This document was retrieved from the Boeing ISEARCH System.

Accession #: D196050324

Document #: SD-WM-ATR-120

Title/Desc: ACCEPTANCE TEST REPORT FOR THE 241AN107 ENRAF ADVANCED TECHNOLOGY GUAGES
To: TWR/ENG

Proj./Prog./Dept./Div.: AN-107 Caustic Addition

From: ICF KH/ETS (R57E00)

Cog. Engr.: J. L. Dowell (N2099)

Data Transmitted:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Document/Drawing No.</th>
<th>Sheet No.</th>
<th>Rev. No.</th>
<th>Title or Description of Data Transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WHC-SD-WM-ATR-120</td>
<td>N/A</td>
<td>0</td>
<td>Acceptance Test Report for the 241-AN-107 Enraf Advanced Technology Gauges</td>
</tr>
</tbody>
</table>

Receiver Remarks:

This Acceptance Test Report pertains to the testing of the Enraf gauges in the 305 Building.

System/Bldg./Facility: 241-AN

Required Response Date: June 9, 1995

Approval Designator (F) Reason for Transmittal (G) Disposition (H) & (I)

1. Approval 4. Review
2. Release 5. Post-Review
1. Approved 4. Reviewed no/comment
2. Approved w/comment 5. Reviewed w/comment
3. Disapproved w/comment 6. Receipt acknowledged

Signature/Distribution

<table>
<thead>
<tr>
<th>Reason</th>
<th>Disp.</th>
<th>(J) Name</th>
<th>(K) Signature</th>
<th>(L) Date</th>
<th>(M) MSIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Cog. Eng. J. L. Dowell</td>
<td>[Signature]</td>
<td>6-21</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Cog. Mgr. GN Hanson</td>
<td>[Signature]</td>
<td>2-05</td>
<td></td>
</tr>
</tbody>
</table>

Remark

Central Files (2) 3-89-04

Doe Approval

<table>
<thead>
<tr>
<th>Reason</th>
<th>Disp.</th>
<th>(J) Name</th>
<th>(K) Signature</th>
<th>(L) Date</th>
<th>(M) MSIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>KG Carothers</td>
<td>[Signature]</td>
<td>1-51</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>VR Enderlin</td>
<td>[Signature]</td>
<td>3-5-05</td>
<td></td>
</tr>
</tbody>
</table>

[Signature of EDT Orig]}

[Signature of Authorized Representative for Receiving Organization]
THIS PAGE INTENTIONALLY LEFT BLANK
RELEASE AUTHORIZATION

<table>
<thead>
<tr>
<th>Document Number:</th>
<th>WHC-SD-WM-ATR-120, Rev. 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Title:</td>
<td>Acceptance Test Report for the 241-AN-107 Enraf Advanced Technology Gauges</td>
</tr>
<tr>
<td>Release Date:</td>
<td>September 11, 1995</td>
</tr>
</tbody>
</table>

This document was reviewed following the procedures described in WHC-CM-3-4 and is:

APPROVED FOR PUBLIC RELEASE

<table>
<thead>
<tr>
<th>WHC Information Release Administration Specialist:</th>
<th>September 11, 1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.L. Ontiveros</td>
<td>September 11, 1995</td>
</tr>
</tbody>
</table>

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy. Available in paper copy. Printed in the United States of America. To obtain copies of this report, contact:

Westinghouse Hanford Company - Document Control Services
P.O. Box 1970, Mailstop H6-08, Richland, WA 99352
Telephone: (509) 372-2420; Fax: (509) 376-4989
2. Title
Acceptance Test Report for the 241-AN-107 Enraf
Advanced Technology Gauges

3. Number
WHC-SD-WM-ATR-120

4. Rev No.
0

5. Key Words
Enraf
AN-107
Caustic Addition

6. Author
Name: V. R. Enderlin

Signature

Organization/Charge Code 57EOO/N2099

7. Abstract
This Acceptance Test Report covers the results of the execution of the Acceptance
Test Procedure for the 241-AN-107 Enraf Advanced Technology Gauges. The test
verified the proper operation of the gauges to measure waste density and level in
the 241-AN-107 tank.
THIS PAGE INTENTIONALLY LEFT BLANK
WHC-SD-WM-ATR-120
Rev 0

ACCEPTANCE TEST REPORT

FOR THE

241-AN-107 ENRAF ADVANCED TECHNOLOGY GAUGES

June 1995

J.L. Dowell
V.R. Enderlin

Westinghouse Hanford Company
P.O. Box 1970
Richland, Washington 99352
CONTENTS

1.0 INTRODUCTION .. 3

2.0 DESCRIPTION OF TEST .. 3

3.0 TEST METHOD AND TEST EQUIPMENT 3

4.0 TEST RESULTS ... 4

5.0 CONCLUSIONS AND RECOMMENDATIONS 4

6.0 DISPOSITION OF TEST ITEM .. 5

APPENDIX A - ... A-1
1.0 INTRODUCTION

The Acceptance Test Procedure for the 241-AN-107 Enraf Advanced Technology Gauges, WHC-SD-WM-ATP-120, was completed May 11, 1995. K.G. Carothers of Tank Waste Remediation Engineering requested the test procedure and ICF Kaiser Engineers' Engineering Technical Support Services wrote the test procedure and executed it in the 305 Test Facility of the Hanford Site. Additional testing was done to verify the accuracy and the sensitivity of the gauges. The results are reported in WHC-SD-WM-TRP-240, Performance Requirements and Verification for Enraf 854 ATG Density Gauges for AN-107 Caustic Addition, June 1995.

2.0 DESCRIPTION OF TEST

The purpose of the test procedure was to verify the proper function of the four major components of the level and density data acquisition system to be used for the Tank 241-AN-107 Caustic Addition program. Testing was intended to verify that the hardware and software function according to the manufacturer's instructions and specifications and that the equipment is properly set up prior to being delivered to the tank farm for installation. Each component was evaluated against the corresponding criteria:

-- Two Enraf 854 Advanced Technology Gauges (ATGs), serial No. 854-15-772 and 854-15-774
 - Measure a density change from 1.39 to 1.41 g/cm³.
 - Generate an analog output that corresponds to the varying levels.

-- LOGvr18 Software
 - Display status of gauges.
 - Predictably control the gauges.
 - Obtain data in a usable state.

-- Panel Meters
 - Display the analog output signals generated by the gauges.

-- One Enraf Series 858 Communications Interface Unit
 - Distribute commands from the computer workstation/LOGvr18 software to the appropriate gauge.
 - Return data and messages from the gauges to the workstation/software.
3.0 TEST METHOD AND TEST EQUIPMENT

The Enraf 854 Advanced Technology Gauges (ATGs) were mounted on a piece of floor grating approximately 40 inches above the floor. The gauges were connected to the computer workstation through the Communications Interface Unit (CIU). The gauges were also connected directly to the panel meters. The Portable Enraf Terminal was connected to each gauge as needed. When required by the test procedure, 36 inch high cylinders containing the appropriate medium were placed under each gauge. The mediums were tap water, a standard density solution of magnesium chloride hexahydrate with a specific gravity of 1.29, and a column of stratified layers of vegetable oil, tap water, and rock salt.

4.0 TEST RESULTS

The master copy of the test procedure is in Appendix A. The data sheets containing all data taken are included with the test procedure master copy.

Communication between the gauges, CIU, and computer workstation was without problems. The gauges performed well. The values obtained for the standard density solution were within 0.7 percent of the known density. Repeatability in both level position and weight frequency showed differences of less than 0.2 percent. The interface levels were evident in the changes in density; the accuracies were dependent on how large the range was over which the scans were taken.

The batch files successfully directed the gauges and obtained the data. The "IP" interface profile scan (about 5 minutes per scan) took considerably less time than the "TP" density profile scan (about 20 minutes per scan). Each reply file was successfully converted into a legible log file. Copies of the log files are included in Appendix A.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The results of the Acceptance Test Procedure show that the gauges function as required for the AN-107 Caustic Addition program. Modifications to the scan level parameters in the batch files will be required prior to installation. The Operational Test Procedure will include verification of these modifications.

Below are several recommendations for the application of the Enraf 854 ATGs in the 241-AN-107 tank.

