Issues related to criticality safety analysis for burnup credit applications

PDF Version Also Available for Download.

Description

Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh fuel loading assumption. Parametric analyses are required to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models are evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. This paper discusses the results of studies to determine the effect of two important modeling assumptions on the criticality analysis of pressurized-water reactor (PWR) spent fuel: (1) the effect of assumed burnup history (i.e., specific ... continued below

Physical Description

15 p.

Creation Information

DeHart, M.D. & Parks, C.V. December 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh fuel loading assumption. Parametric analyses are required to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models are evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. This paper discusses the results of studies to determine the effect of two important modeling assumptions on the criticality analysis of pressurized-water reactor (PWR) spent fuel: (1) the effect of assumed burnup history (i.e., specific power during and time-dependent variations in operational power) during depletion calculations, and (2) the effect of axial burnup distributions on the neutron multiplication factor calculated for a three-dimensional (3-D) conceptual cask design.

Physical Description

15 p.

Notes

INIS; OSTI as DE96003018

Source

  • 5. international conference on nuclear criticality safety, Albuquerque, NM (United States), 17-22 Sep 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96003018
  • Report No.: CONF-9509100--35
  • Grant Number: AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 187231
  • Archival Resource Key: ark:/67531/metadc668537

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Jan. 22, 2016, 11:45 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

DeHart, M.D. & Parks, C.V. Issues related to criticality safety analysis for burnup credit applications, article, December 1, 1995; Tennessee. (digital.library.unt.edu/ark:/67531/metadc668537/: accessed September 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.