669029

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Jan. 21, 2016, 8:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lee, S.Y.; Watkins, D.R.; Jackson, B.L.; Schmoyer, R.L.; Lietzke, D.A.; Burgoa, B.B. et al. Evaluation of metal and radionuclide data from neutron activation and acid-digestion-based spectrometry analyses of background soils: Significance in environmental restoration, article, December 31, 1995; Tennessee. (digital.library.unt.edu/ark:/67531/metadc669029/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.