Application of adaptive optics for controlling the NIF laser performance and spot size

PDF Version Also Available for Download.

Description

The National Ignition Facility (NIF) laser will use a 192-beam multi-pass architecture capable of delivering several MJ of UV energy in temporal pulse formats varying from sub-ns square to 20 ns precisely-defined high-contrast shapes. Each beam wavefront will be subjected to effects of optics inhomogeneities, figuring errors, mounting distortions, prompt and slow thermal effects from flashlamps, driven and passive air-path turbulence, and gravity-driven deformations. A 39-actuator intra-cavity deformable mirror, controlled by data from a 77-lenslet Hartman sensor will be used to correct these wavefront aberrations and thus to assure that stringent farfield spot requirements are met. We have developed numerical ... continued below

Physical Description

540 Kilobytes pages

Creation Information

Auerbach, J.; Bliss, E.; Henesian, M.; Lawson, J.; Manes, K.; Renard, P. et al. August 17, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The National Ignition Facility (NIF) laser will use a 192-beam multi-pass architecture capable of delivering several MJ of UV energy in temporal pulse formats varying from sub-ns square to 20 ns precisely-defined high-contrast shapes. Each beam wavefront will be subjected to effects of optics inhomogeneities, figuring errors, mounting distortions, prompt and slow thermal effects from flashlamps, driven and passive air-path turbulence, and gravity-driven deformations. A 39-actuator intra-cavity deformable mirror, controlled by data from a 77-lenslet Hartman sensor will be used to correct these wavefront aberrations and thus to assure that stringent farfield spot requirements are met. We have developed numerical models for the expected distortions, the operation of the adaptive optic system, and the anticipated effects on beam propagation, component damage, frequency conversion, and target-plane energy distribution. These models have been extensively validated against data from LLNL's Beamlet, and Amplab lasers. We review the expected beam wavefront aberrations and their potential for adverse effects on the laser performance, describe our model of the corrective system operation, and display our predictions for corrected-beam operation of the NI

Physical Description

540 Kilobytes pages

Source

  • Third Annual International Conference on Solid State Lasers for Application (SSLA) to Inertial Confinement Fusion (ICF), Monterey, CA (US), 07/07/1998--07/12/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-130028
  • Report No.: 39DP02000
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 2841
  • Archival Resource Key: ark:/67531/metadc668265

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 17, 1998

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • May 6, 2016, 2:13 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Auerbach, J.; Bliss, E.; Henesian, M.; Lawson, J.; Manes, K.; Renard, P. et al. Application of adaptive optics for controlling the NIF laser performance and spot size, article, August 17, 1998; California. (digital.library.unt.edu/ark:/67531/metadc668265/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.