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Abstract 
The theoretical background for the finite element computer program, MPSalsa Version 1.5, is 

presented in detail. MPSalsa is designed to solve laminar or turbulent, low Mach number, two- or 
three-dimensional incompressible and variable density reacting fluid flows on massively parallel 
computers, using a Petrov-Galerkin finite element.formulation. The code has the capability to 
solve coupled fluid flow (with auxiliary turbulence equations), heat transport, multicomponent 
species transport, and finite-rate chemical reactions, and to solve coupled multiple Poisson or 
advection-diffusion-reaction equations. The program employs the CHEMKn\J library to provide a 
rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occur- 
ring in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE 
CHEMKJN, respectively. The code employs unstructured meshes, using the EXODUS 11 finite 
element database suite of programs for its input and output files. MPSalsa solves both transient 
and steady flows by using fully implicit time integration, an inexact Newton method and iterative 
solvers based on preconditioned Krylov methods as implemented in the Aztec. solver library. 
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1. Introduction 

The theoretical development and numerical procedures for the finite element computer pro- 
gram, MPSalsa, are presented in detail in this document. A companion user’s manual provides de- 
tails on using MPSalsa for specific applications along with a number of example problems [ l]. Em- 
ploying unstructured meshes on massively parallel (MP) computers, MPSalsa is designed to solve 
two- or three-dimensional problems which exhibit coupled laminar or turbulent fluid flow, heat 
transport; species transport, and chemical reactions. The modeling equations defined in MPSalsa 
for fluid flow and mass conservation are the momentum transport and the total mass continuity 
equation for incompressible or variable density Newtonian fluids wavier-Stokes equations). The 
heat transport equation, auxiliary turbulence equations, and an arbitrary number of species.trans- 
port-reaction equations couple strongly with each other through chemical reaction source terms 
and with the fluid flow equations through property variation and body force terms. 

Several different turbulence models are currently implemented in MPSalsa. For modeling the 
Reynolds averaged Navier-stokes equations (Le. the “RANS7 turbulence modeling approach) both 
a standard k-E type model (with several low Reynolds number modeling options) and the Spalart- 
AUmaras one-equation turbulent viscosity model [2] are available. For modeling the spatially fil- 
tered Navier-stokes equations (Le. a large eddy simulation or LES modeling approach) a basic 
Smagorinsky subgrid model and a one-equation subgrid kinetic energy model are available. 

The program uses the CHEMKIN suite of library routines to provide a rigorous treatment of 
ideal-gas multicomponent transport, including the effects of thermal diffusion [3]. The mixture-av- 
eraged diffusion approximation is available in addition to the computationally-expensive Dixon- 
Lewis formulation. Chemical reactions occurring in the gas phase and on surfaces are also treated 
by calls to CHEMKIN [4] and SURFACE CJiEMKlN [SI, respectively. Because of this, MPSalsa 
can handle varying numbers and types of chemical reactions and species in a robust manner. For 
example, the code can handle the complex temperature and pressure dependence predicted for un- 
imolecular reactions (using the Troe parameterization), important for chemical vapor deposition 
(CVD) systems, which typically run at sub-atmospheric pressures. Surface site fractions and bulk- 
phase mole fractions are defined on all reacting surfaces using the SURFACE CHEMKIN pack- 
age. Through this method, complex Langmuir-Hinshelwood-type and precursor adsorption surface 
mechanisms, characteristic of many real CVD and catalysis surface systems, can be incorporated 
into the reacting flow analysis code. The capability of modeling simple dilute species transport and 
reaction, without the need of linking to CHEMKIN, is also included in MPSalsa. The turbulent 
transport of species is modeled with a constant Schmidt number approximation when doing RANS 
type turbulent closure. For LES type modeling, the linear eddy model (LEM) of Kerstein [6] will 
soon be available (work is still in progress). 

The user can extend the models past what has been pre-defined within MPSalsa [ 13. Functions 
can be written to represent additional source terms, special boundary conditions, and variations in 
physical properties, any of which can be dependent on the current solution, position, or time. 

The discretization method is a Petrov-Galerkin finite element method (PGFEM) with pressure 
stabilization. Both steady and transient flows may be analyzed. The time integration methods in- 
clude true transient, pseudo-transient, and steady implicit solvers. The overall solution is obtained 
by fully-coupled,’implicit, parallel iterative solvers based on preconditioned nonsymmetric Krylov 
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subspace methods. Presently, MPSalsa can simulate low Mach number (< 0.3) flows, where an al- 
gorithm employing an implicit coupling between the pressure and velocity field is required. 

MPSalsa employs unstructured grids, using the EXODUS II finite element database suite of 
programs for its input and output files [7, 8,9]. Therefore, it can be used in conjunction with the 
CUBIT mesh generation package [7], as well as other mesh generation packages that support the 
EXODUS II standard. A number of pre- and post-processing routines for the EXODUS II database 
can be used. Currently, two- and three-dimensional grids with Cartesian coordinates are supported. 

‘MPSalsa includes both first- and second-order predictor-corrector time integration schemes; 
these methods use explicit predictors and fully jmplicit corrector methods based on forwardhack- 
ward Euler and Adams BashforWTrapezoidal rule methods, respectively. At each time step, a pre- 
diction of the solution and its time derivative are generated from the appropriate time integration 
scheme. This prediction is used as the initial guess for the fully coupled non-linear problem gener- 
ated at each time step. The non-linear problem is solved using an inexact Newton method. At each 
step of the non-linear problem, a “residual vector” and a “Jacobian matrix” are generated, based 
on the current solution approximation. The resulting linear problem is solved using iterative meth- 
ods based on preconditioned Krylov-subspace techniques. The accuracy or convergence criteria 
for solving the linear subproblem is controlled by the inexact Newton algorithm. This algorithm 
selects the convergence criteria based on how well the linear subproblems are approximating the 
underlying nonlinear problem. As is the case with most adaptive ODE integration codes, the accu- 
racy to which the non-linear problem is solved.is based on a time-step truncation error estimate. 
The adaptive time integration method uses a user-specified error tolerance and a time-truncation 
error estimate from the compatible-order predictor/corrector methods to automatically select time 
step sizes to control time step truncation error at a user-specified tolerance. 

From its inception, MPSalsa has been designed for distributed memory MIMD computers 
with hundreds to thousands of processors. It also runs on traditional serial workstations and net- 
works of serial workstations. Interprocessor data communication and global.synchronization are 
accomplished by a small number of message passing routines. These routines have been ported to 
many different message passing protocols, including the MPI standard and the native nCUBE and 
Intel Paragon protocols. To achieve efficient parallel execution, the unstructured finite element 
mesh is partitioned or load-balanced in a preprocessing step. Here, each processor is assigned 
nodes from the mesh such that the computational load is balanced and the total amount of informa- 
tion communicated between neighboring processors is minimized. Each processor is then respon- 
sible for calculating updates for all the unknowns at each of its assigned FE nodes. Each processor 
also stores and performs operations on the rows in the fully-summed, distributed matrix associated 
with these unknowns. Along processor subdomain boundaries, replicated FE unknowns, called 
“ghost  unknown^," are stored and updated through interprocessor communication. These ghost un- 
knowns, assigned to neighboring processors, are quantities needed for the local residual calculation 
and matrix-vector multiplication on a processor. Interprocessor communication occurs for each 
step of the iterative solution of the linear system as well as for each outer step in the non-linear and 
time-transient algorithms. This communication constitutes the major unstructured interprocessor 
communication cost in the program, and its algorithm has been extensively optimized within MP- 
Salsa [lo]. 

Solution output from the program is achieved through several means. Output can be written 
to either a standard serial EXODUS file format [S, 91 or a “parallel extension” of the EXODUS file 
format [ 113. This extension consists of writing an individual standard serial EXODUS file for each 



processor with an extra array that maps the local node numbering scheme on an individual proces- 
sor to the global node numbering scheme. The format can be used on both MP computers, such as 
the Intel Paragon, and distributed computing systems, such as groups of workstations. This parallel 
I/O capability can be used with today’s primitive parallel UO facilities with nearly linear speedup. 

This report serves as an introduction to MpSalsa. A companion user’s manual contains a de- 
tailed description of the input and solution options, as well as several example problems that have 
been solved by MPSalsa [l]. The target problem classes of MPSalsa are discussed in Section 2, 
along with the currently supported material types and equations of state. Section 3 introduces the 
governing transport-reaction equations. Special sections on the calculation of the multicomponent 
diffusional fluxes and gas-phase reactions, as well as turbulence models are included as well. The 
treatment of surface species and surface reaction source terms is also discussed. Subsection 3.9 
contains a summary of the bulk transport equations solved within the code. Section 4 contains a 
general discussion of the implementation of boundary conditions within MPSalsa where boundary 
conditions specific to each equation are introduced. In Section 5, the finite element implementation 
of the transport-reaction equations, the supported interpolation functions, quadrature rules, and 
methodology for calculating surface integrals are introduced. The matrix equations are also pre- 
sented to display the essential form of the system of coupled equations. Terms included and ex- 
cluded from the Jacobian matrix are delineated in Appendix C. Section 6 contains the solution 
methodology at the algorithm level. The parallel implementation of the code is described, and the 
nonlinear solver and the linear system solvers, along with their respective convergence criteria, are 
discussed. The algorithmic details of the Aztec library of Krylov solvers and preconditioners are 
left to companion documents [12]. 
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2. Problem Types and Equations of State 

2.1 Problem Types 

MPSalsa is designed to solve the governing transport-reaction equations for momentum, total 
mass, thermal energy, species, and auxiliary turbulence quantities. In addition, MPSalsa allows the 
user to solve a reasonably general set of coupled transport-reaction equations by specification of 
general transport coefficients and source terms. The scope of the problem types that a program can 
handle is determined, in part, by the discretization scheme and solution method. MPSalsa employs 
a highly coupled approach to the solution of its equation set, by storing all cross terms in the Jaco- 
bian. The fully-summed distributed Jacobian is stored so that highly effective general algebraic 
preconditioners such as ILU with partial fill-in and blockILU factorizations may be used to reduce 
the total number of iterations in the linear solver. Thus, MPSalsa is most effective on highly cou- 
pled problems that require an implicit solution technique. It is less efficient on problems that can 
be solved with explicit or semi-implicit solution techniques, such as high Mach number flows or 
weMy coupled systems. Additionally, the filtering of the density by eliminating the hydrodynamic 
pressure dependence limits the problem classes MPSalsa can currently handle to low Mach number 
flows. However, within these bounds, the transport-reaction systems and geometric complexity 
that MPSalsa can handle are quite general. 

The determination of which equations are solved, as well as which operators are included; is 
done by specifying the “problem type.” This also determines what types of unknowns are included 
in the solution vector. Table 2-1 shows the available options for the problem type. As the table 
points out, diffusion operators are always included, while inclusion of the convection operator de- 
pends on the particular problem type. Single, general PDEs that don’t fall into any of the categories 
in Table 2-1 may be handled either with the energy equatiodtemperature unknown or the species 
conservation/mass fraction unknown. Systems of general PDEs are handled with the mass species 
transport equations and can optionally be coupled to the momentum, thermal energy and total mass 
equations. Each problem type has a default setting for whether the equations are linear or non-lin- 
ear. MPSalsa contains logic for the efficient handling of both cases. The default linearity setting 
can be overridden as well. 

For heterogeneous or multi-physics problem types, different domains with different material 
types, such as a solid and an ideal gas, are used. A varying number of transport equations are then 
solved on each domain. While this type of problem has not been fully implemented in MPSalsa, 
the underlying data structures are in place. In particular, the matrix storage format, Variable Block 
Row (VBR) sparse matrix format [ 131, allows for a different number of equations to be solved for 
per node. 

2.2 Material Properties 

The assignment of material properties starts with designating each region, specified by EXO- 
DUS II element blocks, with a “material model.” Material models are broadly classified within 



MPSalsa as belonging to a “material type” which are listed in Table 2-2. The material type is used 
extensively within the code for conditional evaluation of equations of state, transport property 
computations and source terms. 

When a CHEMKIN material type is defined in a problem, MPSalsa reads the CHEMKIN bi- 
nary work arrays produced by CHEMKIN preprocessors. Details of this process can be found in 
the MPSalsa User’s Guide [ 13. From these work arrays, MPSalsa obtains the number of gas-phase 
species, the number of surface phases and surface-phase site fractions, and the number of bulk 
mole fractions. All gas-phase transport properties are obtained from the TRANLZB library [26], 
which evaluates gas-phase multicomponent transport properties. The ideal gas equation of state 
given by Eqn. 1 is used to yield expressions for the density, p . 

! 
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Material Type Description 
CHEMKIN 

NEWTONIAN 

BOUSSINESQ 

SOLID 

j = 1  

Ng is the number of gas phase species, Y j  is the mass fraction of theJ’h species, Xi is the mole 
fraction of thej& species, and W j  is the molecular weight of the]& species. Po is the thermody- 
namic pressure. 

The CHEMKIN material type assigns a “special species label” to one of the species. The con- 
servation equation for that species is replaced by the condition that the sum of the mass fractions 
must equal one: 

Ideal Gas - Use the ideal gas mixture equation of state, and calcu- 
late transport properties and reaction rates via CHEMKTN. 

