Determination of buildup factors in titanium and depleted uranium

PDF Version Also Available for Download.

Description

Approximately 13% by volume of the US Department of Energy (DOE) current backlog of radioactive waste is characterized as high-level waste. Transportation of these wastes requires that the waste package have adequate shielding against gamma radiation. This project investigates the radiation shielding performance of titanium and depleted uranium, which have been proposed for use as gamma shielding materials in DOE transportation packages, by experimentally determining their buildup factors. Buildup factors are important in shield heating and radiation damage calculations. A point-isotropic-source type of buildup factor is the most useful for application in the point-kernal approach utilized in many simple shielding ... continued below

Physical Description

9 p.

Creation Information

Jones, T.H.; Busch, R.D.; Miller, J.A. & Seager, K.D. December 31, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times , with 4 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Approximately 13% by volume of the US Department of Energy (DOE) current backlog of radioactive waste is characterized as high-level waste. Transportation of these wastes requires that the waste package have adequate shielding against gamma radiation. This project investigates the radiation shielding performance of titanium and depleted uranium, which have been proposed for use as gamma shielding materials in DOE transportation packages, by experimentally determining their buildup factors. Buildup factors are important in shield heating and radiation damage calculations. A point-isotropic-source type of buildup factor is the most useful for application in the point-kernal approach utilized in many simple shielding codes. The point-kernal method provides reasonable results for cases in which the shield is made of one solid material and the source can be approximated as one homogeneous material. The point-kernal method has been incorporated into a large number of shielding codes treating three-dimensional geometry using buildup factor data in some form. Buildup factors vary with a number of parameters such as the distance of penetration through the attenuating medium; the geometric configuration of the attenuating medium, source and detector position; the composition of the medium; the detector response function; and the energy and direction of emission of the source photons, ideally taken to be monoenergetic and isotropic.

Physical Description

9 p.

Notes

INIS; OSTI as DE96003640

Source

  • PATRAM `95: 11. international conference on packaging and transportation of radioactive materials, Las Vegas, NV (United States), 3-8 Dec 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96003640
  • Report No.: SAND--95-3019C
  • Report No.: CONF-951203--15
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 174687
  • Archival Resource Key: ark:/67531/metadc668340

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 13, 2016, 1:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Jones, T.H.; Busch, R.D.; Miller, J.A. & Seager, K.D. Determination of buildup factors in titanium and depleted uranium, article, December 31, 1995; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc668340/: accessed November 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.