The oxidation behavior of ODS iron aluminides

PDF Version Also Available for Download.

Description

Oxide-dispersed Fe-28at.%Al-2%Cr alloys were produced by a powder metallurgy technique followed by hot extrusion. A variety of stable oxides were added to the base alloy to assess the effect of these dopants on the oxidation behavior at 1200{degrees}C in air and O{sub 2}. An Al{sub 2}O{sub 3} dispersion flattened the {alpha}-Al{sub 2}O{sub 3} scale, but produced none of the other reactive element effects and had an adverse influence on the long-term oxidation behavior. A Y{sub 2}O{sub 3} dispersion improved the alumina scale adhesion relative to a Zr alloy addition at 1200{degrees} and 1300{degrees}C. However, the Y{sub 2}O{sub 3} dispersion was ... continued below

Physical Description

46 p.

Creation Information

Pint, B.A.; Tortorelli, P.F. & Wright, I.G. May 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Oxide-dispersed Fe-28at.%Al-2%Cr alloys were produced by a powder metallurgy technique followed by hot extrusion. A variety of stable oxides were added to the base alloy to assess the effect of these dopants on the oxidation behavior at 1200{degrees}C in air and O{sub 2}. An Al{sub 2}O{sub 3} dispersion flattened the {alpha}-Al{sub 2}O{sub 3} scale, but produced none of the other reactive element effects and had an adverse influence on the long-term oxidation behavior. A Y{sub 2}O{sub 3} dispersion improved the alumina scale adhesion relative to a Zr alloy addition at 1200{degrees} and 1300{degrees}C. However, the Y{sub 2}O{sub 3} dispersion was not as effective in improving scale adhesion in Fe{sub 3}Al as it is in FeCrAl. This inferior performance is attributed to a larger amount of interfacial void formation on ODS Fe{sub 3}Al.

Physical Description

46 p.

Notes

OSTI as DE96010428

Source

  • European Federation of Corrosion: workshop on oxidation of intermetallics, Frankfurt (Germany), 18-19 Jan 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96010428
  • Report No.: CONF-960191--1
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 237433
  • Archival Resource Key: ark:/67531/metadc668205

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Jan. 22, 2016, 1:02 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Pint, B.A.; Tortorelli, P.F. & Wright, I.G. The oxidation behavior of ODS iron aluminides, article, May 1, 1996; Tennessee. (digital.library.unt.edu/ark:/67531/metadc668205/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.