Newtonian fluid, i.e., has aNewtonian stress tensor formulation. 
The default is to use constant fluid and transport properties. 

Boussinesq fluid, i.e., a Newtonian fluid with a constaut thermal 
expansion coefficient. Density varies only in the body force term. 

Bulk solid with isotropic transport properties 

X Y p  1. 

NNEWTONIAN 

ANIsoTRoPIc~soLID 

k = l  

Non-newtonian fluid (not yet implemented) 

Material that has an anisotropic thermal conductivity and species 
diffusivities (not yet fully implemented). 

The caloric equation of state for an ideal gas mixture is used for CHEMKIN materials. In this 
model, h, the specific enthalpy of the mixture, does not depend on the total pressure. Eqn. 3 pro- 
vides the expression for the specific enthalpy in terms of the partial specific enthalpies for each 
species and the mass fractions. Since an ideal solution is assumed, the partial specific enthalpies 
are equal to the pure specific enthalpies of each species in its reference state. 

h = i j ( T ) Y j  
j = l  

T 

AH;, j(To) is the heat of formation of thejth species in its standard state and at the common refer- 
ence temperature (which for CHEMKIN is To = 298.15K). The standard state for gases corre- 
sponds to an ideal, pure gas state at 1 atm. Thermodynamic information for the CHEMKIN mate- 
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rial type is obtained from the CHEMKIN thermodynamics data base or the CJEMKIN input file. 
The calculations in Eqn. 3 are carried out within CHEMKIN. tp, j ,  the specific heat at constant 
pressure for speciesj, is a polynomial function of temperature. 

In the NEWTONIAN material type, all transport properties, as well as the density, are as- 
sumed constant. This assumption can be overridden by specification of variable properties for a 
number of the transport properties. In the BOUSSINESQ material type, the default is for the den- 
sity to be constant in all equations, except for the body force term in the momentum equations. In 
this term, the density is assumed to be a linear function of the temperature. The density can be ex- 
pressed in terms of the coefficient of volumetric expansion, p. 

Note that for an ideal gas, p = 1 / T ,  and, thus, it is not a constant For the BOUSSINESQ 
material type, p isxupplied by the user. 

The SOLID material type is a placeholder set aside for the future anticipated capability to do 
conjugate heat transfer problems in domains with both solid and fluid regions. These problems 
have regions where the momentum equations are not solved. Currently, this capability is not avail- 
able in MPSalsa. In MPSalsa, both constant and variable thermal transport properties can be used. 
The NNEWT0NIA.N material type is defined for the specification of non-Newtonian constituitive 
equations (as well as the required additional Jacobian entries) for viscosity. 

tions are desired but the CHEMKIN subroutine library for mixtures of ideal gases is not to be used. 
The default for these non-CHEMKIN materials is to NOT enforce Eqn. 2. However, this default 
can be overridden. The lack of Eqn. 2 represents the situation where all species transport equations 
represent only dilute components of phases. The majority component of a phase is not represented 
by a species equation. 

For all equation types, there is a capability in MPSalsa for including both volumetric and sur- 
face source terms in the residuals and, just as importantly for stiff terms, their Jacobian contribu- 
tions in the matrix used to relax the equations. Volumetric source terms are specified as part of the 
materials model using either built-in or user-specified functions. In contrast, surface source terms 
are specified as surface boundary conditions. They are applied by integrating over surfaces defined 
in the finite element model. These boundary conditions can also be user-specified functions or 
built-in functions representing well-known cases, such as those that correspond to convective or 
radiative heat transfer and sticking coefficient reactions. For boundary conditions at surfaces where 
deposition or etching of bulk phases occurs, SURFACE CHEMKIN is used to describe the pro- 
cess’ kinetics and yield values for surface fluxes of gas-phase species. The capability for solving 
Stefan flow problems, i.e., problems that have a net normal mass flux at the surface that depends 
on the surface reaction rate, is built into this “reacting surface” boundary condition. 

The NEWTONIAN, BOUSSINESQ, or SOLID material types can be used if species equa- 
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2.3 Units Within the Program 

Non-dimensionalization of the equations is not done within MPSalsa. Except when 
CISEMKIN is used, no units are apriori specified within the program. C H E m  produces quan- 
tities such as transport properties, densities, pressure, energy, and species rates of production in 
terms of the CGS units system, i.e., gm, cm, sec, mole, and Kelvin. Therefore, whenever the 
CHEMKIN material type is used, the user inputs to the program --including boundary condition 
values - should also be in CGS units. The specification of the thermodynamic pressure is in atmo- 
spheres and the default units for activation energies for gas and surface reaction rates are in cal 
mole-’ for the CHEMKIN material type. When a material type other than CHEMKIN is being 
used, the user must specify a constant set of units. 

Understanding the behavior of a system as.a function of non-dimensional numbers, such as 
the Reynolds number or Grashof number, is a powerful tool. However, this must be carried out by 
the user indirectly. One way is through use of the continuation routine, where the user can often 
associate the continuation parameter with a dimensionless group. Another way, which can be seen 
by comparing the dimensional and non-dimensional formulations of the equations and boundary 
conditions, is to choose the physical properties such that a single property will represent a dimen- 
sionless group; e.g., by setting all other properties to one and using the appropriate domain size and 
boundary conditions, the gravity unknown will be equivalent to the Rayleigh number. An example 
of a non-dimensionalization of the equations is provided in the MPSalsa user’s manual [l]. 

. 

2.4 Exact Solutions 

MPSalsa is a large code. The use of test problems with known, exact solutions was found to 
be essential in verifying the code. Much of the code can be checked by comparing numericilly de- 
rived solutions against exact solutions, and analyzing mesh convergence of numerical solutions. 
This includes all of the parallelization aspects of the code as well as the implementation of the EX- 
ODUS finite element database on multiple processors. For instance, an exact solution to the time- 
dependent Navier-Stokes equations has been implemented[ 151. There are, however, cases where 
exact solutions are not available to check the validity of the code. Real gases with complicated 
transport properties are one instance. For these situations, the code was checked against other nu- 
merical codes. Two such case studies are included in the user’s manual. One case is a comparison 
of a rotating disk CVD problem to the 1-D numerical code SPIN [14]; the other case is a compar- 
ison of a homogeneous, isotropic gas-phase pyrolysis study to the 0-D code SENKIN [15]. 
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3. Governing Transport-Reaction Equations 

The equations solved by MPSalsa are based on the governing transport equations for total 
mass, momentum, energy, individual gas-phase species, and auxiliary turbulence quantities. Con- 
stitutive relations for the momentum, heat, and species fluxes are based on one of three’models: (a) 
the non-equilibrium statistical mechanical theory of multicomponent, dilute polyatomic gases [ 17, 
18,19,20,21]; (b) a constant property, Boussinesq fluid model; and (c) constituitive equations 
supplied and linked in by the user through a set of user subroutines. The Boussinesq fluid approx- 
imation is suited to the study of convection in liquids, including liquid metals, while the multicom- 
ponent gas model is suitable for a mixture of ideal gases at atmospheric pressures or lower. 

The governing transport equations listed below are given in “conservative form” rather than 
“advective form.” In the actual numerical implementation, both the conservative and the noncom 
servative forms of the equations can be solved. Experience’indicates that while greater accuracy is 
not guaranteed by the conservative formulation, long-time numerical integration stability is en- 
hanced. For this reason, both formulations have been included in the numerical solution procedure, 
as described in Appendix A. 

used within MPSalsa [23,24]. Thus, a distinction between the hydrodynamic and thermodynamic 
pressure values is employed in the equation set. Variations in the hydrodynamic pressure, which 
are assumed small compared to the thermodynamic pressure, are not included in the calculation of 
the density that appears in the conservation of mass, species, and momentum equations. This as- 
sumption has been shown to be valid for Mach numbers lower than 0.3 [23] and has the benefit of 
filtering out shock formation. 

An acoustically-filtered formulation of the momentum and mass conservation equations is 

3.1 Momentum ’kansport Equation 

The conservation of momentum is expressed by Eqn. 5 and 6. Assuming a Newtonian siress 
constituitive equation, there are as many scalar components of the momentum equation as there are 
spatial dimensions in the problem. 

r )  rn 

where T = -PI+Y = - P I - $ . L ~ ~ ( V * U ) I + ~ ~ ~ [ V U + V U ~ ]  

! 

I 

I 

Here, T is the stress tensor for a Newtonian fluid, I is the unity tensor, Y is the viscous stress ten- 
sor, and P is the isotropic hydrodynamic pressure. In the pressure-filtered formulation, there is a 
distinction between the hydrodynamic pressure (used in the transport equations) and the pressure 
level used in the equation of state, Po. This distinction allows the nearly constant thermodynamic 
pressure level to be set independently of the relatively small pressure fluctuations due to the hy- 
drodynamic flow. Unlike the treatment in Paolucci [23], there is no global equation for the thermo- 
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dynamic pressure, Po , in the equation set. The effective mixture viscosity peff is the sum of mo- 
lecular and turbulent contributions &e. peff = p + p& Models for the computation of the turbulent 
contribution are described in Section 3.8. For the molecular contribution (the only contribution for 
laminar flow) MPSalsa assumes a Newtonian fluid mixture with zero bulk viscosity where p is a 
function of the temperature and fluid composition. For a multicomponent ideal gas mixture it is a 
complex function of the temperature and the species mole fractions with roughly a TOe7 depen- 
dence on temperature; p is obtained from a subroutine call to the 'IRAITLIB package [26]. 

The last term in Eqn. 5 is the body force term where g i  is the sum of all body forces acting on 
species k, and N is the total number of species. In most cases not involving charged particles and/ 
or electromagnefic fields, the body force on each species is the same for all species and reduces to 
the gravitational force, g. In that case, the last term in Eqn. 5 reduces to pg . Currently, the only 
body force considered in the code is gravity which is constant for all molecular species. Additional 
functionality for this term will be application driven. 

3.2 Total Mass Conservation Equation 

The conservation of total mass within MPSalsa is expressed by Eqn. 7. 

* + V.(pu) = 0 
at (7) 

In this equation, p is the mass density of the mixture. Two alternate equations of state are al- 
lowed for p. Either p is considered to be a constant (i.e., the incompressible case or the Boussinesq 
fluid case where p is considered to be a constant, except in the body force term), or p is calculated 
from the ideal gas mixture equation of state Eqn. 1. Thus, for an ideal gas, p is not a function of 
the variable hydrodynamic pressure; it is a function of the constant thennodynamic pressure only. 
Additionally, a user-defined subroutine can be employed to incorporate an alternate equation of 
state that is dependent on the local temperature and species compositions as well as the thermody- 
namic pressure. 

3.3 Energy 'Ikansport Equation 

For high speed flows, the conservation equation in the total energy (ie., the internal energy 
plus the kinetic energy) form is normally used. This form is particularly useful for inviscid flows. 
However, the difficulty with this representation is that for flows in which the molecular transport 
of thermal energy is large, the implicit coupling of the internal energy or enthalpy to the tempera- 
ture is weak. Given this, for low speed, incompressible flows this equation is generally translated 
into either the enthalpy or temperature form. These choices work well for the initial class of prob- 
lems to be addressed by this code - low Mach number CVD problems. In the code, the specific heat/ 
temperature form is implemented. However, future versions of the code may include the enthalpy 
form as it is natural for control volume formulations in which a local conservation of energy prop- 
erty can be attained. 
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3.3.1 Temperature Formulation of the Energy Equation 
Eqn. 8 is the internal energy equation in terms of the temperature. 

k =  1 k = l  

In this equation, cp is the specific heat of the mixture at constant pressure. The first term on right 
hand side is the diffusive heat flux, q , given by Eqn. 9. The second term is the volumetric heat 
source term from viscous dissipation, 4 , given by Eqn. 10. The volumetric energy source term Q 
is specified by a user function, and jk is the diffusive flux of the kth species relative to the mass- 
averaged velocity, u . l7he.net change of potential energy from body force terms into heat energy, C jk g k ,  is zero for the single body force term implemented so far, gravity, because g k  is equal 
for all k. The total derivative of pressure, DP/Dt  , represents the reversible exchange of mechan- 
ical energy into internal energy. The first term on the second line of Eqn. 8 is the roduction of 
internal energy due to diffusion, where & is the partial specific enthalpy of the kts species. The 
last term in Eqn. 8 is the volumetric production of heat due to chemical reactions using cbk as the 
net production rate of the kth species due to homogeneous chemical reaction and w k  as the molec- 
ular weight of the kth species. 

