A model for shear-band formation and high-explosive initiation in a hydrodynamics code

PDF Version Also Available for Download.

Description

This report describes work in progress to develop a shear band model for MESA-2D. The object of this work is (1) to predict the formation of shear bands and their temperature in high explosive (HE) during a MESA-2D calculation, (2) to then assess whether the HE would initiate, and (3) to allow a detonation wave initiated from a shear band to propagate. This requires developing a model that uses average cell data to estimate the size and temperature of narrow region (generally much narrower than the cell size) that is undergoing shear within the cell. The shear band temperature (rather ... continued below

Physical Description

48 p.

Creation Information

Kerrisk, J.F. March 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report describes work in progress to develop a shear band model for MESA-2D. The object of this work is (1) to predict the formation of shear bands and their temperature in high explosive (HE) during a MESA-2D calculation, (2) to then assess whether the HE would initiate, and (3) to allow a detonation wave initiated from a shear band to propagate. This requires developing a model that uses average cell data to estimate the size and temperature of narrow region (generally much narrower than the cell size) that is undergoing shear within the cell. The shear band temperature (rather than the average cell temperature) can be used to calculate the flow stress of the material in the cell or to calculate heat generation from reactive materials. Modifications have been made to MESA-2D to calculate shear band size and temperature, and to initiate HE detonation when conditions warrant. Two models have been used for shear-band size and temperature calculation, one based on an independent estimate of the shear band width and a second based on the temperature distribution around the shear band. Both models have been tested for calculations in which shear band formation occurs in steel. A comparison of the measured and calculated local temperature rise in a shear band has been made. A model for estimating the time to initiation of the HE based on the type of HE and the temperature distribution in a shear band has also been added to MESA-2D. Calculations of conditions needed to initiate HE in projectile-impact tests have been done and compared with experimental data. Further work is d to test the model.

Physical Description

48 p.

Notes

OSTI as DE96008818

Source

  • Other Information: PBD: Mar 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96008818
  • Report No.: LA--13127
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/219526 | External Link
  • Office of Scientific & Technical Information Report Number: 219526
  • Archival Resource Key: ark:/67531/metadc668162

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Feb. 25, 2016, 9:10 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kerrisk, J.F. A model for shear-band formation and high-explosive initiation in a hydrodynamics code, report, March 1, 1996; New Mexico. (digital.library.unt.edu/ark:/67531/metadc668162/: accessed December 12, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.