Severe accident progression perspectives for Mark I containments based on the IPE results

PDF Version Also Available for Download.

Description

Based on level 2 analyses in IPE (Individual Plant Examination) submittals accident progression, perspectives were obtained for all containment types. These perspectives consisted of insights on containment failure modes, releases therein, and factors responsible for the results. To illustrate the types of perspectives acquired on severe accident progresssion, insights obtained for (BWR) Mark I containments are discussed here. Mark I containments have high strength but small volumes and rely on pressure suppression pools to condense steam released from the reactor coolant system during an accident. Accidents causing structural failure of the drywell shortly after the core debris melts through the ... continued below

Physical Description

9 p.

Creation Information

Lin, C.C.; Lehner, J.R.; Pratt, W.T. & Drouin, M. December 31, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Based on level 2 analyses in IPE (Individual Plant Examination) submittals accident progression, perspectives were obtained for all containment types. These perspectives consisted of insights on containment failure modes, releases therein, and factors responsible for the results. To illustrate the types of perspectives acquired on severe accident progresssion, insights obtained for (BWR) Mark I containments are discussed here. Mark I containments have high strength but small volumes and rely on pressure suppression pools to condense steam released from the reactor coolant system during an accident. Accidents causing structural failure of the drywell shortly after the core debris melts through the reactor vessel were found to be dominant contributors to risk. Importance of individual containment failure mechanisms depends on plant features and in some cases on modeling assumptions; however the following mechanisms were found important: drywell shell melt-through caused by direct contact with core debris and drywell failure caused by rapid pressure/temperature pulses at time of vessel melt-through. Drywell failure caused by gradual pressure/temperature buildup due to gases and steam released during core/concrete interactions is important in some IPEs. In other IPEs vent was an important contributor. However, accidents that bypass containment (eg interfacing systems LOCA)or involve containment isolation failure were not important contributors to the CDF in any of the IPEs for Mark I plants. These accidents are also not important to risk (even though they can involve large fission product release) because their frequencies of occurrence are so much lower than frequencies of early structural failure caused by other accidents that dominate the CDF.

Physical Description

9 p.

Notes

INIS; OSTI as DE96011490

Source

  • 23. water reactor safety information meeting, Bethesda, MD (United States), 23-25 Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96011490
  • Report No.: BNL-NUREG--62800
  • Report No.: CONF-9510156--15
  • Grant Number: AC02-76CH00016
  • Office of Scientific & Technical Information Report Number: 245537
  • Archival Resource Key: ark:/67531/metadc668246

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 7, 2016, 8:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lin, C.C.; Lehner, J.R.; Pratt, W.T. & Drouin, M. Severe accident progression perspectives for Mark I containments based on the IPE results, article, December 31, 1995; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc668246/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.