(9) 

The first term in Eqn. 9 is the diffusive flux of energy due to heat conduction. he is the ef- 

and turbulent contributions (i.e. heE = h+ &). Models for the computation of the turbulent contri- 
bution are described in Section 3.8. For gases, the molecular contribution (the only contribution for 
laminar flow) is a complicated isotropic function of the temperature and mass fractions. The sec- 
ond term in Eqn. 9 is the diffusive flux of energy due to species diffusion. The third tern is the 
Dufour effect, the diffusive flux of energy due to thermal diffusion. This term is usually very small 
and is neglected in the implementation of the code. The last term is the flux of energy due to radi- 
ative transport, %. It is almost always ignored when solving the gas-phase energy continuity equa- 
tion; i.e., the gas is assumed to be transparent to radiant energy. However, this term is very impor- 
tant for some applications, such as combustion, and so must be included. MPSalsa has been linked 
to the SYRINX E251 library to calculate the radiative source terms at every node in the mesh. MP- 
Salsa passes to SYRINX the current temperature field and elemental absorptivities, and SYRINX 
uses the discrete ordinate approximation to calculate the radiative flux vector. The calculation of 
this term is often more expensive than all other parts of the reacting flow calculation, and also bin- 

fective heat conductivity of the mixture. The effective heat conductivity is the sum o fff molecular 
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ders convergence of Newton's method since all off-diagonal Jacobian entries are not calculated for 
this non-local term. 

For a simple thermodynamic material, the heat flux term from the species diffusive flux and 
the heat source term originating from the divergence of the species diffusive flux term may be com- 
bined to yield a single heat source term due to the diffusive flux, Eqn. 1 1. This modification is in- 
corporated into Eqn, 8 and 9. 

k = l  k = l  k = l  

In the initial implementation of the code, some of the terms in Eqn. 8 are not included because 
of their relatively small contributions. The body-force source term is omitted since the gravity vec- 
tor, gk, is equal for all k. The viscous dissipation term and reversible change of mechanical energy 
into internal energy term ( D P / D t )  are dropped since they are small for low Mach number appli- 
cations. Also, the energy flux terms due to species diffusion, as presented in Eqn. 11, have not yet 
been included but will be in the near future. 

3.3.2 Enthalpy Fonnuhtion of the Energy Equation . 
Eqn. 12 is the conservation of energy equation expressed in terms of the mixture enthalpy, h. 

m + V . ( p u h )  = - V * q + @ + Q + - +  DP i j , @ g ,  
k =  1 

at Dt 

Eqn. 9 and Eqn. 10 are used for q and @ , respectively. The terms in Eqn. 8 due to the volumetric 
production of heat caused by diffusion and chemical reaction do not appear in Eqn. 12. Therefore, 
Eqn. 11 is not used to simplify Eqn. 12. The flux of enthalpy due to diffusion in Eqn. 8 must be 
explicitly evaluated and added to the heat flux caused by conduction in order to determine the total 
diffusional heat flux. The mixture specific enthalpy can be related to the partial specific enthalpies 
by Eqn. 13. For ideal gases, the partial specific enthalpy is equal to the pure component enthalpies, 
which qre not functions of the total pressure. 

The dependent variable most easily used with Eqn. 12 is the temperature. If the mixture en- 
thalpy itself were used as the dependent variable, Eqn. 13 would have to be inverted to obtain the 
temperature. Also, the temperature appears explicitly in Eqn. 9. 

Because the total derivative appears on the left hand side of Eqn. 12, the enthalpy can be con- 
sidered a conserved quantity. Note, this does not occur for Eqn. 8 since cp, a complicated function 
of the temperature and composition, appears outside of the time and convective derivatives. For 
discretization schemes that employ integral balances over control volumes, such as the control vol- 
ume finite element methods, local as well as global conservation of p h can be proven. For the 
Gderkin finite element method, conservation exists only on a global basis. 
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3.4 Species Mass ’kansport Equation 

The governing transport-reaction equation for each molecular species mass fraction, Yk, is ex- 
pressed by Eqn. 14. 

k 1, ..., Ng - 1 

Here, cbk is the molar production rate of species k from gas-phase reactions, jk  is the flux of species 
k due to diffusion relative to the mass-averaged velocity, u . As described above, for a CHEMKIN 
material type, there are Ng - 1 continuity equations for the molecular species; the continuiq equa- 
tion for the special species is replaced by Eqn. 2, the requirement that the mass fractions Yk sum to 
unity. Therefore, that single species in the mechanism employs a different equation to calculate its 
mass fraction. For the Dixon-Lewis multicomponent diffusion algorithm, this substitution does not . 
cause any loss of accuracy. However, when the mixture-averaged diffusion coefficients are used, 
the effective continuity equation for the special species may have a different type and generally 
larger discretization error than other species in the mechanism. An “effective continuity equation” 
for this species, Ng, can be derived by taking the sum of all species continuity equations (Eqn. 14), 
k = 1, ..., N - 1, subtracting it from the total continuily equation (Eqn. 7), and then invoking 
Eqn. 2. To mmimize the errors in this “effective continuity equation” for the special species, the 
special species should be chosen to be the species with the largest mass fraction. 

Eqn. 2 doesn’t have to be used to ensure that the sum of the mass fraction equals one; it is im- 
plied by the continuum equations and by the property that the sum of the diffusion velocities and 
species mass production rates is zero. This can be seen by summing Eqn. 14 over all species and 
subtracting the total continuity equation, Eqn. 7. The resulting equation is Eqn. 15. 

B 
. 

If Eqn. 2 holds rigorously as an initial condition, Eqn. 15 ensures that the sum remains equal to one 
everywhere for all time. The presence of reacting surfaces, roundoff error, discretization error, and 
time-step truncation error, however, changes this result in the numerical problem, necessitating the 
use of Eqn. 2. 

The mass fractions Yk are the dependent variables solved for in the species conservation equa- 
tion. However, mole fractions are used for specification of boundary conditions and source terms, 
hk The conversions between mass and mole fractions are shown in Eqn. 16. 

where 
k = l  2 ‘kIwk 

k =  1 

Other material types also use Eqn. 14 for the mass transport-reaction equation. However, they 
default to a different formula for the conversion of mass fraction to mole fraction. For the NEW- 
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T o m ,  BOUSSINESQ, and SOLID material types, is assumed to be constant. Then, w k  be- 
comes a constant multiplicative factor in Eqn. 14, which can be factored out after some substitu- 
tions of definitions. The assumption of constant w is appropriate for dilute advection-diffusion of 
trace species in liquids and solids. When the values of w and w k  are defined to be unity, the mole 
and mass fractions of a species become identical, and the dependent variable in Eqn. 14 can be con- 
sidered to be the mole fraction. 

3.4.1 DifSusion Velocities 
In Eqn. 14, j k  can be written in terms of the diffusion velocity for species k, Vk 

Several different approximations for v k  are used within MPSalsa depending upon the material 
type. For the NEWTONIAN, BOUSSINESQ, and SOLID material types, j k  is expressed by Eqn. 
18. 

The effective diffusion coefficient Dk the sum of molecular and turbulent contributions (i.e. 
= Dk + Dkt)- Models for the computation of the turbulent contribution are described in Sec- 

tion 3.8. For the molecular contribution (the only contribution for laminar flow) the default for 
these material types is to assume that Dk is constant but the user can override the default and make 
it a user-specified function of the solution. 

Dk @ 

For the CHEMKLNmaterial type, two different approximations for the molecular contribution 
to the diffusion velocity are used in the code: the mixture-averaged diffusion approximation and 
the Dixon-Lewis formulation [21]. (Note: in the discussion that follows, the flow is assumed to be 
laminar so the subscript “eff’ is not used as was above in Eqn. 18.) In the full Dixon-Lewis formu- 
lation, v k  is expressed in terms of the ordinary multicomponent diffusion coefficients, Dkp and the 
thermal diffusion coefficient, DE. 

In this uation, x k  is the mole fraction for the kth species, and di is the diffusional driving force 

the mole fractions instead of the mass fractions. 
for thej  2 species given by Eqn. 20 [27,27]. Note that di is expressed in terms of the gradient of 

The second tern in Eqn. 20 is the pressure diffusion term. Pressure gradients can create driving 
forces for separation of species with different molecular weights. However, except for applications 
designed to specifically use this driving force to effect a separation of isotopes, this term is usually 
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negligible compared to other terms. The last term in Eqn. 20 is the driving force for diffusion due 
to differences in the body forces between species. For neutral gas transport where the only body 
force is gravity, this term is identically zero. In the initial implementation of the code, only the first 
term in Eqn. 20 is included. Other terms will be added when warranted by an application. 

Values for the ordinary multicomponent diffusion coefficients DQ and the multicomponent 
thermal diffusivities Di are obtained from library calls to the CHEMKIN transport parameters 
package [26]. Details concern$ng their formulation may be obtained from [26]. However, it should 
be noted here that Dki and D, have the property that the sum of the diffusive fluxes is zero. The 
full, multicomponent diffusion formulation is extremely expensive and possibly too expensive to 
be carried out in the two- and three-dimensional applications for which this code is designed. 
Therefore, the solution strategy concentrates on implementing approximations to the rigorous mul- 
ticomponent diffusion formulation. A user flag is set to indicate the level of approximation to be 
used. The full formulation is available, however, to check the accuracy of other approximations 
with respect to the full multicomponent formulation. 

The mixture-averaged diffusion velocity formula, Eqn. 21, does not have the property that the 
sum of the diffusive fluxes is zero. For two- and three-dimensional applications it is, however, 
much less expensive. Additionally, it reduces the coupling between species equations, leading to a 
more efficient iterative solution of the global linear equations. 

3.5 Calculation of Diffusion Velocities (Laminar flow) 

As mentioned, the cost of undertaking a full multicomponent diffusion formulation is prohib- 
itive for two- and three-dimensional reacting flow problems. Therefore, several levels of approxi- 
mation are used by the code which are similar to those used in the l-D code, SPIN. Each of these 
approximations calculates the diffusion velocities, Vk, in a different manner by expressing the con- 
servation of species mass density equation for species k in terms of a pseudo-Fickian diffusion co- 
efficient, ak, and the thermal diffusion coefficient, DE, as shown in Eqn. 22 and 23. 

where 

j, = pykvk = -&VY~-D~- TVT 
T 

Eqn.'s 22 and 23 assume that the pressure and body-force diffusion terms are negligible. In the lim- 
it of a binary mixture or a dilute mixture, a, is equal to the binary diffusion coefficient. The com- 
bination of Eqn. 22 and Eqn. 23 has great utility as an approximate form for the Jacobian because 
it does not require the expensive calculation of dl the cross-coupling terms. The Jacobian entries 
for the row corresponding to an unknown for the mass fraction of species k will be non-zero only 



for unknowns corresponding to the mass fraction of species k. This assumes that & is treated as 
a constant in the calculation of the Jacobian, and that the dependence of p on Y k  is dso not taken 
into account. Of course, Jacobian entries corresponding to the reaction term, h k  , will tend to fa 
in those same entries.Various approximations to the multicomponent diffusion formulation, as 
well as the rigorous multicomponent diffusion formulation, can now be put in the pseudo-Fickian 
diffusion form. For example, an expression for b k  can be obtained from the full multicomponent 
diffusion form, Eqn. 19, when forced diffusion and body-force diffusion are negligible. 

When the full multicomponent diffusion formulation is used, it is expected that Eqn. 19 will be 
used to calculate the diffusional velocities in the residuals. However, since the multicomponent dif- 
fusion velocity has been calculated for evaluation of the residual, & can be efficiently calculated 
for use in the Jacobian as follows. If the multicomponent diffusion velocity is represented as t k  , 
Eqn. 25 defines the pseudo-Fickian diffusion coefficient. 

In the binary limit, it can be shown from Eqn. 24 that 2>1 = & = D12 = !&; the multicompo- 
nent diffusion coefficient reduces to the binary diffusion coefficient. 

Two simpliiied approximations to the full multicomponent diffusion formulation that are, 
more computationally economical will now be described. The first approximation is the mixture- 
averaged diffusion approximation [28,29]. The second approximation is a more computationally 
intensive approximate solution of the Stefan-Maxwell equations introduced by Oran and Boris 
[30]. For steady-state problems, it is expected that the user first obtain a solution to the equations 
employing the mixture-averaged diffusion approximation. Then, if more accuracy is desired, the 
full multicomponent diffusion equations may be used. The Stefan-Maxwell equations have not 
been implemented in the code. 

It is expected that the mixture-averaged diffusion coefficient formulation will get the most use 
in the code. In the mixture-averaged diffusion formulation, Eqn. 19 for V k  is replaced by Eqn. 26. 

The mixture-averaged diffusion coefficient, D, , can be obtained directly from a call to the 
CHEMKlN transport library. It is a simple function of the composition and the binary diffusion 
coefficients, Eqn. 27. 

Dkm 
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In the above equation, q - k  is the binary diffusion coefficient between speciesj and k. Dkm can be 
formally related to & by equating expressions for vk. Assuming that forced diffusion and body- 
force diffusion are negligible, Eqn. 28 results. 

Eqn. 28 is used forb, in formulating the Jacobian needed to relax the residuals when the mix- 
ture-averaged diffusion coefficient is used in the residuals. In the binary limit, & is not equal to 
D,, (& = (wDlm)/W2 ), because D b  is not equal to the binary diffusion coefficient. 

The mixture-averaged diffusion coefficient, Dh, has the unfortunate property that it doesn't 
ensure that the diffusion fluxes sum to zero. Thus, a correction velocity is needed to ensure that 
this fundamental condition holds [27]. In this approach, the diffusion velocity vector is redefined 
to be 

pk is the ordinary diffusion velocity computed by the various methods given above, and Vc is a 
constant correction factor (independent of molecular species), defined by Eqn. 30. 

vc = -c ykvk 
k = l  

The addition of the correction velocity to the diffusive flux expressions either requires addi- 
tional terms in the Jacobian or the calculation of the entire diffusion term in the Jacobian by nu- 
merical differentiation. The current implementation of the code chooses the latter. 