1) Establish a baseline and confidence interval.

A baseline and confidence interval for the density measurements of the actual tank waste is necessary to assure that the measurements reflect changes in density and not noise in the data. The Operational Test Procedure will establish these values.
2) Allow time for flow within the tank to stop before measuring densities.

Turbulence within the fluid affects the precision of the density measurements. Informal testing prior to the Acceptance Test showed that in a large pool of water (7 m² surface area, about 0.5 m off center), the precision of the density measurements appeared to improve (the improvement was observed as a smaller standard deviation for the data, and was not statistically verified). The small diameter (8 and 6 inch) cylinders used for the acceptance test are suspected of affecting the measurement; wall effects increase the turbulence caused by displacer movement in the liquid. A larger distance from the walls would reduce these wall effects.

3) Determine the solids interface level before running an IP scan.

The lower limit for an IP scan should be set above the point where the displacer is fully supported by the solids layer. If the gauge attempts to send the displacer below such a point, the drop in wire tension will cause the gauge to go into a fault mode.

4) Provide a means to gracefully recover from errors.

During the last phase of the batch file testing, the displacer stopped in the salt layer and the wire tension dropped below the minimum allowed by the gauge. This wire tension failure put the gauge in a fault mode which requires entry into the maintenance mode. The manufacturer does not recommend the maintenance mode be common knowledge because of the potential damage (all safety measures are inoperable in maintenance mode). A batch file can contain the necessary sequence of events to recover. The Operational Test Procedure will test these batch files.

6.0 DISPOSITION OF TEST ITEM

The two Enraf gauges, CIU, and panel meters were all accepted as tested and are ready for installation. The calibration weight set, some hand tools, displacers, and drums used during bench and lab testing were passed on to J.H. Huber for use with other Enraf gauges on site.
APPENDIX A -

Master Copy of

Acceptance Test Procedure for the
241-AN-107 Enraf Advanced Technology Gauges
WHC-SD-WM-ATP-120
This Acceptance Test Procedure is to test the Enraf gauges in the 305 Building only.
ACCEPTANCE TEST PROCEDURE FOR THE 241-AN-107 ENRAF TECHNOLOGY GAUGES

RELEASE AUTHORIZATION

<table>
<thead>
<tr>
<th>Document Number:</th>
<th>WHC-SD-WM-ATP-120, Rev. 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Title:</td>
<td>ACCEPTANCE TEST PROCEDURE FOR THE 241-AN-107 ENRAF TECHNOLOGY GAUGES</td>
</tr>
<tr>
<td>Release Date:</td>
<td>5/8/95</td>
</tr>
</tbody>
</table>

This document was reviewed following the procedures described in WHC-CM-3-4 and is:

APPROVED FOR PUBLIC RELEASE

WHC Information Release Administration Specialist:

[Signature]

C. Willingham

5/8/95

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.
This Acceptance Test Procedure (ATP) provides a structured means to test features of the Enraf densitometers. This ATP also provides verification and validation for batch files to be used in the field. The objective of this procedure is to verify proper operation for the intended application of measuring waste density and level in the 241-AN-107 tank.
ACCEPTANCE TEST PROCEDURE
FOR THE 241-AN-107
ENRAF ADVANCED TECHNOLOGY GAUGES

March 1995

J. L. Dowell
V. R. Enderlin

Westinghouse Hanford Company
P.O. Box 1970
Richland, Washington 99352
CONTENTS

1.0 INSTRUCTION SECTION

1.1 PURPOSE/SCOPE ... 1

1.2 DESCRIPTION OF THE SYSTEM 1

1.2.1 854 ATG ... 1

1.2.2 Communications Interface Unit 2

1.2.3 Digital Panel Meters 2

1.2.4 LOGVR18 Software 2

1.3 REFERENCES .. 3

1.3.1 Procedures .. 3

1.3.2 Other .. 3

1.4 RESPONSIBILITIES 4

1.4.1 Project Engineer 4

1.4.2 Test Director 5

1.4.3 Safety .. 5

1.4.4 Recorder ... 5

1.4.5 Quality ... 5

1.5 TEST CONDITIONS & EQUIPMENT REQUIRED 7

1.5.1 Test Conditions 7

1.5.2 Equipment Required 7

1.6 ACCEPTANCE TEST SETUP 8

1.6.1 Preliminary Conditions............................... 8

1.6.2 Initializing the Gauge 10

1.6.3 Checking for Error Codes 12

1.6.4 Testing the Display 13

1.7 ACCEPTANCE TEST CALIBRATION 14

1.7.1 Analog Output Setup 14

1.7.2 Density Calibration Setup 15

1.7.3 Density Calibration 16

1.7.4 Level Calibration 19

1.7.5 Displacer Weight 20

1.7.6 Gauge Reference Elevations (Test Setup) 21

1.8 ACCEPTANCE TEST 24

1.8.1 Density Profile Measurement 24

1.8.2 Batch Mode Density Profile Measurement 25

1.8.3 Density Measurement Using Standard Density Solution 27

1.8.4 Interface Density Profile Measurement 28

1.8.5 Batch Mode Interface Density Profile Measurement ... 30

1.9 ACCEPTANCE TEST CLOSURE 32

1.9.1 Preparing the Gauge for Transport 32

1.9.2 Review .. 32

1.10 TEST DATA SHEETS 33

1.11 TEST LOG SHEET 34

2.0 CHANGE CONTROL AND EXCEPTIONS TO ACCEPTANCE TEST SECTION 35

2.1 ACCEPTANCE TEST PROCEDURE CHANGE CONTROL 35

2.2 TEST EXECUTION ... 35

2.2.1 Without Exception 35

2.2.2 With Exception/Resolved 35

2.2.3 With Exception/Outstanding 35
3.0 RECORDING AND RESOLVING EXCEPTIONS ... 36
 3.1 GENERAL .. 36
 3.2 RECORDING ... 36
 3.3 RETEST/RESOLUTION ... 36
 3.4 APPROVAL AND ACCEPTANCE 36
 3.5 DISTRIBUTION ... 37

APPENDIX A - TEST DATA SHEETS .. A-1
APPENDIX B - TEST EXCEPTION SHEET ... B-1
APPENDIX C - TEST LOG SHEET .. C-1
APPENDIX D - TEST EXECUTION SHEET .. D-1
APPENDIX E - OPERATING PARAMETER TABLES E-1
1.0 INSTRUCTION SECTION

1.1 PURPOSE/SCOPE

The purpose of this document is to demonstrate that the Enraf Advanced Technology Gauges (ATG), Communications Interface Unit (CIU), Portable Enraf Terminal (PET), digital panel meters, and LOGVR18 software function as intended by design. Actual test execution steps are in Section 1.6. All portions of the test shall be completed before the system is either accepted or rejected. Testing is expected to be completed at the 305 Building. Testing is expected to take less than one week to complete.

The purpose of this procedure is to verify correct operation of the level and density data acquisition system to be used for the Tank 241-AN-107 Caustic Addition program. This procedure provides acceptance testing for equipment and software to be used to measure and record the waste density and waste stratification levels in Tank 241-AN-107. Testing will verify that the hardware and software function according to the manufacturer's instructions and specifications and that they are properly set up prior to being delivered to the tank farm for installation.

1.2 DESCRIPTION OF THE SYSTEM

The following items will be tested for functionality: the two (2) Enraf ATGs, Enraf CIU, Portable Enraf Terminal (PET), digital panel meters, LOGVR18 software and the interconnecting cables.

The system being tested consists of:
- Two Enraf Series 854 Advanced Technology Gauges (ATGs)
- One Enraf Series 858 Communications Interface Unit (CIU)
- Enraf-LOGVR18 software running on a standard administrative workstation to communicate with the gauges by single command and "batch" files
- Digital panel meters

1.2.1 854 ATG

The Enraf Series 854 Advanced Technology Gauges (Type UEAN854C11F10/LCDZ-US) measure liquid levels, and with the density option, can measure liquid density. The two ATGs purchased for 241-AN-107 installation include the density option and can measure relative density as well as liquid level. The level measurement relies on a change in density and can be made at different
elevations; for tank applications, these elevations would be the air and liquid surface interface, liquid layer, liquid and sediment interface, and sediment layer. The measuring principle (for both level and density) is based on the detection of a variation in the apparent weight of a displacer suspended in the tank. The displacer is connected to a wire wound on a precision machined measuring drum. A change in density causes a change in the apparent weight of the displacer. The weight, or wire tension is detected by a sensitive force transducer.

