Natural convection in a uniformly heated pool

PDF Version Also Available for Download.

Description

In the event of a core meltdown accident, to prevent reactor vessel failure from molten corium relocation to the reactor vessel lower head, the establishment of a coolable configuration has been proposed by flooding with water the reactor cavity. In Reference 3, it was shown that for the heavy-water new production reactor (NPW-HWR) design, this strategy, e.g., the rejection of decay heat to a containment decay heat removal system by boiling of water in the reactor cavity, could keep the reactor vessel temperature below failure limits. The analysis of Ref. 3 was performed with the computer code COMMIX-1AR/P, and showed ... continued below

Physical Description

6 p.

Creation Information

Tzanos, C.P. May 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In the event of a core meltdown accident, to prevent reactor vessel failure from molten corium relocation to the reactor vessel lower head, the establishment of a coolable configuration has been proposed by flooding with water the reactor cavity. In Reference 3, it was shown that for the heavy-water new production reactor (NPW-HWR) design, this strategy, e.g., the rejection of decay heat to a containment decay heat removal system by boiling of water in the reactor cavity, could keep the reactor vessel temperature below failure limits. The analysis of Ref. 3 was performed with the computer code COMMIX-1AR/P, and showed that natural convection in the molten-corium pool was the dominant mechanism of heat transfer from the pool to the wall of the reactor vessel lower head. To determine whether COMMIX adequately predicts natural convection in a pool heated by a uniform heat source, in Ref. 4, the experiments of free convection in a semicircular cavity of Jahn and Reineke were analyzed with COMMIX. It was found that the Nusselt (Nu) number predicted by COMMIX was within the spread of the experimental measurements. In the COMMIX analysis of Ref. 4, the semicircular cavity was treated as symmetric. The objective of the work presented in this paper was to extend the COMMIX validation analysis of Ref. 4 by removing the assumption of symmetry and expanding the analysis up to the highest Rayleigh (Ra) number that leads to a steady state. In conclusion, this work shows that the numerical predictions of natural convection in an internally heated pool bounded by a curved bottom are in reasonably good agreement with experimental measurements.

Physical Description

6 p.

Notes

INIS; OSTI as DE96010796

Source

  • Annual meeting of the American Nuclear Society (ANS), Reno, NV (United States), 16-20 Jun 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96010796
  • Report No.: ANL/RE/CP--89238
  • Report No.: CONF-9606116--38
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 231701
  • Archival Resource Key: ark:/67531/metadc668415

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Dec. 15, 2015, 6:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Tzanos, C.P. Natural convection in a uniformly heated pool, article, May 1, 1996; Illinois. (digital.library.unt.edu/ark:/67531/metadc668415/: accessed June 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.