3.6 Implementation of Gas Phase Reactions 

The gas- hase reaction mechanism enters into MPSalsa through the volume~c production 
rate for the ktp species due to homogeneous chemical reaction, dlk , in the species conservation 
equations and in' the temperature representation of the internal energy conservation equation. cbk 
is calculated using the CHEMKIN package [4]. This modular approach to programming complex 
chemical mechanisms has found a great deal of use in the combustion and CVD community [3,14, 
3 1 , 321 because it allows separation of the specification of a complex reaction mechanism from the 
programming of the numerical representation of the continuity equations. Additionally, different 
types of reactions (e.g., reversible and irreversible reactions, unimolecular reactions whose rate 
constant is parameterized by a Troe form, bimolecular reactions, third body reactions with en- 
hanced third body collision efficiencies, and/or lumped kinetics expressions appropriate for the de- 
scription of overall combustion processes) may be integrated into the numerical code without hav- 
ing to include complex reaction mechanisms. Moreover, changes to the mechanism do not induce 
changes in the numerical code, and correspondingly, mechanisms developed €or one numerical 
code may be applied in any other numerical code conforming to the CHEMKIN interface. 
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The following is a brief review of the formulation of cbk used by CHEMKIN [4]. Not all of 
the complexity possible with CHEMKIN will be discussed here. Consider NR elementary revers- 
ible or irreversible reactions involving Ng chemical species that can be represented by Eqn. 31. 

i = 1, ..., NR 
k = l  k = l  

v 'k i  is the stoichiometric coefficient of the k* species for the forward direction of the i* gas-phase 
reaction; it is defined as a non-positive number. v t l k i  is the stoichiometric coefficient ofthe P spe- 
cies for the reverse direction of the i* gas-phase reaction; it is defied as a nonnegative number. 
The possibility of non-integer stoichiometric coefficients is allowed as long as the reaction satisfies 
charge and elemental balances. The X k  represents the chemical symbol for the k* species. The pro- 
duction rate iuk for the kth species can be written as a summation ofthe rate-of-progress variables, 
qi , for all reactions involving the kth species, Eqn. 32. 

where 

The default in CHEMKTN is to assume mass action kinetic rate constants. For this case, the rate of 
progress variable, qi,  for the i* reaction is given by the difference of .the forward rates and the re- 

-3 1 verse rates, expressed by Eqn. 33 where qi has units of mol cm s- . 

k =  1 k = l  

Here, [xk] is the molar concentration of the kth species, and kif and k; are the forward and reverse 
rate constants for the i* reaction, respectively. The forward rate constants for the NR reactions de- 
fault to having the following extended Arrhenius temperature dependence: 

6 = AiTB'exp(iE). -Ei 
(34) 

Other expressions for the reaction rate constants, Eqn. 34, are also allowed, such as fdl-off behav- 
ior parameterized by a Troe for&, Landau-Teller reaction rate forms, and third body reactions. The 
reverse rate constants k; are generally (but not necessarily) related to the forward rate constants 
through the concentration-based equilibrium constant for the i* reaction, KF , according to Eqn. 35. 

K;f is in turn related to the temperature, the net molar production rate of gas production during the 
reaction, and the Gibbs free energy of reaction. Thermodynamic information for the equilibrium 
constant is calculated from CHEMKIN's species thermodynamic information. Thermodynamic in- 
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formation is in a format [33] similar to that used by Gordon and McBride [34] for the thermody- 
namic database used in the NASA chemical equilibrium program. 

Chemical reaction mechanisms usually consist of stiff modes, i.e., reactions which are fast 
compared to other time scales in the problem. Therefore, it is imperative that the Jacobian terms 
for hk be available. The current procedure is to calculate the hk source term only at nodes, in order 
to reduce the expense of this step. Then, 61, is interpolated throughout the element using elemental 
basis functions. The Jacobian contributions for the source terms due to reaction are currently cal- 
culated at the nodes in the element via numerical differencing. Details of their implementation are 
discussed in Appendix A. 

3.7 Implementation of Surface Phase Reactions 

Surfaces where reactions take place create additional source and sink terms for gas-phase spe- 
cies. The boundary conditions for the gas-phase continuity equations for species must specify the 
total flux of the species at the domain interface. For the case where the interface is stationary and 
the growth or etching due to surface reactions can be considered not to move the interface, this 
boundary condition for species k can be expressed by Eqn. 36. 

The left side of Eqn. 36 represents the total flux of species k, both convective and difhsive. The 
first term on the left-hand side is the Stefan flux term where n is the outward facing normal to the 
domain and j, represents the net diffusive flux of kfrom all diffusive processes, including thermal 
diffusion. The right-hand side represents the net destruction of gas-phase species k due to chemical 
reaction. Therefore, i k  represents the net molar production rate of gas-phase species k due to chem- 
ical reaction. Integration by parts, carried out in the Galerkin formulation (discussed in Appendix 
A), leads naturally to surface integrals of the normal component of j, multiplied by the nodal basis 
functions. Thus, in applying boundary conditions to the kth gas species continuity equation, the nor- 
mal component of the diffusive flux for species k is replaced by the right hand side of Eqn. 37. 

Eqn. 37 can be further simplified by sllmming Eqn. 36 over all gas-phase species and using 
the property that diffusive fluxes must sum to zero to yield an expression for the Stefan flow, Eqn. 
38. Eqn. 38 can then be used in Eqn. 37 to yield Eqn. 39. 

f 
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Eqn. 39 is used within MPSalsa for specification of boundary conditions for gas-phase species 
equations for the case of a reacting surface. Additionally, Eqn. 38 is used for specification of the 
normal boundary condition for the momentum equation. The tangential boundary condition for the 
momentum equation for reacting surfaces is set to the rio-slip condition. Thus, the problem is re- 
duced to the calculation of S, , k = ly 2, . . .) Ng . For CHEMJCIN material types, S, is supplied by 
the SURFACE CHEMKIN package [5]. However, they are functions of additional unknowns cor- 
responding to surface site fractions of surface phases and bulk mole fractions of bulk phases where 
each surface phase represents a different type of surface site and each bulk phase represents a dif- 
ferent type of bulk mixture. ("he reader is referred to the manual for the SURFACE CHEMKIN 
package [5] and to the manual for the Surface PSR program [35] for a more complete description.) 
Thus, the calculation of S, demands the solution of a subproblem at each node on the reacting sur- 
face to calculate the values of the extra unknowns corresponding to the state of the surface. The 
resulting non-linear system of equations is solved using Newton iteration. Since the subproblem is 
solved at each node, it is completely local to a processor and, thus, requires no additional commu- 
nication when run on parallel computers. We now describe the equations that comprise this sub- 
problem. 

Let Zk(n) be the surface site fraction of the kth surface species in the nth surface phase. Let I?, 
be site density for the n* surface phase (e.g. mol cm-2). Let ck(n) be the concentration of the 
surface species in then* surface phase (eg mol cm-2). Then, Eqn. 40 is the conservation equation 
expressing the continuity balance for the p surface species in the n* surface phase. 

Here, S, is the production rate from surface reactions for the kth surface specjes, A is the surface 
area, and w k  is the molecular weight of % k* surface species. K{(n) and Ks(n) are the indices 
for the first and last surface species in the n surface phase, respectively. Also, ck(n) can be related 
to Z,(n) by Eqn. 41. 

Here, o, is the number of surface sites the kth species covers. Substituting Eqn. 41 into Eqn. 40 
and assuming A is not a function of time yields the equation for Zk(n) as a function of time. In gen- 
eral, rn can also be a function of time and this must also be taken into account. 

For any v a d  surface mechanism, the following equation also holds true for each surface phase n, 
regardless of the Zk(n) used. 

(43) 
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Eqn. 43 is called the surface site conservation equation. For most reaction mechanisms, the right- 
hand side of Eqn. 43 is identically zero. If this is not the case, MPSalsa expands the solution vector 
at each surface to include rn and uses Eqn. 43 to solve for the concentration of surface sites for 
phase n as a function of time. 

On each surface, the sum of the surface site fractions must equal one. 

K h )  
Z,(nJ = I, n = I, ..., jvphase surf 

k = K;(n) 

This implies that the use o Eqn. 40 leads to a singular Jacobian for the steaclj state case, if used 
for all surface species site fractions in a surface phase. Thus, one of the surface species balance 
equations, Eqn. 40, is replaced with Eqn. 44 for each surface phase. This has the disadvantage that 
all the numerical round-off error is assigned to that one equation. Therefore, the equation corre- 
sponding to the species with the largest site fraction in the surface phase is replaced by Eqn. 44. 

The amount of material in bulk phases within the domain may not be in steady state; i.e., the 
bulk phases may be growing or etching (although their g rowe tch  rate is not assumed to affect 
either the volume or surface area within the domain). MPSalsa treats the mole fractions of bulk- 
phase species as well as their groWtNetch rates as unknowns to be solved for. The format of these 
equations depend on whether the bulk phase is growing or being etched. 

The following equations apply to a growing phase. In this case, the growth rate of the nth bulk 
phase, gn), can be expressed by the following equation: 

k = K&z) 

where G,(n) = Max(& 0) 

In this equation, L,, is the film thickness for the n* bulk hase. Cb(n) is the average molar concen- 
tration of the n* bulk phase; it has units of mol ~ m - ~ ,  $,(n) is the growth rate of the k* species 
in the n* bulk phase, and S, is the production rate of the k' species returned from SURFACE 
CHEMKIN. It is a function of the gas phase concentrations, pressure, temperature, surface site 
concentrations, and the bulk phase activities. Having 3, less than zero for some species, while it is 
greater than zero for other species is not appropriate for a growing bulk phase. One positive value 
of S, for a bulk phase signals that particular phase is growing. 

For a growing phase, Xi(n) , the instantaneous mole fraction of the kth bulk-phase species in 
then' bulk phase, is determined from the relative growth rates of all species in that phase, Eqn. 46. 

The condition Max(&, 0) may violate the overall elemental balance condition. However, in 
practice, this does not occur because Xi@) for such a species is set to zero by Eqn. 46. Then, only 



nonphysical mechanisms involving zeroth-order destruction of a bulk species could possibly create 
the situation where S, < 0 and X,(n) = 0. 

If all S, for a particular bulk phase are less &an zero, that bulk phase is undergoing etching. 
The user can specify whether a particular phase is expected to be etched and MPSalsa solves a dif- 
ferent set of equations for the bulk-phase components for that bulk phase. In this case, the user must 
also supply the initial composition of the bulk phase to be etched. The time-dependent equations 
used for the bulk-phase mole fractions and etch rates in the n* bulk phase undergoing etching are 
then given by Eqns. 47 and 48. 

b 

G k ( n )  = Sk (48) 

Here, X;(n)INIm= is the user-supplied initial estimate for the mole fraction of species k in bulk 
phase n, assumed to be normalized so that the sum over all bulk-phase species is one. The idea is 
that the initial phase is being etched away congruently. Incongruent etching, within the context of 
a single phase, is not allowed, at least at the level where it affects the concentrations of bulk spe- 
cies. 

b In order to specify the thermodynamic information needed for bulk phases, the activities a, 
of the bulk-phase components must be determined. These are the quantities in SURFACE 
CHEMKIN that appear in the rate expressions for surface reactions. This is done within the code 
b y d l i n g  a subroutine that users can modify to specify their own relationships between the bulk 
activities and the bulk mole fractions, temperature, and pressure. The default subroutine assumes 
a perfect solution relationship for all bulk phases, Eqn. 49, that almost never occurs in practice. 

a;(T, p ,  X,6(n,, = Xi(n) (49) 

In summary, the extra unknowns, Z,(n) , I’,(n) , $(n) , and G&) are not included in the for- 
mal solution vector. Instead, a separate subproblem is solved for these unknowns as part of the cal-. 
culation of the residual and Jacobian entries for the gas-phase problem. The two problems are cou- 
pled at the gas-species flux level, Eqn. 39. The surface subproblem depends on the gas-phase con- 
centrations at the surface, while the main gas-phase species problem depends on the fluxes 
calculated from the surface subproblem. An advantage of this approach is that the surface subprob- 
lem calculation can be protected from nonphysical occurrences, such as negative gas-phase mole 
fractions, and made more robust than it would be if lumped in with the main problem. Also, ad- 
vanced surface profde simulators may be incorporated into MPSalsa at a later date. These simula- 
tors model behavior at the micron feature size, and couple into “reactor simulators” such as MP- 
Salsa, which model behavior at the centimeter or meter feature size, through the gas- hase flux 
boundary condition described above. Solving a separate subproblem for Z,(n) and X,(n) , howev- 
er, can create some concerns. For time-dependent reacting flow problems, difficulties typically as- 
sociated with operator splitting techniques arise if the surface unknowns are allowed to have true 
time dependence (i.e., if they are not assumed to have a faster transient than the bulk and, thus, are 
assumed to be in pseudo-steady state at each time step of the gas-phase problem). 

l 
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3.8 Turbulence Model Wansport Equations I 

As described in Section 2.1, both RANS and LES type turbulence models have been imple- 
mented into MPSalsa. The root difference between these two approaches lies in the method used 
to ffiter the Navier-Stokes equations. However, in either case, revised forms of Eqn. 5 and 6 must 
be solved, and additional transport equations may also be required. 