For level measurement, electronics within the gauge cause a servo motor to adjust the position of the displacer until the apparent weight value and desired weight value are the same. The level is determined from the new position of the displacer drum. The gauge displays the level in decimal inches. The digital level measurement can be transmitted to a remote computer for additional processing. An analog (4-20 mA) output signal is also available with the optional MPU microprocessor controlled board.

For density measurement, the displacer volume and weight in air are used in conjunction with the apparent displacer weight to calculate relative density. The digital density measurement can be transmitted to a remote computer for additional processing.

The Enraf Series 854 gauges are certified by Factory Mutual (FM) for use in National Fire Protection Association (NFPA 70) Class I, Division 1, Groups B, C, and D Hazardous Locations.

1.2.2 Communications Interface Unit

The Series 858 Communications Interface Unit (CIU) provides the communications interface between a workstation and multiple tank instruments. Communications between the workstation and the CIU are via a full duplex EIA RS-232 serial link. Communications between the CIU and tank instruments are over a proprietary, bidirectional, "Bi-Phase Mark" serial bus. The CIU provides the necessary communications signal conversion and retransmission. The CIU also interprets incoming commands and redirects them to the appropriate instrument.

1.2.3 Digital Panel Meters

The digital panel meters display the MPU analog output signal. The MPU will relate a particular level with a particular analog output signal. The relation between level and signal are assigned during the test setup.

1.2.4 LOGVR18 Software

The Enraf LOGVR18 software package is normally used for gauge testing and troubleshooting by single command. The software’s "batch" file capabilities will be used for the 241-AN-107 application to measure and record density and sediment levels.
1.3 REFERENCES

1.3.1 Procedures

1.3.2 Other

1.4 RESPONSIBILITIES

Each organization participating in the execution of this ATP will designate personnel for the responsibilities and duties as defined herein for their respective roles. The names of these designees shall be provided to the Recorder for listing on the Recorder's copy of the Test Execution Sheet prior to the performance of any part of this ATP.

All individuals shall carry out their assigned work in a safe manner to protect themselves, others, and the equipment from undue hazards and to prevent damage to property and environment. Facility line managers shall assure the safety of all activities within their areas to prevent injury, property damage, or interruption of operation. Performance of test activities shall always include safety and health aspects as delineated in the operations manuals and as directed by the Project Engineer. Any hazard identified during the performance of the ATP shall be reported to the Test Director.

1.4.1 Project Engineer

1.4.1.1 Designate a Test Director.
1.4.1.2 Coordinate testing with facility management.
1.4.1.3 Act as liaison between the participants in acceptance testing.
1.4.1.4 Ensure informal testing and inspection is complete.
1.4.1.5 Schedule and conduct a pre-ATP meeting with test participants prior to start of testing.
1.4.1.6 Notify the persons performing and witnessing the test prior to the start of testing.
1.4.1.7 Notify all concerned parties when a change is made in the testing schedule.
1.4.1.8 Approve field changes to the ATP.
1.4.1.9 Sign/date Test Execution Sheet (Appendix D) when ATP is approved and accepted.
1.4.1.10 Take necessary action to clear exceptions to the ATP.
1.4.1.11 Sign/date Test Exception Sheet (Appendix B) when an exception has been resolved.
1.4.1.12 Provide a distribution list for the approved and accepted ATP.
1.4.1.13 Confirm that all equipment required for performing this test (as listed in Section 1.5.2) will be available for the test duration.
1.4.1.14 Provide equipment required for performing this acceptance test, which has not been designated as being provided by others.
1.4.2 Test Director

1.4.2.1 Witness the tests.

1.4.2.2 Coordinate all acceptance testing.

1.4.2.3 Confirm that shop testing (if any) and/or inspection (if any) of the test unit(s) or portion of the test unit(s) have been completed.

1.4.2.4 Stop any test which may cause damage to the test unit(s) until the test procedure has been revised.

1.4.2.5 Approve field changes to the ATP.

1.4.2.6 Obtain revisions to the ATP, as necessary, to comply with authorized field changes or to accommodate existing field conditions.

1.4.2.7 Evaluate recorded data, discrepancies, and exceptions.

1.4.2.8 Obtain from the Project Engineer, any information or changes necessary to clear or resolve exceptions.

1.4.2.9 Sign/date Test Data sheets and Test Execution sheet (Appendix A & D) when execution of the ATP has been completed.

1.4.2.10 Sign/date Test Exception Sheet (Appendix B) when acceptable retest has been performed.

1.4.2.11 Prepare and obtain required signatures on the Acceptance Test Report prior to reproduction and distribution.

1.4.3 Safety

1.4.3.1 Review and approve the Acceptance Test Procedure.

1.4.4 Recorder

1.4.4.1 Witness testing and perform all recording using black ink.

1.4.4.2 Record names of all designated personnel on the Test Execution sheet (Appendix D) on the Recorder's copy of ATP prior to testing.

1.4.4.3 Observe tests, record test data and maintain Test Log (Appendix C).

1.4.4.4 Sign/date the Test Execution Sheet, Test Data sheets and Test Exception sheet(s) (Appendices A, B & D) as the Recorder.

1.4.4.5 "Check off" every test step on the Recorder's copy as it is completed, next to the step number and under the appropriate gauge identifier.
1.4.4.6 Record authorized field changes to the ATP.

1.4.4.7 Record, on a Test Exception Sheet, exceptions and test steps that are not performed. Additional Test Exception Sheets can be reproduced as needed (Appendix B).

1.4.4.8 Orally notify the Test Director at the time an objection is made.

1.4.4.9 After ATP is complete assign page numbers to Test Exception Sheets.

1.4.4.10 Submit the completed ATP to the Test Director for approval signatures and distribution.

1.4.5 Quality

1.4.5.1 Witness the tests.

1.4.5.2 Evaluate recorded data, discrepancies, and exceptions.

1.4.5.3 Approve field changes to the ATP.

1.4.5.4 Sign/date Test Execution Sheet (Appendix D) when execution of the ATP is completed and again when it is approved and accepted.

1.4.5.5 Sign/date Test Exception Sheet (Appendix B) when an exception is made and again when it has been resolved.

1.4.5.6 Initial/mark Test Data sheets, including Batch File Results data sheets (Appendix A), assuring data is entered correctly.

1.4.5.7 Place a "green tag" on all equipment after successful acceptance and approval of the ATP.
1.5 TEST CONDITIONS & EQUIPMENT REQUIRED

1.5.1 Test Conditions

The testing of the Enraf 854 ATGs will be performed in the 305 Building. No unique or unusual chemical, fire, release of energy, or criticality safety hazards are involved with performing or supporting these tests. Normal laboratory and facility safety rules shall be followed during these tests. All electrical and mechanical apparatus shall be operated as designed.

The test items, equipment, and facilities used in this test procedure are not expected to be affected permanently by this procedure. Test equipment that has been damaged shall be repaired or replaced.

1.5.2 Equipment Required

The Project Engineer shall assure all test equipment is available unless otherwise noted. The following list is provided as an aid and is not intended to be an exhaustive list.

- 3 1/2 digit multi-meter with current valid calibration
- IBM™ (or compatible) computer/monitor with LOGVR18 software
- Assorted hand tools
- Portable Enraf Terminal (PET), Enraf Model No. 847
- Enraf calibration weight set, P/N 1854.061
- Enraf tool kit, P/N 1854.062
- Carpenter’s level
- Thermometer, 20 to 100 °C range, 0.01 minor divisions
- Density standard, 1.35 g/cc nominal
- Column, 8 inch diameter, 32 inches high minimum
- Shielded, twisted pair cable, 20 AWG minimum
- NaCl, 99.9+%
- Vegetable oil, s.g. 0.92 nominal
- Water
1.6 ACCEPTANCE TEST SETUP

Step Checkoff and Data Sheet Entries

Spaces for check marks are provided to the left of the step numbers. The gauge identifiers 00 and 01 are at the top of the check mark columns. Check each space as the step is completed for the corresponding gauge.

