R-curve response of silicon carbide whisker-reinforced alumina: Microstructural influence

PDF Version Also Available for Download.

Description

Rising fracture resistance with crack extension (R-curve response) can lead to improvements in the mechanical reliability of ceramics. To understand how microstructures influence the R-curve behavior, direct observations of crack interactions with microstructural features were conducted on SiC whisker-reinforced alumina. The contribution of the dominant toughening mechanisms to the R-curve behavior of these composites is discussed using experimental and theoretical studies.

Physical Description

6 p.

Creation Information

Sun, E. Y.; Hsueh, C. H. & Becher, P. F. December 31, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 21 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Rising fracture resistance with crack extension (R-curve response) can lead to improvements in the mechanical reliability of ceramics. To understand how microstructures influence the R-curve behavior, direct observations of crack interactions with microstructural features were conducted on SiC whisker-reinforced alumina. The contribution of the dominant toughening mechanisms to the R-curve behavior of these composites is discussed using experimental and theoretical studies.

Physical Description

6 p.

Notes

OSTI as DE96005969

Source

  • Fall meeting of the Materials Research Society (MRS), Boston, MA (United States), 27 Nov - 1 Dec 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96005969
  • Report No.: CONF-951155--40
  • Grant Number: AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 197838
  • Archival Resource Key: ark:/67531/metadc667902

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • June 27, 2016, 2:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 21

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sun, E. Y.; Hsueh, C. H. & Becher, P. F. R-curve response of silicon carbide whisker-reinforced alumina: Microstructural influence, article, December 31, 1995; Tennessee. (digital.library.unt.edu/ark:/67531/metadc667902/: accessed December 9, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.