Fabrication of large radii toroidal surfaces by single point diamond turning

PDF Version Also Available for Download.

Description

An unconventional machining technique has been developed for producing relatively large radii quasi-toroidal surfaces which could not normally be produced by conventional diamond turning technology. The maximum radial swing capacity of a diamond turning lathe is the limiting factor for the rotational radius of any toroid. A typical diamond turned toroidal surface is produced when a part is rotated about the spindle axis while the diamond tool contours the surface with any curved path. Toric surfaces sliced horizontally, have been used in laser resonator cavities. This paper will address the fabrication of a special case of toroids where a rotating ... continued below

Physical Description

4 p.

Creation Information

Cunningham, J.P.; Marlar, T.A.; Miller, A.C. & Paterson, R. L. December 31, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 31 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An unconventional machining technique has been developed for producing relatively large radii quasi-toroidal surfaces which could not normally be produced by conventional diamond turning technology. The maximum radial swing capacity of a diamond turning lathe is the limiting factor for the rotational radius of any toroid. A typical diamond turned toroidal surface is produced when a part is rotated about the spindle axis while the diamond tool contours the surface with any curved path. Toric surfaces sliced horizontally, have been used in laser resonator cavities. This paper will address the fabrication of a special case of toroids where a rotating tool path is a circle whose center is offset from the rotational axis of the toroid by a distance greater than the minor radius of the tool path. The quasi-toroidal surfaces produced by this technique approximate all asymmetrical combinations of concave/convex section of a torus. Other machine configurations have been reported which offer alternative approaches to the fabrication of concave asymmetric aspheric surfaces. Prototypes of unique lenses each having two quasi-toroidal surfaces were fabricated in the Ultraprecision Manufacturing Technology Center at form key components of a scanned laser focusing system. As an example of the problem faced, the specifications for one of the surfaces was equivalent to a section of a torus with a two meter diameter hole. The lenses were fabricated on a Nanoform 600 diamond turning lathe. This is a numerically controlled two axis T-base lathe with an air bearing spindle and oil hydrostatic slides. The maximum radial swing for this machine is approximately 0.3 meters.

Physical Description

4 p.

Notes

OSTI as DE96005487

Source

  • 10. annual meeting of the American Society for Precision Engineering, Austin, TX (United States), 15-20 Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96005487
  • Report No.: CONF-951056--4
  • Grant Number: AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 205186
  • Archival Resource Key: ark:/67531/metadc668135

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Jan. 19, 2016, 1:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 31

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cunningham, J.P.; Marlar, T.A.; Miller, A.C. & Paterson, R. L. Fabrication of large radii toroidal surfaces by single point diamond turning, article, December 31, 1995; Tennessee. (digital.library.unt.edu/ark:/67531/metadc668135/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.