Each RECORD or RECORD VERIFICATION in a step requires an entry on the data sheets. The data sheets include the step numbers and two separate columns for entries for gauges TA=00 and TA=01.

Where applicable, complete section for gauge TA=00, then gauge TA=01.

1.6.1 Preliminary Conditions

00 / 01

1.6.1.1 The test setup has been inspected for workmanship and for compliance with design per Figure 1.

1.6.1.2 Continuity and megger tests have been performed on portions of the electrical and instrument systems being tested, as required.

1.6.1.3 Test instruments requiring calibration have a currently valid calibration stamp attached, which is traceable to the National Institute of Standards and Testing.

1.6.1.4 The pre-ATP meeting with test participants has been held and the personnel responsible for directing and witnessing the performance of the tests described in this ATP have read and understand their roles.

1.6.1.5 All other items have been tested to ensure their proper function.

1.6.1.6 All nameplates, equipment tags, etc. are installed and/or attached. The ATGs are to be labeled "TA=00" and "TA=01".

1.6.1.7 The test unit(s) and associated components have been checked and informally operated to ensure that they are in good general working order.

1.6.1.8 All components and equipment are de-energized.

[V]/[V] 5/10/95
Test Director

Date
Figure 1
Test Setup
1.6.2 Initializing the Gauge

INFORMATION

This section prepares the gauge for testing. It establishes communications, unlocks the servo motor, and connects power to all systems.

Where applicable, perform this test sequence for gauge TA-00 first then gauge TA-01.

00 / 01

✓ ✓ 1.6.2.1 RECORD VERIFICATION that all the steps in Section 1.6.1 are complete.

✓ ✓ 1.6.2.2 Mount each gauge on a suitable stand or fixture. Refer to the 854 ATG Installation Manual Sections 3 and 4 (pages 13-19).

✓ ✓ 1.6.2.3 Check the stability of the mounting of the ATGs. Ensure the ATGs are level.

✓ ✓ 1.6.2.4 For each displacer, RECORD the DW and DV values inscribed on the individual displacers. Ensure that each displacer stays with its respective ATG.

✓ ✓ 1.6.2.5 For each ATG, RECORD the value of the drum circumference that is inscribed on each drum. The value is between 300 and 500 mm (this information is provided to clarify which of the numbers written on the drum is the correct value).

✓ ✓ 1.6.2.6 Check the measuring wire on the measuring drum. The wire should be straight without any bends when suspended freely using the 25g test weight.

CAUTION: When exchanging items hanging on the wire, make sure the gauge is de-energized to avoid damage to the force transducer. Also be sure to maintain tension on the wire to avoid unraveling the wire from the drum.

✓ ✓ 1.6.2.7 Install, if necessary, each drum and displacer per 854 ATG Instruction Manual, Section 8.4 (page 32).

✓ ✓ 1.6.2.8 Check the drum/drumshaft positioning. Sufficient axial play should be present (several millimeters forward and backward).

✓ ✓ 1.6.2.9 Unlock, if needed, each ATG’s servo motor per 854 ATG Instruction Manual, Section 8.5 (page 33).
1.6.2.10 For each ATG, connect a 15 m (50 ft) length of shielded twisted pair cable to the BPM transmission terminals per 854 ATG Instruction Manual, Section 4.3.2 (page 19).

1.6.2.11 Connect the two shielded twisted pair lines of the ATGs to the CIU's terminal TL1 per Series 858 CIU Instruction Manual Section 6.1 and 6.2. (page 27)

1.6.2.12 Connect, if needed, the analog output terminals 1 and 2 from each ATG to a corresponding panel meter using 5 m (16 ft) lengths of shielded twisted pair cable.

1.6.2.13 Provide a switch controlled 120 VAC electrical connection to the CIU per Sections 2.2 (page 7) and 9.1 (page 32) of the Series 858 CIU Instruction Manual.

1.6.2.14 Provide a switch controlled 120 VAC electrical connection to the panel meters.

1.6.2.15 Provide a switch controlled 120 VAC electrical connection to the computer workstation.

1.6.2.16 Provide a switch controlled 120 VAC electrical connection to the PET.

1.6.2.17 Provide a switch controlled 120 VAC electrical connection to each gauge per 854 ATG Instruction Manual Section 4.3.1 (page 19).

1.6.2.18 Confirm that each fuse or circuit breaker at the power source is 20 amps or less.

1.6.2.19 Confirm that each power source terminal voltage is 120 VAC nominal.

1.6.2.20 Connect the Enraf PET to the TA-00 ATG at the infrared transceiver port located on the left side of the display housing, per the instructions in Section 8.3 (page 31) of the 854 ATG Instruction Manual and Section 2.1 (page 3) of the PET Instruction Manual.

1.6.2.21 Connect the computer's serial port COM2 to the CIU's communications terminals per Series 858 CIU Instruction Manual Section 3.2.

1.6.2.22 Turn on the power to the CIU, PET, panel meters, and to the gauges.

1.6.2.23 Turn the power ON to the computer system. When the menu comes up, select LOGGER, and ENTER. A LOGv18 menu screen will be shown.
1.5.3 Checking for Error Codes

COMMANDS:

The commands typed on either the PET or the computer are shown in square brackets "[]" (the square brackets are NOT to be typed as part of the command). Included is any additional information the command requires. After typing the text within the square brackets, press the ENTER key. If an error is made during the typing of the command, use the backspace key to delete the error. If the input contains an error in format or protocol, the response includes an exclamation point (!). If the command is accepted, the response includes an ampersand (&).

The small x replaces a number where values will differ. Direction is given as to where to find the specific value. Commands require certain formats for the data being entered. They will not be accepted in any other form.

INFORMATION

This section checks that a gauge does not show an error code pertaining to an internal problem. The commands are entered from the Enraf PET.

Record any error codes displayed by the PET on the data sheet. Correct any error, or enter it on the Test Exception Sheet in the appendix. Perform this test sequence for gauge TA=00 first then gauge TA=01.

1.6.3.1 Turn on the Portable Enraf Terminal (PET).

1.6.3.2 Enter command [EP] to obtain the XPU error codes. RECORD the value. For definitions of EP error codes, see Section 12 (pages 60-62) of the 854 ATG Instruction Manual.

1.6.3.3 Enter command [ES] to obtain SPU error codes. RECORD the value. For definitions of ES error codes, see Section 12 (pages 63-65) of the 854 ATG Instruction Manual.

1.6.3.4 Disconnect the IR-adaptor from the TA=00 ATG. Connect the Enraf PET to the TA=01 ATG's infrared transceiver port located on the left side of the display housing, per the instructions provided in Section 8.3 (page 31) of the 854 ATG Instruction Manual and Section 2.1 (page 3) of the PET Instruction Manual. Repeat Steps 1.6.3.2 and 1.6.3.3.

1.6.3.5 Disconnect the IR-adaptor from the TA=01 ATG. The PET has no off button.
1.6.4 Testing the Display

INFORMATION

This section tests for proper communications and the ability of the gauge to change from the Level Display to the Analog Display. The Analog Display will only be used for diagnostics during gauge operation. The Level Display will be used during normal operation.

Enter these commands from the computer terminal. Perform this test sequence for gauge TA=00 first then gauge TA=01.

00 / 01

1.6.4.1 Select item 2) SEND ITEMS from the LOGv18 menu.

1.6.4.2 Press F2, enter 00, and press ENTER to change the active ATG to TA=00. The transmission address of the active gauge is displayed in the second column at the bottom of the screen.

1.6.4.3 Enter command [WI=ENRAFI] to enter protection level 1.

1.6.4.4 Enter command [DF=J] to enter the analog display format J.

1.6.4.5 Enter command [EX] to exit protection level 1, store the changed data and initialize the 854 ATG.

1.6.4.6 RECORD VERIFICATION that the analog display (format J) screen is displayed on the gauge after initialization. See Figure 7.9 (page 29) in the 854 ATG Instruction Manual.

NOTE: The terminal display will not show the format change until the F2 key is pressed and then the ENTER key.

