The diffusion of H_2 in hexagonal ice at low temperatures

Herbert L. Strauss and Zhan Chen
Department of Chemistry, University of California, Berkeley, CA 94720-1460

and

C.-K. Loong
Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, IL 60439-4818

The properties of H_2 in water ice are of relevance to questions in fields as diverse as astronomy, and -- as a prototypical hydrophobic solute -- to biology. The diffusion of hydrogen molecules in hexagonal D_2O ice (Ih) in the temperature range of 25 - 60 K was investigated by quasielastic neutron scattering. The observed spectra consist of a narrow elastic peak and a broad quasielastic component. A single-particle diffusion coefficient for H_2 in D_2O ice was obtained and is remarkably high, comparable to the diffusion constant of H_2 in liquid H_2. The H_2 must move through the channels in the hexagonal ice, in contrast to its motion in the hydrogen-bonded fluctuating network in water.

The solubility of H_2 in water at 25°C is about 7.5×10^{-4} M and goes up to about 9.4×10^{-4} M at 0°C. H_2 is not usually thought to form stable solutions with ice at the pressures we consider. However, small amounts of H_2 (and He) -- amounts comparable to that in liquid water -- may dissolve in ice. We make H_2/D_2O ice by dissolving H_2 in heavy water and then freezing...
the ice in situ, and the resulting H$_2$/ice solid is stable at low
temperature, at least for the time of our experiments. Because of
the large neutron incoherent scattering cross section of H (about
80 barns for thermal neutrons), the amount of H$_2$ in the ice is
sufficient to provide a good neutron scattering signal. D$_2$O is
used to achieve a good contrast for the H scattering, since the
scattering cross section of deuterium is more than 10 times
smaller than that of hydrogen and is mostly coherent. We study
the diffusive motion of H$_2$ in D$_2$O ice by measuring the
quasielastic scattering and estimating the single-particle
diffusion coefficient of H$_2$. Analysis of the elastic part of the
neutron scattering shows that our ice is hexagonal (Ih) (Fig. 1).

The Raman spectra obtained previously11,12 show J=0 \rightarrow J=2, 1 \rightarrow
3, 2 \rightarrow 4, and 3 \rightarrow 5 rotational transitions. The hydrogen
molecules in water at room temperature and in ice near 0°C thus
rotate in a quantized fashion and the rotation is relatively
free. Our neutron spectra all show the 0 \rightarrow 1 and 1 \rightarrow 0
transitions (except that, for an incident energy of 3.6 meV, the
0 \rightarrow 1 transition is not observable because of the low incident
neutron energy). This shows that the H$_2$ still retains its
quantized rotation, even in 25 K ice. However, this rotational
neutron scattering data has not yet been analyzed in detail.

The neutron scattering from the H$_2$/D$_2$O system consists of
scattering from the H$_2$, from the D$_2$O ice, and from the
interference between the H$_2$ and D$_2$O. Since the solubility of H$_2$
in water/ice is small, the interference term is negligibly small,
and we obtained the neutron spectra of H$_2$ by subtracting off the corresponding D$_2$O reference spectra, which were normalized to account for the different D$_2$O filling of various H$_2$/D$_2$O runs. The corrected scattering, in terms of the scattering function S, was then plotted against the neutron energy transfer, $E = E_0 - E_1$ (where E_0 and E_1 are the neutron incident and final energies, respectively) at constant wavevector Q. The scattering function in general consists of components due to the vibrational, rotational and translation motions of the hydrogen molecules, and for the 3.6 meV spectra the vibrational part (the Debye-Waller factor) over the observed Q range is essentially constant. The observed spectra show quasielastic scattering due to rotational and translational diffusion. Since H$_2$ molecules are quantized rotors with large zero-point energy, the H$_2$ rotational and translational motions are decoupled and we treat the quasielastic spectra as due to "single-particle" diffusion. This gives a scattering function composed of a sharp elastic incoherent scattering factor, E_{ISF}, and a broadened Lorentzian function characterized by a line width Γ.

The observed scattering functions for the 3.6 meV runs were fit to the sum of a Gaussian whose width was resolution limited and a Lorentzian of adjustable width. The fit of all the spectra to this model is satisfactory, as shown in the example of Fig. 2. The widths of the Lorentzian were then plotted vs. Q^2 (Fig. 3). The values of the diffusion coefficients, obtained from a fit of $\Gamma = DQ^2$, are given in Table I. These coefficients are remarkably
high. Fitting the coefficients to the standard Arrhenius form, \(D = D_0 e^{-E_{\text{act}}/kT} \), yields an activation energy, \(E_{\text{act}} \), of about 90 ± 30 K or 0.75 ± 0.25 kJ/mole. The error is mostly due to the uncertainty in accounting for the temperature variation over the large sample cell.