3.8.1 Time Averaged Navier-Stokes Equations 
Strictly speaking, a RANS model is based on the well known Reynolds averaged Navier- 

Stokes equations, which are derived by decomposing each physical quantity @ (e.g. velocity, den- 
sity, pressure, etc.) into mean and fluctuating components, 

where 

and substituting into the Navier-Stokes equations. However, for variable density flows a mass 
weighted variation of this averaging procedure is strongly preferred. In this approach, sometimes 
called Favre averaging, a mass weighted mean velocity is defined as follows 

Using these definitions the following revised form of the momentum equation can be derived. 

Note that the form of these ec#ations is identical to Eqns 5 and 6 except for the addition of an extra 
term in the stress tensor y'" (usually called the mass weighted turbulent stress tensor). The role 
of a FUNS turbulence model is to provide a means of calculating this term, which is required to 
close the equations. 

3.8.2 The Boussinesq Eddy Viscosity Approximation 
A common starting point for many RANS turbulence models is to assume a linear relationship 

between the turbulent stress and the mean rate of strain. This is often referred to as Boussinesq's 
eddy-viscosity concept and can be written as 
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where pt is called the turbulent or eddy' viscosity, and k is the turbulence kinetic energy defined as 

(56) 

When the Boussinesq approximation is used, it is often useful to absorb the 2/3pk part of the rela- 
tionship into the pressure so that it is not necessary to explicitly calculate k. Thus the application 
of this approximation allows the overall stress tensor given by Eqn. 54 to be written as 

1 -  
2 k = -(u'u')I 

Y (57) 
2 
3 T = -PI - -(p + pr)(V.ii)I + (p + pt)[Vii + ViiT] 

where the pressure is understood be the sum of the mean static pressure and 2/3k. 

3.8.3 The Gradient-Dimsion Approximation for RANS Scalar Transport 

tion for a generic scaler quantity $ can be written as 
Using the mass weighted time averaging methods described above, a turbulent transport equa- 

where r+ is a generic diffusion coefficient and S$ is a generic source/sink term. The gradient dif- 
fusion approximation states that the turbulent flux of scalar quantities can be written as 

where o, is the turbulent PrandfVSchmidt number for Cp. Applying this approximation, the turbulent 
transport equation for a generic scalar quantity Cp can be written as 

3.8.4 The Spalurt-Allmaras One-equation RANS Turbulence Model 
A fairly recent innovation in the development of one-equation turbulence models is the model 

of Spalart and Allmaras [2]. In this model, the Boussinesq eddy viscosity approximation is in- 
voked, and a transport equation for the turbulent viscosity is developed. Here we provide a func- 
tional synopsis of the equations and relationships of this model, and refer the reader to reference 
[2] for a definition and justification of these terms and relationships. 
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The turbulent viscosity is related to the Spalart-Allmaras viscosity variable 0 as follows. 

- Clt = v, = VfVl 

P 

where 

f v 1  = ( 3 x3 3 ) y  x +(CVl) 

” 
V 
V 

XE-. 

To find 0 , the following transport equation is solved. 

- 2  i!i + V.(uG) = c,,& + -[V.((v 1 +Ct)VG) + cbz(vG)2] - Cw1 fwE] - at B 

The additional empirical functions used in the model are defined as follows 

6 g = 2 + C,,(2 -2) 

V 

$ K 2 ( d J 2  
2 =  

where dn denotes the distance to the nearest wall, and 

I s = /(---)++2fv2. dui d U j  

axj axi d 

The values of the constants in the model are 

(r = 2/39 K =  0.41, c b 1  = 0.1355, c b 2  = 0.622, = 7.1 

(69) ! 

I 

29 



3.8.5 The Standard High Reynolds Number k-E RANS Turbulence Model 
Since its introduction in 1972 by Jones and Launder, the k-E two-equation turbulence model 

has become probably the most well known and heavily used (or abused some might assert) turbu- 

brief description is presented here. 

lent viscosity. The turbulent viscosity is computed from the following expression 

. lence model available. Although descriptions of this model are available from many sources, a 

The Boussinesq eddy viscosity approximation is invoked to provide a definition of the turbu- 

(70) k2 
Pt = PqLT 

where k is the turbulent kinetic energy, and E is the turbulence dissipation rate. 
The transport equations for k and E are 

W + V . ( P U E )  = v. p+- VE +jt(C,P,-C,pa) 
at (( 3 1 E 

where the production of turbulent kinetic energy Pk can be written as 

P, = pt[Vu+VuT]--[jlt(V.u)+pk]I] 2 .vui. II 3 (73) 

The constants for the "standard" high Reynolds number k-E model are: 

C, = 0.09, ok = 1.0, B, = 1.3, C, = 1.44,and C2 = 1.92. 

3.8.6 Low Reynolds Number k-E RANS Turbulence Models 
In regions adjacent to solid walls, the character of turbulent motions is significantly altered. 

To properly account for this region, additional modifications must be made to the turbulent trans- 
port equations. This is usually done by the introduction of so called low Reynolds number (LRN) 
functions. Although many different proposals have been suggested for introducing LRN functions 
into the k-E turbulence model, Pate1 et 61. [36] have shown that it is possible to generalize these 
variations by writing the basic equations in a manner to be described here. The turbulent viscosity 
is computed from the following expression 

and the k-E transport equations are written as follows 
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at +V.(pii&) = V . ( ( ~ + ~ ) V ~ ) + O V , C , P , - f , C 2 p ~ )  + E .  

Here, fi, f2, and fp are LRN functions which modify the flow in the near wall region but are equal 
to 1 away from the wall. D and E represent other empirical functions that might be used in a model. 
The top hat symbol has been placed over E so that differences between the meaning of E used by 
various models can be distinguished. By definition, 

E = 2+D.  (77) 
Two LRN k-E turbulence models that are currently implemented into MPSalsa are the Launder- 
Shanna model [37] and the Lars Davidson model [38]. These models can be summarized as fol- 
lows 

where 

fp = 

fi= 

f2 = 

D =  

E= 

Launder-Shanna 

3.4 BP( [ 1 + 0.O2ReJ2) 

1 .o 

Lars Davidson 

3.4 
eq[ [ 1 + 0.02Ret]2) 

P A d n  Re,  = -, 
P 

0 

0 

(79) 

and dn is the normal distance to the wall. 
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3.8.7 Spatially Filtered Navier-Stokes Equations 
In LES turbulence modeling, the flow variables are also decomposed into two parts. But in 

this approach the meaning of the decomposition is different. In LES the decomposition is into a 
spatially filtered component and a subgrid-scale component, 

where Cp denotes a generic physical quantity, and the filtering operation is defined as 

T(x, t )  = j$(z, t)G(x - Z, A)&. (81) 
D 

Here, G is the filter kernel, D is the domain of the flow and A is the filter width in each spatial di- 
rection. The filtering operation is normalized so that 

and in general it is a desired property that G(-z) = G(z). Various types of filter kernels have been 
employed in the literature (e.g. the top-hat filter, the gaussian filter, etc.), and the details of this as- 
pect of LES modeling will not be discussed here. However, it is important to note that contrary to 
traditional Reynolds time averaging (q) # 6 and in general, $' ;t 0. 

same way as was done for RANS modeling. In LES we defme a Fame filtered variable as 
In LES modeling, "mass weighted" or Favre filtered variables can be defined in much the 

- - PO Cp = =. 
P 

(83) 

Using these definitions the following mass weighted LES equations of motion can be derived; 

where 

i" 'i -sgs 2 
3 T = - F I + f + r  = - ~ ~ - - p ( v . u ) ~ + p [ v i i + v u ~ j + p  U U - G  . 

The form of these equations is identical t.0 Eqns. 5 and 6 except for the notable addition of an extra 
term in the stress tensor, often referred to as the subgrid turbulent stress tensor. 
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The role of an LES subgrid turbulence model is to provide a means of calculating this term which 
is necessary for closure. 

3.8.8 The Smagorinsky Subgrid Turbulence Model for LES 
The first subgrid model for LES was introduced by Smagorinsky [39] in 1963 and it remains, 

together with its variants, a widely applied model. In this model the subgrid stresses are set propor- 
tional to the strain rates of the resolved field 

and the sub-grid turbulent viscosity pt is calculated as 

I pt = F(CsA) 2 1 '  Ii(Vi;+ViiT) . 

Here, C, is the Smagorinsky constant (normally set to 0.1 in MPSalsa) and A is the filter width. 
If a pseudo pressure is defined as 

then the overall shear stress tensor can be rewritten as 

-LES T = -P 1+(p+p1)[VG+VtiT]. 

3.8.9 An LES Subgrid Turbulent Kinetic Energy Model 
Subgrid turbulent kinetic energy models have been proposed by Schwann [40] and Yoshiza- 

wa [41] and the model described here is similar to these models. In this model the subgrid stresses 
are set proportional to the strain rates of the resolved field as per Eqn. 87. Thus just like the Sma- 
gorinsky model this model is an eddy viscosity model. However, in this model no assumption 
about the equivalence of production and dissipation are made and therefore nonequilibrium effects 
are accounted for in this model. 
The subgrid turbulent viscosity pt is calculated as 
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where Cv is a model constant (set here equal to 0.0854), A is the filter width, and ksgs is the subgrid 
scale kinetic energy defined as 

ksgs is calculated by solving the following transport equation 

where C, is a model constant (set here to 0.916), and the production term Pk is model as 

34 
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3.9 Summary of 'bnsport Equations Implemented 

Mixture Momentum: 

Mixture Continuity: 

Thermal Energy: 

a(pu) + V.(puu)- V.T - pg = 0 

T = -PI  - :pefl( V*u)I + peff [ V u  + VuT] 

at 

5 + V.(pu) = 0 

Species Continuity: 

(95) 

(97) 

-* Note. The subscript "e#' on diffusional coefficients denotes that both laminar (i.e. molecular) and 
turbulent contributions to these coefficients are possible. When turbulent flow is modeled, the tur- 
bulent contributions to these coefficients are calculated based on the turbulence model chosen (as 
described in Section 3.8). When laminar flow is modeled, these coefficients are simply equal to 
their molecular values. 
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4. Boundary Conditions 

4.1 Specification of Boundary Conditions 

In general, the second-order transport-reaction equations in MPSalsa need either their depen- 
dent variables or their normal derivatives specified at all domain boundaries in order to define a 
well-posed problem. EXODUS II defmes the concept of node sets and side sets on which these 
boundw conditions are applied. A node set is an arbitrary group of nodes in the domain. A side 
set is an’arbitrary group of element sides in the domain. Only side sets establish the concept of a 
surface. 

Dirichlet boundary conditions specify the value of dependent variables. The usual conserva- 
tion equation for the dependent variable identified with an element node, where a Dirichlet bound- 
ary condition is specified, is discarded and replaced with another equation for that variable. The 
new equation may be a function of the other independent or dependent variables in the problem. 
Dirichlet conditions that don’t need the concept of a surface may be applied on node sets as well 
as side sets. MPSalsa also allows for Dirichlet conditions to be applied as surface integrals of func- 
tions weighted by the elemental basis functions, i.e. Gdlerkin’s method. These surface integral Di- 
richlet conditions may be applied only on side sets. For example, the concept of a surface is needed 
to define normal and tangential vectors for normal and tangential velocity boundary conditions. 

Neumann and Robin (or mixed) boundary conditions impose conditions on the normal deriv- 
ative of the dependent variable. This term is specified by replacing the normal derivative in the sur- 
face integral that arises from the integration by parts during the Galerkin finite element formulation 
with the boundary condition. Surface integral conditions may be applied only on side sets and are 
generally defied as  being satisfied in a “weak sense”. In other words, they are satisfied only in the 
limit of no discretization error. 

The following is a discussion of the types of boundary conditions permissible in MPSalsa for 
each of the conservation equations. 

4.2 Momentum Equations 

For the fluid dynamical part of the problem, either the velocity components or the normal 
component of the total stress tensor must be specified on the boundary of the domain for each com- 
ponent of the vector momentum equation. On both side and node sets, Dirichlet boundary condi- 
tions of the form 

may be applied to the velocity in the x- ,  y - and z-directions, respectively. In Eqn. 104, f is a 
user-specified function of the dependent and independent variables. For these boundary con&ons, 
the corresponding momentum equations are replaced by Eqn. 104 at all nodes of the designated 
node or side sets. 



Surface integrals involving the components of the surface traction vector, 7 

on a surface with normal, n , arise naturally in the Galerkin form of the momentum equations and 
are added to the volumetric contributions of the Jacobian and residuals of all nodes on the surface. 
The components of the normal stress may be replaced in the surface integrals by user-specified 
functions f, of the dependent and independent variables, as shown in Eqn. 105, where Qi is 
the elemental shape function for node i on the surface. 