1.6.4.7 Enter command [WI=ENRAFI] to enter protection level 1.

1.6.4.8 Enter command [DF=B] to enter the display format B.

1.6.4.9 Enter command [EX] to exit protection level 1, store the changed data and initialize the 854 ATG.

1.6.4.10 RECORD VERIFICATION that the level display (format B) screen is displayed on the gauge after initialization (See Figure 7.3, page 26, in the 854 ATG Instruction manual).

1.6.4.11 Switch to the TA=01 ATG by pressing F2, entering 01 and pressing ENTER. Repeat Steps 1.6.4.3 through 1.6.4.10 for the TA=01 ATG.

1.6.4.12 Press F2, enter 00, and press ENTER to change the active ATG to TA=00.
1.7 ACCEPTANCE TEST CALIBRATION

1.7.1 Analog Output Setup

INFORMATION

The values set into AM and AN (4 and 20 mA level values respectively) correlate an amperage value to an elevation level in the tank.

Perform this test sequence for gauge TA=00 first then gauge TA=01.

00 / 01

✓/✓ 1.7.1.1 Enter command [W2=ENRAF2] to enter protection level 2.
✓/✓ 1.7.1.2 Enter command [LD=I] to change the length units to inches.
✓/✓ 1.7.1.3 Enter command [EX] to exit protection level 2.
✓/✓ 1.7.1.4 Enter command [WI=ENRAF1] to enter protection level 1.
✓/✓ 1.7.1.5 Enter command [AM=-0034.00] to assign the value of the level which corresponds to the 4 mA output level. RECORD VERIFICATION of proper AM value entry.
✓/✓ 1.7.1.6 Enter command [AN=+00002.00] to assign the value of the level which corresponds to the 20 mA output level. RECORD VERIFICATION of proper AN value entry.
✓/✓ 1.7.1.7 Enter command [DF=J] to enter the analog display format J.
✓/✓ 1.7.1.8 Enter command [EX] to exit protection level 1, store the changed data and initialize the 854 ATG.
✓/✓ 1.7.1.9 RECORD both lines of the analog display.

NOTE: The terminal display will not show the format change until the F2 key is pressed and then the ENTER key.

✓/✓ 1.7.1.10 RECORD the value shown on the panel display.
✓/✓ 1.7.1.11 Enter command [WI=ENRAF1] to enter protection level 1.
✓/✓ 1.7.1.12 Enter command [DF=8] to enter the display format 8.
✓/✓ 1.7.1.13 Enter command [EX] to exit protection level 1, store the changed data and initialize the 854 ATG.
1.7.1.14 Switch to the TA-01 ATG by pressing F2, entering 01 and pressing ENTER. Repeat Steps 1.7.1.1 through 1.7.1.13.

1.7.1.15 Press F2, enter 00, and press ENTER to change the active ATG to TA-00.

1.7.2 Density Calibration Setup

INFORMATION

The drum circumference value, provided by the manufacturer, is used in calibrating the gauge for changes in level. The value insures the gauge reports level changes accurately.

Perform this test sequence for gauge TA-00 first then gauge TA-01.

OO / 01

1.7.2.1 Enter command [DC] to display the preprogrammed drum circumference.

1.7.2.2 RECORD VERIFICATION that the drum circumference value shown is the same as the drum circumference found engraved on the wire drum recorded in Step 1.6.2.5.

1.7.2.3 Enter command [W2=ENRAF2] to enter protection level 2.

1.7.2.4 Enter command [SM] to enter the maintenance mode.

1.7.2.5 Enter command [GU] to raise the displacer and enter command [FR] to stop the displacer. Raise the displacer until it is in full view, and can be easily accessed. RECORD the level value.

CAUTION: When entering the [FR] command, be aware of the time delay between entering the command and the displacer stopping.

1.7.2.6 Enter command [SO] to exit the maintenance mode.

1.7.2.7 Enter command [MZ=+xxxxx.xx] to enter the level value recorded in Step 1.7.2.5 as the Lock Test motor limit setting. RECORD VERIFICATION of proper value entry. The gauge will automatically return to this level during a LT (lock test) command.

1.7.2.8 Enter command [WT=EDD] to disable the wire-rupture detection. RECORD VERIFICATION of proper value entry. The disabling allows for calibration.
1.7.2.9 Enter command [EX] to exit protection level 2, store all entered data and initialize the 854 ATG.

1.7.2.10 Switch to the TA 01 ATG by pressing F2, entering 01 and pressing ENTER. Repeat Steps 1.7.2.1 through 1.7.2.9.

1.7.2.11 Press F2, enter 00, and press ENTER to change the active ATG to TA 00.

1.7.3 Density Calibration

INFORMATION

Density calibration requires the gauge to be fully operational. When exchanging items hanging on the wire, make sure the gauge is de-energized to avoid damage to the force transducer. Be sure to maintain some tension on the wire while changing weights to prevent the wire from uncoiling from the drum.

No liquid is required for this calibration.

Perform this test sequence for gauge TA 00 first then gauge TA 01.

00 / 01

1.7.3.1 Replace the displacer with the 25g test weight on the measuring wire.

CAUTION: When exchanging items hanging on the wire, make sure the gauge is de-energized to avoid damage to the force transducer. Also be sure to maintain tension on the wire to avoid unraveling the wire from the drum.

1.7.3.2 Enter command [UN] to release the test weight.

1.7.3.3 Enter command [BT] to begin a balance test. The ATG will now find the average frequency corresponding to the 25g weight. Wait until the test has been completed.

1.7.3.4 Enter command [BF] to request the measured average frequency after completion of the balance test. RECORD the frequency. Do not yet reprogram this value in the gauge. Reprogramming must be done after completion of all four calibration measurements.

1.7.3.5 Enter command [UN] to release the test weight.

1.7.3.5 Enter command [LT] to raise the test weight to the MZ level.
1.7.3.7 Add the 75g weight to the 25g weight.

1.7.3.8 Enter command [UN] to release the test weight.

1.7.3.9 Enter command [BT] to begin a balance test. The ATG will now find the average frequency corresponding to the 25g+75g weight combination. Wait until the test has been completed.

1.7.3.10 Enter command [BF] to request the measured average frequency after completion of the balance test. RECORD the frequency.

1.7.3.11 Enter command [UN] to release the test weight.

1.7.3.12 Enter command [LT] to raise the test weight again.

1.7.3.13 Replace the 75g weight with the 150g.

1.7.3.14 Enter command [UN] to release the test weight.

1.7.3.15 Enter command [BT] to begin a balance test. The ATG will now find the average frequency corresponding to the 25g-150g test-weight combination. Wait until the test has been completed.

1.7.3.16 Enter command [BF] to request the measured average frequency after completion of the balance test. RECORD the frequency.

1.7.3.17 Enter command [UN] to release the test weight.

1.7.3.18 Enter command [LT] to raise the test weight again.

1.7.3.19 Replace the 150g weight with the 225g weight.

1.7.3.20 Enter command [UN] to release the test weight.

1.7.3.21 Enter command [BT] to begin a balance test. The ATG will now find the average frequency corresponding to the 25g+225g test-weight combination. Wait until the test has been completed.

1.7.3.22 Enter command [BF] to request the measured average frequency after completion of the balance test. RECORD the frequency.

1.7.3.23 Enter command [UN] to release the test weight.

1.7.3.24 Enter command [LT] to raise the test weight again.

1.7.3.25 Enter command [W2=ENRAF2] to enter protection level 2.

1.7.3.26 Enter command [FO=+xxxxxxxE+xx] to input the frequency value recorded in Step 1.7.3.4. RECORD VERIFICATION of proper value entry.
1.7.3.27 Enter command \([F1=+.xxxxxxxxE+xx]\) to input the frequency value recorded in Step 1.7.3.10. RECORD VERIFICATION of proper value entry.

1.7.3.28 Enter command \([F2=+.xxxxxxxxE+xx]\) to input the frequency value recorded in Step 1.7.3.16. RECORD VERIFICATION of proper value entry.

1.7.3.29 Enter command \([F3=+.xxxxxxxxE+xx]\) to input the frequency value recorded in Step 1.7.3.22. RECORD VERIFICATION of proper value entry.

