Compatibility of gas turbine materials with steam cooling

PDF Version Also Available for Download.

Description

Objective is to investigate performance of gas turbine materials in steam environment and evaluate remedial measures for alleviating the severity of the problem. Three superalloys commonly used in gas turbines were exposed to 3 steam environments containing different impurity levels for 2 to 6 months. Results: Cr2O3-forming alloys containing 1-4% Al such as IN 738 are susceptible to heavy internal oxidation of Al. High Al (>5%) alloys in which continuous Al2O3 scale can be formed, may not be susceptible to such attack. Deposition of salts from steam will accentuate hot corrosion problems. Alloys with higher Cr content such as X-45 ... continued below

Physical Description

15 p.

Creation Information

Desai, V.; Tamboli, D. & Patel, Y. December 31, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Objective is to investigate performance of gas turbine materials in steam environment and evaluate remedial measures for alleviating the severity of the problem. Three superalloys commonly used in gas turbines were exposed to 3 steam environments containing different impurity levels for 2 to 6 months. Results: Cr2O3-forming alloys containing 1-4% Al such as IN 738 are susceptible to heavy internal oxidation of Al. High Al (>5%) alloys in which continuous Al2O3 scale can be formed, may not be susceptible to such attack. Deposition of salts from steam will accentuate hot corrosion problems. Alloys with higher Cr content such as X-45 are generally less prone to hot corrosion. The greater damage observed in IN 617 make this alloy less attractive for gas turbines with steam cooling. Electrochemical impedance spectroscopy is a good nondestructive method to evaluate microstructural damage.

Physical Description

15 p.

Notes

OSTI as DE96008926

Source

  • Advanced turbine systems (ATS) annual review, Morgantown, WV (United States), 17-18 Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96008926
  • Report No.: DOE/MC/29061--96/C0669
  • Report No.: CONF-9510109--17
  • Grant Number: FC21-92MC29061
  • Office of Scientific & Technical Information Report Number: 219229
  • Archival Resource Key: ark:/67531/metadc668725

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Nov. 30, 2015, 6:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Desai, V.; Tamboli, D. & Patel, Y. Compatibility of gas turbine materials with steam cooling, article, December 31, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc668725/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.