, m = 1,2,3 

Boundary conditions may also be applied to the normal and tangential components of the ve- 
locity and normal stress. Each region of the boundary is associated with a unit normal to the bound- 
ary, n, and two orthonormal tangential components to the boundary, tl and b. Specification of the 
boundary condition for the momentum equations then involves specification of the velocity com- 
ponent or normal tensor component in each of the directions n, tl, and h; that is, the user must 
specrfyeithernmu or v n  ,andeithert,*u a n d t p u , o r  ‘I:*$ and 

2.t2 . 
Normal and tangential Dirichlet boundary conditions on velocity are enforced using surface 

integrals along sides of elements. The surface integral form of a Dirichlet boundary condition on 
the normal velocity is given by Eqn. 106. For each elemental node on a surface, i , the boundary 
condition is multiplied by the elemental shape function ai. The integral over the surface of the 
resulting expression is the residual contribution for the corresponding component of the momen- 
tum equation for node i . Similar expressions enforce tangential velocity boundary conditions. 

Conditions on the normal stress in the normal and tangential directions &e enforced by replac- 
ing 2 n , z t, , and z t ,  in the surface integrals with user-supplied func- 
tions, which are then rotated to derive expressions for z i , z j , and 2 k , 
which are needed in the surface integral terms in the x, y, and z momentum equations, respectively. 

For example, Eqn. 107 specifies traction boundary conditions in a 2-D geometry with n = i 
and tl = j. In this examples, fT is the user-supplied function specifying the traction vector. 

7 0 t l  = z o j  = = t, f,(x, u, P, T, Y, t) 

In Eqn. 107, f, is shown as a function of all of the independent and dependent variables in the 
problem (x, u, P, T, Y, t )  . A common outflow boundary condition is setting the normal stress, 

, to zero. This is the so called natural B.C. on the momentum equation. z n 

For the particular case of a reacting, impermeable wall, the Dirichlet boundary conditions in 
Eqn. 108 are applied using Eqn. 106. 
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t l . U  = 5 . U  = 0 

4.3 Total Continuity Equation 

The incompressible Navier-Stokes equations are unchanged when the hydrodynamic pressure 
is changed by a constant. They are affected only by gradients in the hydrodynamic pressure and 
MPSalsa's discrete equation set shares this property. Therefore, the pressure scale must be set ei- 
ther implicitly or explicitly somewhere in the domain. This is achieved by specifying 
somewhere on the boundary since P appears in this expression (see Eqn. 107), or by setting a Di- 
richlet condition for P on one node in the domain. 

z n 

4.4 Internal Energy Continuity Equation 

Either the temperature or the normal heat flux must be specified on all boundaries of the do- 
main. That is, either Dirichlet boundary conditions in the form of a user-supplied function or value 
must be specified for the temperature, or surface integral boundary conditions involving the heat 
conduction must be used. The expression in the surface integral resulting from the Galerkin inte- 
gration by parts is the normal component of the heat flux vector, n q, , where q, = -hVT. The 
user supplies a function that is substituted for n q, in the surface integral. 

Inflow boundary conditions for the energy equation are usually specified by a Dirichlet con- 
dition on the temperature. For cases where the energy balance at a surface must be calculated, Eqn. 
109 is a useful starting point in the derivation of energy boundary conditions based on heat balanc- 
es. 

F%UX- + PRODUCTIONr = FLUX+ (109). 

The heat flux to the boundary from within the solution domain is defined as FLUX-. This, 
plus the energy stored at the interface, PRODUCTIONr, should be equated to the heat flux exiting 
the domain, FLUX+. 

For the convection of enthalpy inlet boundary condition, PRODUCTION, is zero but the flux 
terms are defined by Eqn. 110. An extra convective heat transfer term, h,( T - To)  , is added to the 
M o w  heat flux, on the outer side of the domain. In MPSalsa, the user supplies a function retumhg 
the value of n q, as determined by Eqn. 109 and 110. 
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For boundary conditions corresponding to outflow areas, where neither the energy flux nor the 
temperature is known before hand, the specification of a zero normal temperature derivative is used 
(natural b.c.). 

n . V T , =  0 

For boundary conditions corresponding to solid walls where reactions may be occurring, Eqn. 
109 may be used to obtain a heat balance. FUJX- is given by Eqn. 110 and PRODUCTIONr is 
nonzero due to the growing or etching film at the interface. 

PRODUCTION, includes terms due to the storage of energy due to surface and bulk-phase 
species and Qr is the heat input to the boundary from external sources (e.g., resistive heating). 
Typically, FLUX' is specified by a heat transfer coefficient combined with radiative heat input 
from a black body at a known temperature. However, its exact specification is left undefined at this 
point. The enthalpy terms in FLUX- and PRODUCTIONr may be combined with reacting wall 
boundary conditions on the species conservation equations (Eqn. 37) to yield Eqn. 113. 

K:, 
- n (hVT + qr)I - Skwkh, = &r + FLUXf - 

k = l  

The sum in Eqn. 113 is over all species defined in the problem: gas, surface, and bulk. For phase 
change-type reactions, the second term in Eqn. 113 can be identified with the latent heat of the 
phase change. Radiation contributions, q, , appear naturally in surface integral expressions for the 
heat flux. Currently, an MP gray body radiation treatment is under development and will be pre- 
sented at a later time. 

4.5 Gas-Phase Species Continuity Equations 

Several types of boundary conditions may be specified on Yk,  k = 1, ..., N . Theoretically, 
either the value of Yk or its normal derivative must be specified on a boundary. dowever, for low 
pressure systems where diffusive transport dominates, Dirichlet conditions on the species equa- 
tions are discouraged as a means of specifying the flow rate of species k into f ie  system. The actual 
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flux of species k into the domain, which consists of both convective and diffusive contributions, 
will be quite different than the intended flux into the domain. Therefore, flux-based conditions 
should be used on all boundaries of the domain for these systems. 

For boundary conditions corresponding to inflow areas where the flow rates of the gas-phase 
species are known, the flux of species k is specified by what is known as Danckwerts’ boundary 
condition: 

( k  = 1, ..., Ng) 7 

where po , u, and Yk, are user-specified values. 
For boundary conditions corresponding to solid walls where reactions may be occurring, the 

flux of species k to the wall should be equated with the negative of the net production rate of species 
k at the wall. 

n (pY,u + j,) = -ikWk N g )  ( k  = 1, ..., 

For boundary conditions corresponding to solid walls, where no reactions are occurring, the 
net flux of species k should be set to zero. 

no(pYku+j,) = 0 N g )  (k  = 1, ..., 

For boundary conditions corresponding to outflow areas, where neither the flux nor the con- 
centration of species k is known, the specification of a zero normal W s i o n  velocity may be em- 
ployed. 

n*jk = 0 NJ ( k  = 1, ..., 

The boundary conditions in Eqn. 115-1 17 are incorporated into the finite element equations 
representing the continuity equation for species kvia the boundary integral involving (n j,) that 
appears from the integration by parts of the diffusive flux tern. Specifically, (n j,) is replaced 
with the appropriate terms from Eqn. 115-1 17 expressed via a user-supplied function fl as in Eqn. 

Y no  j, = fk NJ ( k  = I, ..., 
As with any Neumann or Robin boundary conditions in the finite element method, these 

boundary conditions are satisfied only in the limit that the discretization error goes to zero. Also, 
if a determination of the flux of species k is required at a reacting solid wall where Eqn. 115 is used, 
the flux should be evaluated using the right hand side of Eqn. 115 instead of the left hand side. The 
accuracy in Yk is one order of the mesh discretization size greater than the accuracy in the deriva- 

Y For non-CHEMKIN material types, Dirichlet boundary conditions of the form Yk = f , 
tives of Yk 

k = 1, . . ., N g  , and flux boundary conditions of the form in Eqn. are supported. 
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5. Finite Element Approximation of the Transport Equations 

Total Mass 

Thermal 
Energy 

Species 

Fraction Mass for 
Species k 

The governing transport Eqns. 95-103 are approximated by a Petrov-Galerkin finite element 
method (PGFEM). The summary presented here is intended to provide a sufficiently detailed dis- 
cussion of the FE development and a practical formulation background to discuss the numerical 
algorithms that are used to solve the resulting linear algebra problems. 

The finite element procedure begins by dividing the physical domain of interest, Q , into N e  
simply shaped regions Qe called f ~ t e  elements. Within each of these elements, the dependent 
variables ( ul, u2, u3, P, T, Y k )  , k = 1, . . ., Ng , are interpolated by continuous functions of com- 
patible order, in terms of values to be determined at a set of global node points. To develop the FE 
equations for these nodal unknowns, we present the fdte element expansion in terms of global in- 
terpolation functions. This development differs from an elemental basis approach only in the inter- 
pretation of the summation scope and the resulting domain of integration of the inner product. Us- 
ing this approach simplifies the resulting discussion of the node-based matrix-fill algorithms in the 
parallel implementation of the code. 

Rp = g+V.(pu)  

N8 N8 
R, = p e p b + u O V T ]  +V*q,-@-Q+ jk.CP,kVT- hkwkdk+Voqr 

k =  1 k =  1 

.k = 1,2, ..., N,-1 
k l  

a 'k  RY, = p [ z + U * V Y  +V*jk-Wkhk 

5.1 The Residuals of the Transport Equations 

The residual of the governing transport PDEs are given below in Table 5-1. These residual def- 
initions are used in the subsequent discussion of the Galerkin Least Squares (GLS) formulation. 
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Momentum Fm,i = I@% idi2 + 

Total Mass Fp = J@RpdQ + ( P T ~ V @  R,)& 

pz,(u V@)R m, 1 .di2 + pz,[V@Ji%&+ vm, iV@ GcVuidi2 
Q 

- 

5;2 

Thennal !FT = @RT& + p epzT(u V@)RTdQ + vTV@ 0 GCVT& 
Energy Q % Qe 

C = I@Ryk&+ I p‘cYk(u V@)Ryk& + vykV@ G VYkdQ , k = 1,2, ..., N , - I  

%. “e 
Fyk Q 

Species 
Mass 

Fraction for 
Species k 

The stabilization parameters (the I: ‘s and the v ‘s) are given in [43,44]. For clarity in the 
following discussion, the Newtonian stress tensor, T , is expanded to include the pressure, P , and 
the viscous stress tensor term, I’ (see Eqn. 6). The resulting GLS total mass residual equation in 
expanded form is given in Eqn. 119. 

This expansion exhibits the‘Zaplacian type” of operator acting on pressure 

produced by the GLS formulation of the total mass conservation equation. This term plays an 
important role in the development of effective Krylov based solvers with various preconditioners. 
Finite element (FE) discretization. of the GLS equations gives rise to a system of coupled, 
nonlinear, nonsymmetric algebraic equations, the numerical solution of which can be very 
challenging. These equations are linearized using an inexact form of Newton’s methods which is 
discussed in the next section. A block matrix representation of these discrete linearized equations 
is given in Eqn. 121. In this representation the vector, v’ , contains the Newton updates to all the 
nodal solution variables with the exception of the nodal pressures, P .  The block matrix, A ,  
corresponds to the combined discrete convection, diffusion and reaction operators for all the 
unknowns; the matrix, 23, corresponds to the discrete divergence operator with its transpose the 
gradient operator; the diagonal matrix, R , results from the group FE expansion of the density and 
velocity in Eqn. 7; and the matrix, K, corresponds to the discrete “pressure Laplacian” operator 

42 



discussed above. The matrix, , contains terms associated with the convection and diffusion 
terms in the momentum residual generated by the GLS formulation of the total mass equation. 
The vectors Fv , and Fp contain the right hand side residuals for Newton's method, 

The existence of the well behaved nonzero matrix, K ,  in the FB discretization of the GLS 
equations allows the solution of the linear systems with a number of algebraic and domain 
decomposition type preconditioners. This is' in contrast to other formulations, such as Galerkin 
methods using mixed interpolation, that produce a zero block on the total mass continuity 
diagonal. The difficulty of producing robust and efficient preconditioners' for the Galerkin 
formulation has motivated the use of many different types of solution methodologies. A number 
of these use two level iteration schemes, penalty methods, pseudo-compressibility techniques or 
decoupledkegregated solvers [45,46,47,48,49]. A detailed presentation of the characteristics of 
current solution methods is far beyond the scope of the current manuscript. The intent of fully- 
coupling the transport PDEs in the nonlinear solver is to preserve the inherently strong coupling 
of the physics with the goal to produce a more robust solution methodology in the process.' 

5.2 Discrete Equations: Interpolation Functions and Quadrature Rules 

Within each element the mixture velocity, temperature, species mass fractions, and hydrody- 
namic pressure are approximated by the expansions in Eqn. 122. 

1 = 1,2,3 

k = 1, ..., Ng 

Here, @,(x) is the standard polynomial finite element basis function associated with the Jth glo- 
bal node, N is the total number of global nodes in the domain, and Ng is the number of gas-phase 
species. The u1 , u2 , and ug components of velocity correspond to velocity in the x-,  y -, and z - 
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directions, respectively. Equal order interpolation of all variables is used. In these and the follow- 
ing expansions, global interpolation functions are denoted with uppercase indices as in the expan- 
sions above. The only exception to this convention is the use of a lower case index k to denote the 
species number. 