1.7.3.30 Enter command \([DW=+.xxxxxxxxE+xx]\) to assign the value for DW, which is engraved on the density displacer and recorded in Step 1.6.2.4. RECORD VERIFICATION of proper value entry.

1.7.3.31 Enter command \([DV=+.xxxxxxxxE+xx]\) to assign the value for DV, which is engraved on the density displacer and recorded in Step 1.6.2.4. RECORD VERIFICATION of proper value entry.

1.7.3.32 Enter command \([DA=+.16000000E+02]\) to assign the value for the displacer area. RECORD VERIFICATION of proper value entry.

1.7.3.33 Enter command \([S1=+.24500000E-03]\) to assign the value for the weight of the displacer with one-third submerged. This value is used to determine when IL has been reached. RECORD VERIFICATION of proper value entry.

1.7.3.34 Enter command \([WT=EDE]\) to enable the wire rupture detection. RECORD VERIFICATION of proper value entry.

1.7.3.35 Enter command \([RM=+.24500000E-03]\) to assign the value for wire tension during execution of the AR command. RECORD VERIFICATION of proper value entry.

1.7.3.36 Enter command \([EX]\) to exit protection level 2.

1.7.3.37 Replace the test weights with the displacer on the measuring wire.

CAUTION: When exchanging items hanging on the wire, make sure the gauge is de-energized to avoid damage to the force transducer. Also be sure to maintain tension on the wire to avoid unraveling the wire from the drum.

1.7.3.38 Switch to the TA=01 ATG by pressing F2, entering 01 and pressing ENTER. Repeat Steps 1.7.3.1 through 1.7.3.37.

1.7.3.39 Press F2, enter 00, and press ENTER to change the active ATG to TA=00.
1.7.4 Level Calibration

INFORMATION

This section calibrates the gauge for correct level measurements when the gauge is equipped with a tank top reference stop at a known level.

Perform this test sequence for gauge TA=00 first then gauge TA=01.

00 / 01

1.7.4.1 Place a cylinder filled with water below the displacer.

1.7.4.2 Be sure the density displacer is installed as described in Section 8.4 (page 32) of the 854 ATG Instruction Manual.

CAUTION: When exchanging items hanging on the wire, make sure the gauge is de-energized to avoid damage to the force transducer. Also be sure to maintain tension on the wire to avoid unraveling the wire from the drum.

1.7.4.3 Install the reference stop on the displacer.

1.7.4.4 Enter command [UN] to release the displacer.

1.7.4.5 Enter command [CA] to move the displacer to the tank top reference level.

1.7.4.6 Enter command [W2=ENRAF2] to enter protection level 2.

1.7.4.7 Enter command [RL+=00036.38] to assign the known tank top reference level. RECORD VERIFICATION of proper value entry.

1.7.4.8 Enter command [AR] to have the 854 ATG accept the new RL value.

1.7.4.9 Enter command [EX] to exit protection level 2, store the assigned value, and initialize the gauge.

1.7.4.10 Remove the reference stop from the displacer.

1.7.4.11 Enter command [UN] to release the displacer.

1.7.4.12 Enter command [II] to move the displacer to the fluid level.

1.7.4.13 Enter command [LQ] to obtain the current displacer level. RECORD the value shown.

1.7.4.14 Enter command [W2=ENRAF2] to enter protection level 2.
1.7.4.15 Enter command [RL=+xxxxxx.xx] to enter the LQ value recorded in Step 1.7.4.13 as the Reference Level. RECORD VERIFICATION of proper value entry.

1.7.4.16 Enter command [AR] to have the 354 ATG accept the new RL value.

1.7.4.17 Enter command [EX] to exit protection level 2, store the assigned value, and initialize the gauge.

1.7.4.18 Switch to the TA=01 ATG by pressing F2, entering 01 and pressing ENTER. Repeat Steps 1.7.4.1 through 1.7.4.17.

1.7.4.19 Press F2, enter 00, and press ENTER to change the active ATG to TA=00.

1.7.5 Displacer Weight

INFORMATION

This section measures the weight of the displacer. The maximum displacer weight is 300 grams.

Perform this test sequence for gauge TA=00 first then gauge TA=01.

00 / 01

1.7.5.1 Enter command [UN] to release the displacer.

1.7.5.2 Enter command [CA] to initiate displacer movement.

1.7.5.3 After the displacer leaves the water, enter command [FR] to stop the displacer.

1.7.5.4 Enter command [MF] to measure the motor frequency.

1.7.5.5 After "FR" appears on the gauge’s LCD display, enter command [WQ] to derive the weight of the displacer. RECORD the WQ value that is displayed.

1.7.5.6 Enter command [W2=ENRAF2] to enter protection level 2.

1.7.5.7 Enter command [DW] to display the current displacer weight value. RECORD the value. This step is for comparing the inscribed value on the displacer to the weight determined by the ATG. This is for information only.
1.7.5.8 Enter command [DW=+.xxxxxxx×E-03]. Enter the WQ value recorded in Step 1.7.5.5 to assign a value to the weight of the displacer. RECORD VERIFICATION of proper value entry.

1.7.5.9 Enter command [EX] to exit protection level 2, store all entered data and initialize the 854 ATG.

1.7.5.10 Switch to the TA=01 ATG by pressing F2, entering 01 and pressing ENTER. Repeat Steps 1.7.5.1 through 1.7.5.9.

1.7.5.11 Press F2, enter 00, and press ENTER to change the active ATG to TA=00.

1.7.6 Gauge Reference Elevations (Test Setup)

INFORMATION

This section assigns elevation values to the parameters of the level gauge. These values tailor the gauge’s response for a specific tank. The relative levels of these parameters are shown in Figure 2.

Perform this test sequence for gauge TA=00 first then gauge TA=01.

1.7.6.1 Enter command [W2=ENRAF2] to enter protection level 2.

1.7.6.2 Enter command [UR=+00036.00] to enter the "UPPER REFERENCE" parameter. RECORD VERIFICATION of proper value entry.

1.7.6.3 Enter command [MH=+00034.00] to enter the "MOTOR HIGH" parameter. RECORD VERIFICATION of proper value entry.

1.7.6.4 Enter command [MZ=+00033.00] to enter the "LOCK TEST LIMIT SWITCH" parameter. RECORD VERIFICATION of proper value entry.

1.7.6.5 Enter command [HH=+00032.10] to enter the "HIGH HIGH ALARM" parameter. RECORD VERIFICATION of proper value entry.

1.7.6.6 Enter command [HA=+00032.00] to enter the "HIGH ALARM" parameter. RECORD VERIFICATION of proper value entry.

1.7.6.7 Enter command [LA=+00003.10] to enter the "LOW ALARM" parameter. RECORD VERIFICATION of proper value entry.
Figure 2
Parameter Elevations

Advanced Technology Gauge

Tank Top Reference Plate

UR or TT
MH
MZ
HH
HA
DK
II, RL or Y4

DB

Ullage

Gauge Reference Height

Innage

DZ or DN
LA
LL
ML
Zero Level
1.7.6.8 Enter command \([\text{LL}=-0003.00]\) to enter the "LOW LOW ALARM" parameter. RECORD VERIFICATION of proper value entry.

1.7.6.9 Enter command \([\text{ML}=+0002.00]\) to enter the "MOTOR LIMIT SWITCH LOW" parameter. RECORD VERIFICATION of proper value entry.

1.7.6.10 Enter command \([\text{EX}]\) to exit protection level 2, store all entered data, and initialize the 854 ATG.

1.7.6.11 Enter command \([\text{UN}]\) to return the gauge to the operational mode.

1.7.6.12 Enter command \([\text{II}]\) to send the displacer to level II.

1.7.6.13 After the gauge stabilizes, RECORD the level displayed and RECORD VERIFICATION that the level is within 0.10 inch of the RL value set in Step 1.7.4.15.

1.7.6.14 Enter command \([\text{TG}]\) to perform a repeatability test on the gauge.

1.7.6.15 Make sure the displacer rises a couple of inches and then goes back down to II/RL level. RECORD the level displayed and RECORD VERIFICATION that the level is within 0.10 inch of the value recorded in Step 1.7.6.13. If not, record as an exception.

