Electronic and geometric structure of transition-metal nanoclusters

PDF Version Also Available for Download.

Description

A massively-parallel ab initio computer code, which uses Gaussian bases, pseudopotentials, and the local density approximation, permits the study of transition-metal systems with literally hundreds of atoms. We present total energies and relaxed geometries for Ru, Pd, and Ag clusters with N = 55, 135, and 140 atoms; we also used the DMOL code to study 13-atom Pd and Cu clusters, with and without hydrogen. The N = 55 and 135 clusters were chosen because of simultaneous cubo-octahedral (fcc) and icosahedral (icos) sub-shell closings, and we find icos geometries are preferred. Remarkably large compressions of the central atoms are observed ... continued below

Physical Description

36 p.

Creation Information

Jennison, D.R.; Schultz, P.A.; Sears, M.P. & Klitsner, T. August 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A massively-parallel ab initio computer code, which uses Gaussian bases, pseudopotentials, and the local density approximation, permits the study of transition-metal systems with literally hundreds of atoms. We present total energies and relaxed geometries for Ru, Pd, and Ag clusters with N = 55, 135, and 140 atoms; we also used the DMOL code to study 13-atom Pd and Cu clusters, with and without hydrogen. The N = 55 and 135 clusters were chosen because of simultaneous cubo-octahedral (fcc) and icosahedral (icos) sub-shell closings, and we find icos geometries are preferred. Remarkably large compressions of the central atoms are observed for the icos structures (up to 6% compared with bulk interatomic spacings), while small core compressions ({approx} 1 %) are found for the fcc geometry. In contrast, large surface compressive relaxations are found for the fcc clusters ({approx} 2-3% in average nearest neighbor spacing), while the icos surface displays small compressions ({approx} 1%). Energy differences between icos and fcc are smallest for Pd, and for all systems the single-particle densities of states closely resembles bulk results. Calculations with N = 134 suggest slow changes in relative energy with N. Noting that the 135-atom fcc has a much more open surface than the icos, we also compare N = 140 icos and fcc, the latter forming an octahedron with close packed facets. These icos and fcc clusters have identical average coordinations and the octahedron is found to be preferred for Ru and Pd but not for Ag. Finally, we compare Harris functional and LDA energy differences on the N = 140 clusters, and find fair agreement only for Ag.

Physical Description

36 p.

Notes

OSTI as DE96013911

Source

  • Other Information: PBD: Aug 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96013911
  • Report No.: SAND--96-1745
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/273810 | External Link
  • Office of Scientific & Technical Information Report Number: 273810
  • Archival Resource Key: ark:/67531/metadc668378

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 13, 2016, 1:42 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Jennison, D.R.; Schultz, P.A.; Sears, M.P. & Klitsner, T. Electronic and geometric structure of transition-metal nanoclusters, report, August 1, 1996; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc668378/: accessed November 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.