Fatigue and fracture of fiber composites under combined interlaminar stresses

PDF Version Also Available for Download.

Description

As part of efforts to develop a three-dimensional failure model for composites, a study of failure and fatigue due to combined interlaminar stresses was conducted. The combined stresses were generated using a hollow cylindrical specimen, which was subjected to normal compression and torsion. For both glass and carbon fiber composites, normal compression resulted in a significant enhancement in the interlaminar shear stress and strain at failure. Under moderate compression levels, the failure mode transitioned from elastic to plastic. The observed failure envelope could not be adequately captured using common ply- level failure models. Alternate modeling approaches were examined and it ... continued below

Physical Description

258 Kilobytes

Creation Information

DeTeresa, S J; Freeman, D C & Groves, S E June 25, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

As part of efforts to develop a three-dimensional failure model for composites, a study of failure and fatigue due to combined interlaminar stresses was conducted. The combined stresses were generated using a hollow cylindrical specimen, which was subjected to normal compression and torsion. For both glass and carbon fiber composites, normal compression resulted in a significant enhancement in the interlaminar shear stress and strain at failure. Under moderate compression levels, the failure mode transitioned from elastic to plastic. The observed failure envelope could not be adequately captured using common ply- level failure models. Alternate modeling approaches were examined and it was found that a pressure-dependent failure criterion was required to reproduce the experimental results. The magnitude of the pressure-dependent terms of this model was found to be material dependent. The interlaminar shear fatigue behavior of a carbon/epoxy system was also studied using the cylindrical specimen. Preliminary results indicate that a single S/N curve which is normalized for interlaminar shear strength may be able to reproduce the effects of both temperature and out-of-plane compression on fatigue life. The results demonstrate that there are significant gains to be made in improving interlaminar strengths of composite structures by applying out-of-plane compression. This effect could be exploited for improved strength and fatigue life of composite joints and other regions in structures where interlaminar stress states are critical.

Physical Description

258 Kilobytes

Subjects

Source

  • American Society for Composites 13th Technical Conference, Baltimore, MD, September 21-23, 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00002450
  • Report No.: UCRL-JC-131165
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 2450
  • Archival Resource Key: ark:/67531/metadc668290

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 25, 1998

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • May 6, 2016, 9:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

DeTeresa, S J; Freeman, D C & Groves, S E. Fatigue and fracture of fiber composites under combined interlaminar stresses, article, June 25, 1998; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc668290/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.