1.7.6.16 Enter command \([\text{LT}]\) to perform a lock test on the gauge.

1.7.6.17 Enter command \([\text{MF}]\) to measure the motor frequency.

1.7.6.18 After "8L" appears on the gauge's LCD display, enter command \([\text{WQ}]\) to derive the weight of the displacer. RECORD the value displayed and RECORD VERIFICATION that the value is within 3 grams of the WQ value recorded in Step 1.7.5.5. If not, record as an exception.

1.7.6.19 Switch to the TA-01 ATG by pressing F2, entering 01 and pressing ENTER. Repeat Steps 1.7.6.1 through 1.7.6.18.

1.7.6.20 Press F2, enter 00, and press ENTER to change the active ATG to TA-00.
1.8 ACCEPTANCE TEST

1.8.1 Density Profile Measurement

INFORMATION

Procedures in this section test the capabilities of the 854 ATG to obtain density profiles. The density "scans" make density measurements at 10 discrete elevation points uniformly spaced over the prescribed scan distance.

Perform this test sequence for gauge TA=00 first then gauge TA=01.

00 / 01

✓ ✓ 1.8.1.1 Prepare the test medium by filling the column with water and positioning it under the displacer.

✓ ✓ 1.8.1.2 Enter command [UN] to return the gauge to the operational mode.

✓ ✓ 1.8.1.3 Enter command [II] to move the displacer to the fluid surface level.

✓ ✓ 1.8.1.4 Enter command [LQ] to obtain the current level. RECORD the value shown for LQ.

✓ ✓ 1.8.1.5 Enter command [W2=ENRAF2] to enter protection level 2.

✓ ✓ 1.8.1.6 Enter command [RL=xxxxxx.xx] to assign the innage level value recorded in Step 1.8.1.4 as the measured reference level (RL). RECORD VERIFICATION of proper value entry.

✓ ✓ 1.8.1.7 Enter command [AR] to have the 854 ATG accept the new RL value.

✓ ✓ 1.8.1.8 Enter command [W1=ENRAF1] to enter protection level 1.

✓ ✓ 1.8.1.9 Enter command [DB=+00008.00] to set the upper bound for the elevations for the density scan. DB is the density profile start distance from Y4, the surface level. RECORD VERIFICATION of proper value entry.

✓ ✓ 1.8.1.10 Enter command [DZ=+00010.00] to set the lower bound for the elevations for the density scan. DZ is the default density profile stop level. RECORD VERIFICATION of proper value entry.

✓ ✓ 1.8.1.11 Enter command [EX] to exit protection level 1.
1.8.1.12 Enter command [UN] to release the displacer.

1.8.1.13 Enter command [II] to send the displacer to Interface 1 to obtain a Y4 value.

1.8.1.14 Enter command [Y4] to assure Y4 has a value. RECORD the Y4 value.

1.8.1.15 Enter command [TP] to initiate the density scan. The scan may take several minutes to complete.

1.8.1.16 Enter command [Dx], where x is replaced sequentially with numbers 0 through 9. The values shown are the density measurement elevations. RECORD values D0 through D9.

1.8.1.17 Enter command [Rx], where x is replaced sequentially with numbers 0 through 9. The values shown are the density measurements. RECORD values R0 through R9.

1.8.1.18 Enter command [SC] to display the average density. RECORD the value.

1.8.1.19 Switch to the TA=01 ATG by pressing F2, entering 01 and pressing ENTER. Repeat Steps 1.8.1.1 through 1.8.1.18.

1.8.1.20 Press F2, enter 00, and press ENTER to change the active ATG to TA=00.

1.8.2 Batch Mode Density Profile Measurement

INFORMATION

Procedures in this section test the batch mode capabilities of obtaining the density profiles. This section serves as the verification and validation for the batch file CYL_ATP.RQS.

Perform this test sequence for gauge TA=00 first then gauge TA=01.

00 / 01

1.8.2.1 Prepare the test medium by using the same water column as in Section 1.8.1, and positioning it under the displacer.

1.8.2.2 Press the ESC key to return to the main menu of LOGVR18 software. Select 5) File-to-Field Utility.

1.8.2.3 From the File-to-Field menu, select item 2) .RQS file.
1.8.2.4 Select the CYL ATP.RQS file and press ENTER. RECORD VERIFICATION of the correct file name. This should return you to the File-to-Field menu with your selected file.

1.8.2.5 Select 3) .RPL file and press ENTER. Enter the file name as the month, day, underscore and test run number (e.g., MAR7_3 represents March 7, test run 3). RECORD the file name.

1.8.2.6 Select item 7) Send CYL_ATP.RQS file and press ENTER. The file will be tested then sent to the ATG. Using the PET, obtain the D0 through D9 and R0 through R9 values after completion of each of the three profiles. Record the values on the Batch File Results record sheet (Appendix A). RECORD VERIFICATION of the completion of the Batch File Results data record on the Test Data Sheet.

1.8.2.7 Select item 9) Convert .RPL to .LOG and press ENTER.

1.8.2.8 Select the file created in Step 1.8.2.5 to be converted from the reply file to a log file and press ENTER. RECORD the file name.

1.8.2.9 Include a copy of the .LOG file with the Test Data. To obtain a copy, Select 8) DOS Shell and change directory to C:\LOGGER\LOG. Copy the .LOG file to a disk and transfer it to another computer to print.

1.8.2.10 Type EXIT to return to the FILE-TO-FIELD menu.

1.8.2.11 Select C) to return to the main menu of the LOGVR18 software.

1.8.2.12 Compare the values of the batch .LOG file against the values recorded in Step 1.8.2.6. RECORD VERIFICATION that the values match.

1.8.2.13 Select 2) SEND ITEMS. Press F2, enter 01, and press ENTER to change the active gauge to TA=01. Repeat Steps 1.8.2.1 through 1.8.2.12.

1.8.2.14 Select 2) SEND ITEMS. Press F2, enter 00, and press ENTER to return the active gauge to TA=00.
1.8.3 Density Measurement Using Standard Density Solution

INFORMATION

Procedures in this section test the 854 ATG density measurement accuracy using a standard density solution.

Perform this test sequence for gauge TA=00 first then gauge TA=01 from the SEND ITEMS window.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 / 01</td>
<td></td>
</tr>
<tr>
<td>✓ ✓</td>
<td>1.8.3.1 Prepare the test medium. Fill the column with a standard density solution. RECORD the density. Position the column under the displacer.</td>
</tr>
<tr>
<td>✓ ✓</td>
<td>1.8.3.2 Enter command [UN] to return the gauge to the operational mode.</td>
</tr>
<tr>
<td>✓ ✓</td>
<td>1.8.3.3 Enter command [IL] to move the displacer to the fluid surface level.</td>
</tr>
<tr>
<td>✓ ✓</td>
<td>1.8.3.4 Enter command [LQ] to obtain the current level. RECORD the value shown for LQ.</td>
</tr>
<tr>
<td>✓ ✓</td>
<td>1.8.3.5 Enter command [W2=ENRAF2] to enter protection level 2.</td>
</tr>
<tr>
<td>✓ ✓</td>
<td>1.8.3.6 Enter command [RL=+xxxxxx.xx] to assign the innage level value recorded in Step 1.8.3.4 as the measured reference level (RL). RECORD VERIFICATION of proper value entry.</td>
</tr>
<tr>
<td>✓ ✓</td>
<td>1.8.3.7 Enter command [AR] to have the 854 ATG accept the new RL value.</td>
</tr>
<tr>
<td>✓ ✓</td>
<td>1.8.3.8 Enter command [W1=ENRAF1] to enter protection level 1.</td>
</tr>
<tr>
<td>✓ ✓</td>
<td>1.8.3.9 Enter command [DB=+00008.00] to set the upper bound for the elevations for the density scan. DB is the density profile start distance from Y4, the surface level. RECORD VERIFICATION of proper value entry.</td>
</tr>
<tr>
<td>✓ ✓</td>
<td>1.8.3.10 Enter command [DZ=+00010.00] to set the lower bound for the elevations for the density scan. DZ is the default density profile stop level. RECORD VERIFICATION of proper value entry.</td>
</tr>
<tr>
<td>✓ ✓</td>
<td>1.8.3.11 Enter command [EX] to exit protection level 1.</td>
</tr>
<tr>
<td>✓ ✓</td>
<td>1.8.3.12 Enter command [UN] to release the displacer.</td>
</tr>
</tbody>
</table>
1.8.3.13 Enter command [II] to send the displacer to Interface 1 to obtain a Y4 value.

