Thin-film perovskites-ferroelectric materials for integrated optics

PDF Version Also Available for Download.

Description

Optical guided wave (OGW) devices, based on LiNbO{sub 3} or GaAs. are commercially available products with established markets and applications. While LiNbO{sub 3} presently dominates the commercial applications, there are several drivers for the development of improved electro-optic (EO) materials. If the appropriate crystal quality could be obtained for thin-film BaTiO{sub 3} supported on MgO for example, or for an integrated BaTiO{sub 3}/Mg0 structure on silicon or GaAs, then the optimum OGW device structure might be realized. We report on our results for the growth of optical quality, epitaxial BaTiO{sub 3} and SrTiO{sub 3} on single-crystal MgO substrates using source ... continued below

Physical Description

6 p.

Creation Information

Walker, F. J. & McKee, R. A. December 31, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Optical guided wave (OGW) devices, based on LiNbO{sub 3} or GaAs. are commercially available products with established markets and applications. While LiNbO{sub 3} presently dominates the commercial applications, there are several drivers for the development of improved electro-optic (EO) materials. If the appropriate crystal quality could be obtained for thin-film BaTiO{sub 3} supported on MgO for example, or for an integrated BaTiO{sub 3}/Mg0 structure on silicon or GaAs, then the optimum OGW device structure might be realized. We report on our results for the growth of optical quality, epitaxial BaTiO{sub 3} and SrTiO{sub 3} on single-crystal MgO substrates using source shuttering molecular beam epitaxy (MBE) techniques. We also discuss how these materials can be integrated onto silicon. Our MBE studies show that, for this important class of perovskite oxides, heteroepitaxy between the perovskites and alkaline earth oxides is dominated by interfacial electrostatics at the first atomic layers. We have been able to demonstrate that a layer-by-layer energy minimization associated with interfacial electrostatics leads to the growth of high quality thin films of these materials. We have fabricated waveguides from these materials, and the optical clarity and loss coefficients have been characterized and found to be comparable to in-diffused waveguide structures typically represented by Ti drifted LiNbO{sub 3}.

Physical Description

6 p.

Notes

OSTI as DE96005970

Source

  • Annual meeting and exhibition of the Minerals, Metals and Materials Society (TMS), Las Vegas, NV (United States), 12-16 Feb 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96005970
  • Report No.: CONF-950201--22
  • Grant Number: AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 198865
  • Archival Resource Key: ark:/67531/metadc668427

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • June 23, 2016, 12:24 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Walker, F. J. & McKee, R. A. Thin-film perovskites-ferroelectric materials for integrated optics, article, December 31, 1995; Tennessee. (digital.library.unt.edu/ark:/67531/metadc668427/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.