The values of \(D \) and \(E_{\text{act}} \) are compared to the results of other measurements in Table I. The H-atoms were produced in crystalline ice by electron irradiation, and although they diffuse with the ubiquitous coefficient of about 10^{-5} cm^2/sec, they do so near 273 K.\(^{17}\) The activation energy is an order of magnitude larger than that we observed for H\(_2\), and consequently the diffusion coefficient for H is thought to be very low at cryogenic temperatures. The low \(T \) limit of the H diffusion is likely due to tunneling from site to site.\(^{17}\)

Liquid H\(_2\) has a somewhat higher diffusion coefficient than H\(_2\) in ice.\(^{18}\) In Table I, we show the values for \(D \) extrapolated to 25 K, and at that temperature \(D \) for the liquid H\(_2\) is one order of magnitude higher than for H\(_2\) in ice. The activation energy for liquid H\(_2\) is the same order of magnitude as that for the H\(_2\) in ice. We also include the diffusion for H\(_2\) (gas) at a pressure approximately that of our sample (\(-138\) bar).\(^{19}\) The gas values are a bit higher than the liquid values and for a hard-sphere ideal gas should go up as the square root of the temperature.

The diffusion of H\(_2\) in NaA zeolite\(^{20}\) is much slower than the diffusion in ice and shows a considerably higher activation
energy. The zeolite framework consists of cages linked in a three-dimensional array. The cages and the openings in them are bigger than those in ice. However, the diffusion seems to be liquid-like with both intra-cage and inter-cage jumps. The relatively slow diffusion and the high activation energy is presumably due to the much stronger interaction of the \(\text{H}_2 \) with the charged zeolite framework than with the neutral ice framework.

The activation energy of \(\text{H} \) in ice has been modeled using an atom-atom potential and the structure of ice \(\text{Ih} \). The model yields an energy barrier of about 100 meV (9.6 kJ/mole) for a one-dimensional motion of \(\text{H}_2 \) along the c-axis. The atom moves from one cavity to another through a bottleneck at the position of the barrier. The hydrogen molecule has about the same polarizability (0.79 Å) as the free hydrogen atom (0.67 Å) and the molecule is surely no smaller than the atom. According to a simple model using atom-atom potentials and ignoring rotational diffusion, we would expect the hydrogen molecule to have an activation energy for cavity-to-cavity motion that is no smaller than that for the atoms. Our result is quite contrary to this expectation: the hydrogen molecules move remarkably freely through the ice structure. Probably the stronger interaction of the \(\text{H} \) atoms with the ice is due to the interactions possible for this open-shell atom (valence-type interaction with the non-bonded electrons of the oxygen), which are not possible for the closed-shell \(\text{H}_2 \) molecule. The isolated atom polarizability is not, apparently, a valid measure of the strength of its
interactions. We note, however, that the details of even ice Ih structure, particularly the arrangements and dynamics of the hydrogen bonds, are still uncertain.23

The vibrational spectrum of H\textsubscript{2} in ice has been reported from an astronomical infrared source.2 This ice is presumably amorphous and may contain other solutes. The interstellar ice seems to be in the same temperature range as we have investigated, and laboratory studies2 suggest that the H\textsubscript{2}-amorphous ice system is stable below about 70 K. Amorphous ice is thought to possess a high surface area and the H\textsubscript{2} may be mainly on the surface or in micropores.1,2,24 The H\textsubscript{2} is adsorbed at cracks or other potential energy low points, and diffusion may be controlled more by the topology of these than by the motion through the channels that occur in crystalline ice.
<table>
<thead>
<tr>
<th>T (K)</th>
<th>D (cm²/sec)</th>
<th>Eᵥact (kJ/mole)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂ in D₂O ice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.3 x 10⁻⁵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>7.9 x 10⁻⁵</td>
<td>0.75 ± 0.25</td>
<td>This work</td>
</tr>
<tr>
<td>60</td>
<td>9.5 x 10⁻⁵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H in H₂O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>273</td>
<td>1.9 x 10⁻⁵</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>20</td>
<td>~10⁻¹⁶</td>
<td></td>
<td>From tunneling model</td>
</tr>
<tr>
<td>H₂ in H₂ liquid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6.2 x 10⁻⁵</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.4 x 10⁻⁵</td>
<td></td>
<td>Extrapolated</td>
</tr>
<tr>
<td>H₂ in H₂ (gas)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>30 x 10⁻⁵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>60 x 10⁻⁵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂ in NaA Zeolite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>5 x 10⁻⁵</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
References

the 12th Meeting of the International Collaboration on Advanced Neutron Sources, Rutherford Appleton Laboratory, U.K.