Thermodynamic and transport properties, as well as volumetric source terms, are interpolated 
from their nodal values using the finite element shape functions. For example, Eqn. 123 represents 
the computation of density at a point x . The density is not evaluated from the equation of state with 
values of the dependent variables at x but instead is computed at global nodes J = 1, . . ., N with 
values of the dependent variables at the global nodes, and the elemental shape functions are used 
to interpolate the density at x . 

Evaluation of volumetric integrals is performed by standard Gaussian quadrature. For quadri- 
lateral and hexahedral elements, two-point quadrature (in each dimension) is used with linear basis 
functions, while three-point quadrature is used for quadratic interpolated elements. For example, 
for hi-linear hexahedral elements, eight Gaussian quadrature points within an element are used to 
evaluate its volumetric integrals. 

5.3 Evaluation of Surface Integrals 

Evaluation of surface integrals is performed by standard Gaussian quadrature on the side of 
the element. As with the volumetric integrals, two-point quadrature (in each direction) is used with 
linear shape functions, while three-point quadrature is used with quadratic shape functions. For ex- 
ample, for a three-dimensional problem with linear shape functions, four Gaussian quadrature 
points located on the side of an element are used to evaluate its surface integrals. 
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6. Solution Procedures 

In this section, we present the general procedures used in MPSalsa for the steady state and the 
time dependent solution of equations that describe the discrete problem. The choice of numerical 
methods in MPSalsa has been made from the standpoint of robustness, efficiency of implementa- 
tion on parallel architectures, and the ease of including new solution kernels. The major solution 
kernels used in MPSalsa are the first- and second-order implicit time integration routines, an inex- 
act Newton procedure and the linear system solvers of the Aztec [ 121 parallel Krylov solver library, 
developed in conjunction with MPSalsa. Below we summarize the properties of the discrete matrix 
problem and consider the details of the major solution kernels in MPSalsa. First, we give a brief 
overview of the implementation of the unstructured finite element method on multiple processors, 
since this aspect underlies much of the discussion and implementation of the solution algorithms 
for the linear system. 

6.1 Implementation on Multiple Processors 

MPSalsa is designed to solve problems on massively parallel (MP) multiple instruction mul- 
tiple data (MIMD) computers with distributed memory. For this reason the basic parallelization of 
the finite element problem is accomplished by a domain partitioning approach. The initial task on 
an M p  computer is to partition the domain among the available processors, where each processor 
is assigned a subdomain of the original domain. It communicates with its neighboring processors 
along the boundaries of each subdomain. There are two fundamental ways to partition the FE do- 
main among processors: either element or node assignment. Each method has its own advantages 
and fundamentally affects the solution strategies and interprocessor communications. Dividing the 
mesh according to elements quite naturally can lead to an element-by-element @BE) solution 
scheme, whereas dividing the mesh according to nodes leads most naturally to a fully-summed dis- 
tributed matrix solutions. In the EBE case, each element’s matrix is stored separately and is not 
summed with its contributions from neighboring elements. All matrix-vector operations are per- 
formed with these dense elemental block matrices and the vector result is obtained only after swn- 
ming over all elements. This scheme substantially increases the matrix storage requirements and 
the amount of computation needed relative to fully-summed distributed matrix solution strategies. 
For example, for 3-D linear hexahedral elements, this method requires approximately 60% more 
storage and greater than three times as many floating point computations are required for the EBE 
approach. Although the larger block sizes associated with the EBE approach may yield an increase 
in the number of operations performed per second, this improved performance is unlikely to com- 
pensate for the increased operation count. Because of this, nodal decomposition was chosen in MP- 
Salsa to allow the implementation of computationally efficient, minimum flop algorithms for the 
matrix-vector multiply kernel. Also, storing the fully summed equations allows the use of robust 
general preconditioners, such as domain decomposition incomplete factorizations and direct sparse 
subdomain solvers. 

The parallel solution of a particular FE problem proceeds as follows. At the start of the prob- 
lem, each processor is “assigned” a set of finite element nodes that it “0~11s.’~ A processor is re- 
sponsible for forming the residual and the corresponding row in the fully summed distributed ma- 
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trix for the unknowns at each of its assigned FE nodes. To calculate the residual for unknowns at 
each assigned node, the processor must perform element integrations over all elements for which 
it owns at least one element node. To do this the processor requires 1) the local geometry of the 
element and 2) the value of all unknowns at each of the FE nodes in each element for which it owns 
at least one node. The required elemental geometry is made available to the processor through the 
initial partitioning and database distribution part of the algorithm. Here, a broadcast of all informa- 
tion in a serial EXODUS data base to all processors is used in MPSalsa. Then, each processor ex- 
tracts its geometry information form the FE database. In addition to the broadcast algorithm, MP- 
Salsa has the capability to use a parallel FE database [ 113 for geometry input as well as all parallel 
YO. The unstructured interprocessor communication of FE unknowns is handled by an Aztec rou- 
tine that exchanges the necessary interprocessor information [12]. 

Figure 6-1, which depicts a partitioning scheme of an unstructured mesh, graphically repre- 
sents the above concepts. An unstructured mesh is divided into four regions by assigning owner- 
ship of the nodes. Nodes in each processor are classified as “border” and “internal” nodes, at which 
border and internal unknowns, respectively, are defined. Border unknowns are those unknowns 
whose values must be communicated to neighboring processors so they may complete their ele- 
ment integrations; the remaining “owned” unknowns on a processor are designated as internal un- 
knowns. Those unknowns required for a processor’s element integrations but assigned to a neigh- 
boring processor are stored in the local solution vector and designated as “external‘, unknowns. In- 
terprocessor communication occurs when an owning processor communicates the values of its 
border unknowns to a neighboring processor to update the value of the neighboring processor’s 
corresponding external unknowns. Figure 6-1 demonstrates how Processor 0 would classify the 
nodes in the internal, border, and external categories. Processor 0 has three neighboring processors. 
During the interprocessor communication phase, it sends each neighboring processor a message 
containing the values of each border unknown that the neigkiboring processor needs. The value of 
each border unknown may be needed by more than one processor, as it may appear in the external 
node lists of more than one of the neighboring processors. Processor 0 also receives a message 
from each of its surrounding processors containing the values of its external unknowns. Processor 
0 doesn’t have to know about unknowns defined at elemental nodes which don’t have the A7 o7 
or 0 symbols attached to them. 

On each processor, a solution vector is stored which corresponds to the internal, border, and 
external unknowns defined on that processor. The solution vector is reordered locally so that local 
internal unknowns appear first, border unknowns appear second, and external unknowns, grouped 
by the owning neighboring processor, appear last. A local-to-global mapping vector is maintained, 
so that the global solution vector may be regenerated using “fan-in’, operations. This local reorder- 
ing scheme minimizes the gatherkcatter operations involved in the interprocessor communication 
step. Only a gather operation at the originating processor to gather all of the border unknowns 
needed by a single neighboring processor into a contiguous space in memory is required. This mes- 
sage can then be directly sent to the contiguous space in the destination processor’s solution vector 
corresponding to the external unknowns owned by the originating processor. No scatter operations 
are needed on the destination processor. Moreover, the communications stencil required for this 
operation may be calculated once and used over and over again for a static mesh discretization. The 
communications stencil refers to the content of the message that each processor needs to send to 
each of its neighboring processors and the length of the return message containing the external un- 
lrnown values from each neighboring processor. 
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Figure 6-1: Division of the nodes of an element amongst the processors, and the fixther differentiation of 
the nodes into interior (A), border (O), and external (0) categories on Processor 0. 

MPSalsa stores the Jacobian matrix in a distributed version of the Variable BlockRow (VBR) 
sparse matrix format [13]. Each processor is responsible for storing rows of the Jacobian corre- 
sponding to its unknowns. Once a specific partition and assignment of the unknowns to internal, 
border, and external sets has been defined and the local solution vector has been reordered a dis- 
tributed VBR sparse matrix is constructed. Each row of the Jacobian may include column entries 
corresponding to internal, border, and external unknowns defined on that processor. During the 
matrix-vector multiply kernel of the Krylov subspace iterative methods, each processor is respon- 
sible for carrying this out for its rows. This necessitates an interprocessor communication step 
wherein all external entries in the vector are updated with values from the neighboring unknowns, 
before the start of the operation. Calculation of matrix-vector products on rows corresponding to 
the internal unknowns requires no external node values and can therefore proceed simultaneously 
with the communication step. 

Much of MPSalsa’s parallel implementation is designed with the goal of maximizing the 
speed of this matrix-vector multiplication, which essentially requires minimizing the time needed 
to perform the communications. This subsection has described several strategies employed by MP- 
Salsa to achieve rapid interprocessor communications: reordering of the solution vector to mini- 
mize work involved with the communications step, the pre-setup of the communications stencil, 

47 



and the ability to do calculations during the communications step. The other basic algorithmic as- 
pect of highly efficient unstructured communication is the partitiowg of the FE mesh in a way 
that reduces the total communication volume and message start-ups while achieving load balance 
over all of the processors. To do this, MPSalsa currently uses a static partitioning generated by 
Chaco [56], a general graph partitioning code that was developed in conjunction with MpSalsa. 
Chaco supports a variety of new and established graph partitioning heuristics, such as spectral 
techniques, geometric methods, multilevel algorithms and the Kernighan-Lin method. All of these 
approaches may be applied in bisection, quadrisection, or octasection mode to recursively partition 
general graphs for mapping onto hypercube and mesh architectures of arbitrary size. Using these 
techniques, a problem mapping with low communications volume, good load balancing, minimum 
message start-ups and small amounts of congestion can be generated. 

6.2 Numerical Properties 

The system of transport-feaction equations, Eqn.’s 95-103, is a system of nonlinear non-self- 
adjoint PDEs. The final matrix problem is obtained by applying the Petrov-Galerkin approximation 
to these equations and then doing a Newton-Kantoravich linearization. These discrete equations 
form a nonsymmetric system of stiff Differential Algebraic Equations (DAEs). The nonsymmetric 
global matrix operator is a result of the convection operators in the transport part of the equations, 
and the stiffness in the equations is the result of the disparate time scales for the fast chemical ki- 
netics terms and the relatively slow transport processes of diffusion and convection. 

The stifhess and the strongly coupled nature of the reaction operators, combined with the el- 
liptic behavior of the pressure for incompressible flows, lead to a natural choice of fully implicit 
time integration techniques to provide stable time integration. The nonsymmetric character of these 
equations requires the use of nonsymmetric iterative methods. 

6.3 Ikansient Solution Algorithms 

The transient time integration methods used in MPSalsa follow closely the development of 
Gartling [22] in the NACHOS 11 code and the work of Gresho [50]. When appropriate, we have 
used the discussion from E221 with the author’s permission. 

Two types of implicit predictor/corrector integrators are used in MPSalsa: ForwardlBackward 
Euler and Adams-Bashforth/Trapezoidal Rule. As discussed above, implicit solution methods are 
preferred for transport-reaction equations. Explicit methods suffer from a number of difficulties, 
including a) the strong elliptic nature of pressure in incompressible flows, b) severe time step lim- 
itations needed to maintain stability, c) fully integrated and consistent mass matrices require the 
inversion - defeating the efficiency of the explicit method, d) the reduction of accuracy due to di- 
agonalizing M(p) to avoid (c). Effective explicit time integration demands 1-pt-quadrature and 
the associated stable lumped mass matrix. Though computationally expensive, implicit methods 
are desirable because of their stability and ability to integrate efficiently to steady state solutions 
for problems where the diffusion operator is important. The implicit time integrators in MPSalsa 
are based on predictor/corrector methods to improve their accuracy and efficiency. Both integra- 
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tors may be used with either a constant or dynamic time step selection algorithm. A solution of the 
resulting nonlinear, algebraic system for each tinie plane is obtained by the inexact Newton method 
described in Section 6.4. 

6.3.1 Forward /Backward Euler Integration 

The first-order integration method in MPSalsa employs a forward Euler scheme as a predictor, 
with the backward Euler method as a corrector. The scheme uses the forward Euler predictor, 

The implicit backward Euler corrector uses the following approximation for the time deriva- 
tive of the solution vector 

to solve the residual equations at tn + 1 .  

In Eqn. 124 and 125, the subscript indicates the time plane index, the superscript p denotes the 
predicted value at time tn + 1 .  The solution of the implicit corrector, Eqn. 126, at tn + is obtained 
by the inexact Newton scheme outlined in the Section 6.4. The rate of convergence of Newton’s 
method is greatly increased if the initial solution estimate is ‘‘close’’ to the true solution. The solu- 
tion predicted from Eqn. 124 provides this initial guess for the inexact Newton scheme. Appendix 
C provides the details of developing the discrete Newton equations for the governing transport-re- 
action equations. 

