Diamond and diamond-like carbon films for advanced electronic applications

PDF Version Also Available for Download.

Description

Aim of this laboratory-directed research and development (LDRD) project was to develop diamond and/or diamond-like carbon (DLC) films for electronic applications. Quality of diamond and DLC films grown by chemical vapor deposition (CVD) is not adequate for electronic applications. Nucleation of diamond grains during growth typically results in coarse films that must be very thick in order to be physically continuous. DLC films grown by CVD are heavily hydrogenated and are stable to temperatures {le} 400{degrees}C. However, diamond and DLC`s exceptional electronic properties make them candidates for integration into a variety of microelectronic structures. This work studied new techniques for ... continued below

Physical Description

42 p.

Creation Information

Siegal, M.P.; Friedmann, T.A. & Sullivan, J.P. March 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Aim of this laboratory-directed research and development (LDRD) project was to develop diamond and/or diamond-like carbon (DLC) films for electronic applications. Quality of diamond and DLC films grown by chemical vapor deposition (CVD) is not adequate for electronic applications. Nucleation of diamond grains during growth typically results in coarse films that must be very thick in order to be physically continuous. DLC films grown by CVD are heavily hydrogenated and are stable to temperatures {le} 400{degrees}C. However, diamond and DLC`s exceptional electronic properties make them candidates for integration into a variety of microelectronic structures. This work studied new techniques for the growth of both materials. Template layers have been developed for the growth of CVD diamond films resulting in a significantly higher nucleation density on unscratched or unprepared Si surfaces. Hydrogen-free DLC with temperature stability {le} 800{degrees}C has been developed using energetic growth methods such as high-energy pulsed-laser deposition. Applications with the largest system impact include electron-emitting materials for flat-panel displays, dielectrics for interconnects, diffusion barriers, encapsulants, and nonvolatile memories, and tribological coatings that reduce wear and friction in integrated micro-electro-mechanical devices.

Physical Description

42 p.

Notes

OSTI as DE96008354

Source

  • Other Information: PBD: Mar 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96008354
  • Report No.: SAND--96-0516
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/206462 | External Link
  • Office of Scientific & Technical Information Report Number: 206462
  • Archival Resource Key: ark:/67531/metadc668073

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 14, 2016, 8:24 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 15

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Siegal, M.P.; Friedmann, T.A. & Sullivan, J.P. Diamond and diamond-like carbon films for advanced electronic applications, report, March 1, 1996; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc668073/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.