Acknowledgments

D. M. Bartels, C. Chiladakis and the College of Chemistry shop, L. Donley, J. P. Hammonds, and R. J. Myers provided invaluable advice and help for these experiments. We thank the National Science Foundation for support. Work performed at Argonne National Laboratory is supported by the U.S. DOE-BES, under contract No. W-31-109-ENG-38.
Figure Captions

Fig. 1. The low-resolution neutron diffraction pattern of D₂O ice obtained by extracting the elastic scattering of a 30 meV neutron scattering run by integrating the energy transfers from -4 to +4 meV. The background scattering due to the aluminum cell has been subtracted. The tick marks indicate the positions of the Bragg reflections for hexagonal ice Ih. At low pressures, ice can only form ice Ih (the triple point ice I - ice II - ice III is at about 2000 bar, much higher than the pressures reached here) or vitreous (amorphous) ice. Cubic ice is also a possibility, but it is formed from vitreous ice and is unlikely to occur in our experiments. The observed diffraction pattern matches that of ice Ih. In particular, we see discrete peaks up to the (310) reflection (with an atomic spacing d = 1.08 Å). In contrast, vitreous ice shows very broad peaks at 3.71 Å and d = 2.15. It is more difficult to prove that we have no cubic ice. Cubic ice has an x-ray line at d = 1.59 Å, which is not seen for ice-Ih and is not in our diffraction patterns. Our conclusion is that we do have hexagonal ice. The water (D₂O) was held in a sample cell made of 7075-T6, heat-treated aluminum. The aluminum flat block (15 cm x 10 cm x 1 cm) was drilled out to form space for the water while leaving aluminum posts of sufficient strength. The cell was mounted to the cold block of a closed cycle helium refrigerator and filled with water. Then H₂ gas was bubbled through under tank pressure (nominally 2000 psi
or 138 bar) until enough H₂ dissolved. The valving was similar to that we used for our previous experiments on the Raman spectroscopy of H₂ in water and ice,¹¹,¹² except that the H₂ gas was simply passed through once without recirculation. The water was frozen slowly while still under H₂ pressure.

Fig. 2. The spectrum of H₂ in D₂O ice at 25 K with a mean wave vector Q = 0.74 Å⁻¹. The spectrum was taken with an incident energy of 3.6 meV. The solid line corresponds to a fit of the data by the sum of resolution-limited Gaussian (dotted line), a Lorentzian (dashed line), and a linear background. The neutron scattering experiments were performed using the LRMECS chopper spectrometer at the Intense Pulsed Neutron Source (IPNS) of Argonne National Laboratory. The sample cell was oriented at a 45° angle with the incident neutron beam (of dimension 10 cm x 5 cm) so that for all detector angles (-10° to 120°) the beam did not traverse more than 1.5 cm of material. Such a geometry minimizes multiple scattering of neutrons. Spectra were taken at 3.6, 30, 90, and 800 meV incident energies, for H₂/D₂O ice, D₂O ice (frozen under either Ar or He pressure), the empty cell, and a vanadium standard. The D₂O ice and empty cell runs were used for background correction of the spectra and the vanadium run for intensity normalization and resolution assessment. At E₀ = 3.6 meV, the energy resolution (FWHM) at the elastic position, estimated from a vanadium run at room temperature, varies from 0.19 to 0.26 meV over a range of wavevectors Q from 0.3 to
2.5 Å⁻¹. The slightly skewed line shape for the E ≤ 1 mev data is due to instrumental effects. Although the sample temperature was controlled to within 1 K during a run, the thermocouples attached to the top and bottom of the sample cell indicated a temperature spread of up to 8 K. The temperatures (25, 43 and 60 K) given here for the 3.6 meV runs represent the mean temperature recorded by the thermocouples.

Fig. 3. The width of the quasielectric component of the neutron scattering plotted against the wave vector, Q, squared for 25 K. The slope of this plot should, in the limit of small Q², give the diffusion coefficient, D = Γ/Q². At high Q², the plot typically deviates from the line due to short range non-diffusive motion. Similar good fits were obtained for the 43 K (Q² = 0.12 - 0.88 Å⁻²) and 60 K (Q² = 0.09 - 1.2 Å⁻²) results. A possible model for the H₂ translational motion postulates diffusion in a sphere (intrasite), followed by motion between spheres (intersite). The scattering from such a system has been calculated. For spheres of fixed radius, r, the plot of the width vs Q², the intrasite diffusion adds to the slope of the ordinary intersite diffusion for values of Qr > π. For values of Qr < π, on the other hand, the model predicts an additional constant contribution to the width vs. Q² plot, i.e., a resulting plot that does not go through the origin. We have r = 1.8 Å (i.e., one-quarter of the c-spacing), so that our data is for Qr < π. Since our plots go through the origin, we have no intrasite diffusion.
LRMECS
$E_0 = 30$ meV
D_2O ice

Fig. 1
Fig. 2
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Fig. 3

H₂ in D₂O ice
25 K

Lorentzian Half Width Γ (meV)

Q² (Å⁻²)