Modification of LiCl-LiBr-KBr electrolyte for LiAl/FeS{sub 2} batteries

PDF Version Also Available for Download.

Description

The bipolar LiAl/FeS{sub 2} battery is being developed to achieve the high performance and long cycle life needed for electric vehicle application. The molten-salt (400 to 440 C operation) electrolyte composition for this battery has evolved to support these objectives. An earlier change to LiCl-LiBr-KBr electrolyte is responsible for significantly increased cycle life (up to 1,000 cycles). Recent electrolyte modification has significantly improved cell performance; approximately 50% increased power, with increased high rate capacity utilization. Results are based on power-demanding EV driving profile test at 600 W/kg. The effects of adding small amounts (1--5 mol%) of LiF and LiI to ... continued below

Physical Description

14 p.

Creation Information

Kaun, T.D.; Jansen, A.N.; Henriksen, G.L. & Vissers, D.R. June 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 49 times , with 6 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The bipolar LiAl/FeS{sub 2} battery is being developed to achieve the high performance and long cycle life needed for electric vehicle application. The molten-salt (400 to 440 C operation) electrolyte composition for this battery has evolved to support these objectives. An earlier change to LiCl-LiBr-KBr electrolyte is responsible for significantly increased cycle life (up to 1,000 cycles). Recent electrolyte modification has significantly improved cell performance; approximately 50% increased power, with increased high rate capacity utilization. Results are based on power-demanding EV driving profile test at 600 W/kg. The effects of adding small amounts (1--5 mol%) of LiF and LiI to LiCl-LiBr-KBr electrolyte are discussed. By cyclic voltammetry, the modified electrolytes exhibit improved FeS{sub 2} electrochemistry. Electrolyte conductivity is little changed, but high current density (200 mA/cm{sup 2}) performance improved by approximately 50%. A specific feature of the LiI addition is an enhanced cell overcharge tolerance rate from 2.5 to 5 mA/cm{sup 2}. The rate of overcharge tolerance is related to electrolyte properties and negative electrode lithium activity. As a result, the charge balancing of a bipolar battery configuration with molten-salt electrolyte is improved to accept greater cell-to-cell deviations.

Physical Description

14 p.

Notes

OSTI as DE96011116

Source

  • 189. meeting of the Electrochemical Society (ECS), Los Angeles, CA (United States), 5-10 May 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96011116
  • Report No.: ANL/CMT/CP--88857
  • Report No.: CONF-960502--15
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 244578
  • Archival Resource Key: ark:/67531/metadc668888

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Dec. 18, 2015, 3:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 1
Past 30 days: 6
Total Uses: 49

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kaun, T.D.; Jansen, A.N.; Henriksen, G.L. & Vissers, D.R. Modification of LiCl-LiBr-KBr electrolyte for LiAl/FeS{sub 2} batteries, article, June 1, 1996; Illinois. (digital.library.unt.edu/ark:/67531/metadc668888/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.