6.3.2 Adarns-BashforthlTrapezoidal Rule Integration 

An explicit integration method that is the second-order analogue to the forward Euler method 
is the variable step, Adams-Bashforth predictor given by 

This formula can be used to predict the solution vector, given the time derivatives at the pre- 
vious two time stepS,Vn and V n  - 1 .  A compatible corrector equation is available in the form of the 
trapezoidal rule. This corrector uses an approximation to the time derivative as 

Eqn. 128 is then used in Eqn. 126 to find the solution at tn+ 1 .  Eqn. 128 is also used to calculate 
the time derivative at tn + for later use in the predictor equation, Eqn. 127, in later time steps. 
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6.3.3 Time Integration Procedures 

The integration formulas above form the basis for the solution of time-dependent problems in 
MPSalsa. The similarity of the first- and second-order methods makes it possible to include both 
procedures in a single algorithm. The major steps in the time integration procedure are outlined 
here. 

At the beginning of each time step, it is assumed that all of the required solution and time de- 
rivative vectors are known and the time increment for the next step has been selected. To advance 
the solution from time t, to time t, + requires the following steps: 

1) A tentative solution vector, Vz + , is computed using the predictor equation (either Eqn. 124 or 
Eqn. 127). 

2) The implicit corrector equation, Eqn. 126, using Eqn. 125 or Eqn. 128 for the time derivative, is 
solved for the actual solution, V ,  + 1. This involves the iterative solution of the linear matrix 
equation arising from Newton’s method. The predicted values V: + are used to initialize the 
FTi residuals and the Jacobian matrix for the Newton iterations. 

3) The time derivative vectors are updated using the new solution V ,  + and Eqn. 125 or Eqn. 
128. These equations can be conveniently described by the following relationship for the time 
derivative, 

v , + 1  = C~(Vn+1-Vn) - (a -1 )V* ,  

where 

I 1  

CJ = 
2 

and 

1 

2 

order = 1 

order = 2 

The relation, &, + l /dV,  ~ = CJ,  can be used in the formulation of the Jacobian. 

4) A new integration time step is computed. The time step selection process is based on the analy- 
sis of the time truncation errors in the predictor and corrector.formulas as described in the Sec- 
tion 6.3.4. If a constant time step is being used, this step is omitted. 

6.3.4 Time Step Control 

The time integration procedures above can be used with either a user-defined constant time 
step or a dynamically controlled time step that is initialized with the user-defied time step size. In 
general, the apriori selection of a time step size can be a very difficult task, especially for stiff 
reacting flow equations with complex fluid flows. One of the benefits of using the predictor/cor- 
rector algorithms is that they provide a rational basis for dynamically selecting the time step size. 
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The details of time step control algorithm can be found in Gresho et al. [50]. The general for- 
mulation of the time step selection process comes from well-established procedures for solving or- 
dinary differential equations. By comparing the time truncation errors for two time integration 
methods of comparable order, a formula can be developed for predicting the next time step, based 
on a user-specified error tolerance. In the present case, the time truncation errors for the explicit 
predictor and the implicit corrector steps are analyzed and provide the required formulas. 

The time step estimation formula is given by [50] as 

where m = 1/2, b = 2 for the first-order method and m = 1/3, b = 3( 1 + At,+ l /Atn) for the sec- 
ond-order scheme. Also, r,  is a ratio of the desired time integration error to an estimate of the time 
integration error. Clearly, when r, is large, a larger time step can be taken and when r, is small, 
a shorter time step must be used. In practice, we have selected a measure of the time integration 
error that works well for the combined fluid flow and reaction kinetics problem. In MPSalsa, this 
ratio is computed as 

where the subscript i refers to the component of the solution vector, Nunk is the total number of 
unknowns and ei is the desired integration accuracy for this component. For the fluid velocity un- 
knowns, Zi = E~IIII]~ , where E, is the relative accuracy desired; for temperature, Zi = EAIT~]~. 
These measures enforce a minimum relative accuracy of time integration for the computed value 
locally, compared with a measure of the maximum value of the variable in the domain and are very 
similar to the values used in NACHOS II [22]. The hydrodynamic pressure, P , does not influence 
the step size control norm since there is no time derivative of the pressure in the governing trans- 
port equations. However, the determination of convergence at each time step does involve the pres- 
sure unknown. For the mass fraction unknowns, MPSalsa requires that the local time truncation 
error be small relative to the magnitude-of the local variable and to an absolute measure of accuiacy 
since even trace amounts of a specific chemical species can produce sigmfkant changes in the ki- 
netics. To accomplish this, MPSalsa uses gi = q.IYk, i l  + E,, where E, is the desired absolute ac- 
curacy. 

6.4 Inexact Newton Method with Backtracking 

In this section, we briefly discuss an implementation of Newton's method that uses approxi- 
mate iterative solution techniques to solve the sequence of linear problems produce by the Newton 
linearization scheme. The particular implementation we use follows the work of Eisenstat and 
Walker [51,52,53]. This method differs from standard Newton implementations as follows. First 
the inexact Newton scheme uses iterative solution techniques rather than direct matrix inversion 
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methods. Second, at each stage of the Newton iteration, the algorithm selects an appropriate level 
of convergence required for the iterative linear solver. This strategy is used to increase robustness 
of the nonlinear algorithm and to ensure that the linear equations are not over-solved at early stages 
of the Newton iteration when the Jacobian matrix is not very accurate. Third, this algorithm re- 
quires that at each step of the Newton iteration, the nonlinear residual must decrease. If this condi- 
tion is not satisfied, a backtracking algorithm decreases the Newton step size and re-evaluates the 
residual at this new proposed solution. The'backtracking algorithm is called recursively until the 
residual reduction criteria is satisfied and a new approximate solution is obtained. 

6.4.1 Nonlinear Convergence Criteria 

Two separatei convergence requirements are enforced for the Newton scheme. The first re- 
quires that the ratio of the nom of the current nonlinear residual to the norm of the initial residual 
be reduced by a preset factor (default: The second criterion requires that the Newton cor- 
rection for any variable be suitably "small" compared to the magnitude of the variable. This crite- 
rion is very similar to the ratio used to dynamically control the time step size and is standard in 
general purpose ODE packages such as LSODE [58]. This convergence criterion is given by 

This criterion requires the ratio of the Newton correction IAVjl be small relative to the variable 
I Vil with constant E, , and to be small in absolute terms compared to E,. This assures that all vari- 
ables, even variables with small magnitude (e.g., trace species), are considered in determining 
when to halt the Newton iteration. 

6.5 Linear System Solvers 

The linear systems generated by the Newton iteration are iteratively solved using precondi- 
tioned Krylov methods. The methods are among the fastest and most robust iterative methods cur- 
rently available. Our implementation of MPSalsa uses a parallel preconditioned Krylov solver li- 
brary called Aztec[ 123. The Aztec library provides an efficient and well-defmed interface to a num- 
ber of advanced parallel iterative solution methods. These include the well-known conjugate 
gradient (CG) method for symmetric positive definite systems and a number of closely related al- 
gorithms for the solution of nonsymmetric systems (e.g. generalized minimum residual method 
(GMRES) and transpose free quasi-minimum residual method (TFQMR)) as well as various alge- 
braic and domain decomposition preconditioners. 

For robust and efficient solution procedures, MPSalsa and Aztec use a sparse block storage 
scheme called the variable block row (VBR) format [13]. Storing the matrix in a sparse format al- 
lows very efficient iterative computational kernels to be used [50,54] and allows for the use of ro- 
bust general preconditioning methods. These robust schemes are critical to the solution of the 
strongly-coupled physics solved in MPSalsa. In the VBR format, the nonlinear dense coupling of 
the Jacobian at each FE node is stored intact as a small dense block. Details of the Aztec solver 
library can be obtained from [12]. 
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Nomenclature 

f7 

Activity of the kth bulk-phase species. 
Surface area. 
Pre-exponential factor in computation of rate constant for reaction i . 
Concentration of the kth surface species in the nrh surface phase. 

Average molar concentration of the n bulk phase (mol ~ m - ~ ) .  

Specific heat of the mixture at constant pressure. 
Specific heat at constant pressure for species k. 
Diffusional driving force for species k. 
Multicomponent diffusion coefficient. 

Binary diffusion coefficient between species k andj. 

Mixture thermal diffusion coefficient for species k. 
Mixture-averaged diffusion coefficient. 

Effective Fickian diffusion coefficient for use in the Jacobian (cm s ). 
Activation energy for reaction i f  

Dhichlet boundary condition on the normal component of the velocity. 

th 

2 -1 

ftl. Dirichlet boundary condition on one of the tangential components of the velocity, 
in the direction tl. 
Vector value of the surface integral boundary condition applied on the normal com- 
ponent of the stress tensor. 
Value of the surface integral boundary condition for the normal component of the 

diffusion flux of the Ph gas-phase species. 
g External force of gravity. 

2 1  g n )  Molar growth rate per unit of surface area for bulk phase n (mol cm- s- ). 

AH;, j (T,)  Heat of formation of thej* species at the reference temperature To. 
h Mixture enthalpy per unit mass. 

* 
he Effective element length of element Qe. 

g k  

i 
I 

Specific enthalpy of species k (per unit mass). 

Vector [I, 0, o f .  
Identity matrix or second order tensor. 
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k 

ki 
k; 

Vector LO, 1, o f .  
Diffusive flux for species k (gm cm s ). -2 -1 

Vector [o, 0~11'. . 
Forward rate constant for the irh reaction. 

Reverse rate constant for the ih reaction. 

KF Equilibrium constant in concentration units for reaction i. 

K{(n) First bulk species in the nrh bulk phase. 

KL(n) Last bulk species in the nrh bulk phase. 

Ks (n) First surface species in the n surface phase. 

K:(n) Last surface species in the nrh surface phase. 

f th 

L, 
. N 
N ,  
Ne  
Ng 

N R  

Film thickness for the nrh bulk phase. 
Number of global nodes. 
Number of dimensions in the problem. 
Number of elements in 0. 
Number of gas-phase chemical species; also the number of gas-phase species equa- 
tions. 
Number of elementary reversible or irreversible reactions. 

bulk Nphase Number Of bulk phases. 

Number of surface phases. 

Nunk Total number of solution unknowns. 
P Hydrodynamic pressure. 
Po Thermodynamic pressure. 
q Total heat flux vector. 
4 c  Heat conduction vector. 
q, Radiative heat flux vector. 

4i Rate-of-progress variable for the i f h  gas-phase reaction (mol cm s ). 
R Universal gas constant. 
Re*e Modified element Reynolds number for element Qe . 

i k  Surface production rate of gas- or surface-phase species k due to Surface reactions 
(mol cm-2 s-l). 

-3 -1 
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T 
z 
T 
t 
Q 

Vk 

w 

U 

wk 

X 

' k  

Shear stress tensor. 
Surface traction vector. 
Temperature (Kelvin). 
Time. 
Volumetric source term for the energy equation. 
Mass averaged velocity (cm s-')- 
Diffusion velocity of species k 
Molecular weight of species k 
Mean molecular weight of mixture. 
Apoint in space; x = (x,  y )  in 2-D; x = (x,  y , z )  in 3-D. 
Mole fraction of species k. 

Xi(n)  Bulk mole fraction for bulk species k in the nth bulk phase. 
[ x k ]  Concentration of species k (moles ~ r n - ~ ) .  
Y k  Mass fraction of species k. 
Zk(n) Surface site fraction for surface species k for the nth surface phase. 

GREEK 

P 
P 
P i  

E 

Ea 

E, 

r 
m 
Xk 

Y 

P 
P 
h 

Ok 

vki 

V f k i  

Parameter in residual of continuity equation. 
Coefficient of volumetric expansion. 
Temperature exponent in computation of rate constants for reaction i . 
Specific internal energy of the mixture (erg gm-'). 
User-specified absolute accuracy. 
User-specified relative accuracy. 
Boundary of computational domain Q. 
Surface site density for surface phase n. 

Chemical symbol for the kzh species. 
Shear stress tensor. 
Mixture density (gm ~ m - ~ ) .  
Mixture dynamic viscosity. 
Mixture thermal conductivity. 
Number of surface sites covered by the kth species. 
v"ki  + v ' k i .  

Stoichiometric coefficient of the krh species for the forward direction of the ih gas- 
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phase reaction. 
Stoichiometric coefficient of the kfh species for the reverse direction of the i fh  gas- 
phase reaction. 
Viscous dissipation term in energy equation. 
Global finite element basis function at node J .  

Volumetric molar rate of production of species i (mol cm-3 s-l). 

v ' ' ~ ~  

$ 
OJ 

hi 
D Computational domain. 



Distribution 

IN'ERNM DISTRIBUTION: 

1 MSO321 
1 MSO601 
1 MS1111 
1 MS1111. 
20 MS1111 
1 MS 1111 
1 MS1111 
5 MS1111 
1 MS1111 
1 MS1110 
1 MS 1109 
1 MSO827 
1 MSOS27 
1 MS0835 

1 MS9018 
2 MSO899 
1 MS0619 

William Camp, 9200 
. Hany K. Moffat, 1126 

Sudip Dosanjh, 9221 
Scott Hutchinson, 9221 
John N. Shadid, 9221 . 
Andrew G. Salinger, 9221 
Gary L. Hennigan, 9221 
Rodney C .  Schmidt, 9221 
Thomas M. Smith, 9221 
Ray S. Tuminaro, 9222 
Karen Devine, 9224 
Mario Maknez, 91 11 ' 

Poly Hopkins, 91 11 
Mark A. Christon, 9111 

Central Technical Files, 8940-2 
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