1.8.3.14 Enter command [Y4] to assure that Y4 has a value. RECORD the Y4 value.

1.8.3.15 Enter command [TP] to initiate the density scan. The scan may take several minutes to complete.

1.8.3.16 Enter command [Dx], where x is replaced sequentially with numbers 0 through 9. The values shown are the density measurement elevations. RECORD values 00 through 09.

1.8.3.17 Enter command [Rx], where x is replaced sequentially with numbers 0 through 9. The values shown are the density measurements. RECORD values 00 through 90.

1.8.3.18 Enter command [SC] to display the average density. RECORD the value.

1.8.3.19 Switch to the TA=01 ATG by pressing F2, entering 01 and pressing ENTER. Repeat Steps 1.8.3.1 through 1.8.3.18.

1.8.3.20 Press F2, enter 00, and press ENTER to change the active ATG to TA=00.

1.8.4 Interface Density Profile Measurement

INFORMATION

Procedures in this section test the 854 ATG's ability to identify liquid/liquid and liquid/sediment interface levels.

Perform this test sequence for gauge TA=00 first then gauge TA=01.

00 / 01

1.8.4.1 Prepare the test medium. Fill the column with about 8 inches of NaCl, 12 inches of water and about 10 inches of vegetable oil. Measure and RECORD the interface levels starting at the floor (zero level). Position the column under the displacer.

1.8.4.2 Enter command [UN] to return the gauge to the operational mode.

1.8.4.3 Enter command [II] to move the displacer to the fluid surface level.
1.8.4.4 Enter command [LQ] to obtain the current level. RECORD the value shown for LQ.

1.8.4.5 Enter command [W2=ENRAF2] to enter protection level 2.

1.8.4.6 Enter command [RL=xxxxx.xx] to assign the innage level value recorded in Step 1.8.4.4 as the measured reference level (RL). RECORD VERIFICATION of proper value entry.

1.8.4.7 Enter command [AR] to have the 854 ATG accept the new RL value.

1.8.4.8 Enter command [EX] to exit protection level 2, store the assigned value, and initialize the gauge.

1.8.4.9 Enter command [UN] to release the displacer.

1.8.4.10 Enter command [DK=00030.00] to set the upper bound for the elevations for the interface density scan. DK is the interface density profile start level. RECORD VERIFICATION of proper value entry.

1.8.4.11 Enter command [DN=00004.00] to set the lower bound for the elevations for the interface density scan. DN is the interface density profile stop level. RECORD VERIFICATION of proper value entry.

1.8.4.12 Enter command [II] to send the displacer to Interface 1 to obtain a Y4 value.

1.8.4.13 Enter command [Y4] to assure that Y4 has a value. RECORD the Y4 value.

1.8.4.14 Enter command [IP] to initiate the interface profile density scan. The profile will start above the surface and end 4 inches above the bottom. The scan may take several minutes to complete.

1.8.4.15 Enter command [Dx], where x is replaced sequentially with numbers 0 through 9. The values shown are the density measurement elevations. RECORD values 00 through 09.

1.8.4.16 Enter command [Rx], where x is replaced sequentially with numbers 0 through 9. The values shown are the density measurements. RECORD values R0 through R9.

1.8.4.17 Enter command [SC] to display the average density. This value is relatively meaningless since it is the average of a range of densities. RECORD the value anyway.

1.8.4.18 Switch to the TA=01 ATG by pressing F2, entering 01 and pressing ENTER. Repeat Steps 1.8.4.1 through 1.8.4.17.
1.8.4.19 Press F2, enter 00, and press ENTER to change the active ATG to TA=00.

1.8.5 Batch Mode Interface Density Profile Measurement

INFORMATION

Procedures in this section test the batch mode capabilities of obtaining the interface levels and the density profiles. This section serves as the verification and validation for the batch file IP_ATP.RQS.

Perform this test sequence for gauge TA=00 first then gauge TA=01.

00 / 01

1.8.5.1 Prepare the test medium by using the same column as in Section 1.8.4. Position the column under the displacer. Measure and RECORD the interface levels starting at the floor (zero level).

1.8.5.2 Press the ESC key to return to the main menu of LOGVR18 software. Select 5) File-to-Field Utility.

1.8.5.3 From the File-to-Field menu, select item 2) .RQS file.

1.8.5.4 Select the IP_ATP.RQS file and press ENTER. This should return you to the File-to-Field menu with your selected file. RECORD VERIFICATION of the correct file name.

1.8.5.5 Select 3) .RPL file and press ENTER. Enter the month, day, underscore and test run number (e.g., MAR_7_3 represents March 7, test run 3). Make sure the test run number is different than in Step 1.8.2.5. RECORD the file name.

1.8.5.6 Select item 7) Send IP_ATP.RQS file and press ENTER. The file will be tested then sent to the ATG. Using the PET, obtain the DO through D9 and RO through R9 values after completion of each of the three profiles. Record the values on the Batch File Results record sheet (Appendix A). RECORD VERIFICATION of the completion of the Batch File Results data record on the Test Data Sheet.

1.8.5.7 Select item 9) Convert .RPL to .LOG and press ENTER.

1.8.5.8 Select the file created in Step 1.8.5.5 to be converted from the reply file to a log file and press ENTER. RECORD the file name.
1.8.5.9 Include a copy of the .LOG file with the Test Data. To obtain a copy, Select 8) DOS Shell and change directory to C:\LOGGER\LOG. Copy the .LOG file to a disk and transfer it to another computer to print.

1.8.5.10 Type EXIT to return to the FILE-TO-FIELD menu.

1.8.5.11 Select C) to return to the main menu of the LOGVR18 software.

1.8.5.12 Compare the values of the batch .LOG file against the values recorded in Step 1.8.5.6. RECORD VERIFICATION that the values match.

1.8.5.13 Select 2) SEND ITEMS. Press F2, enter 01, and press ENTER to change the active gauge to TA-01. Repeat Steps 1.8.5.1 through 1.8.5.12.

1.8.5.14 Select item 9) END PROGRAM to exit.
1.9 ACCEPTANCE TEST CLOSURE

1.9.1 Preparing the Gauge for Transport

INFORMATION

This section prepares the gauge for transport. The motor must be locked to prevent possible damage to the force transducer used to measure the weight of the displacer.

1.9.1.1 Turn "OFF" the power at the power panel.

1.9.1.2 Make sure there is no power to the gauges.

1.9.1.3 Disconnect power wiring to the gauge.

1.9.1.4 If needed as deemed by the Test Director, remove the drum and displacer, per 854 ATG Instruction Manual, Section 9.3.2 (page 43), prior to transporting the gauge.

1.9.1.5 "Lock" the servo motor, per 854 ATG Instruction Manual, Section 8.5 (page 33), prior to transporting the gauge.

1.9.2 Review

1.9.2.1 RECORD VERIFICATION that steps 1.6.1.1 through 1.9.1.5 inclusive have been completed.

1.9.2.2 The Quality Assurance person shall "green tag" the following equipment as "Accepted" upon the successful acceptance and approval of the ATP:

- Two Enraf Series 854 Advanced Technology Gauges (ATGs).
- One Enraf Series 858 Communications Interface Unit (CIU).
- Standard administrative workstation running Enraf LOGVR18 software
- Digital panel meters

1.9.2.3 The person(s), by their signature below state the Enraf Advanced Technology Gauges (ATG), Communications Interface Unit (CIU), Portable Enraf Terminal (PET) and LOGVR18 software is functional and ready for its intended use.

Test Director Date Project Engineer Date

32

A-39
1.10 TEST DATA SHEETS

The Test Data Sheets are used to document any procedure step requiring verification or recording of a value. All entries are made in black ink. A description of the data sheet format follows. Upon successful completion of testing activities, the master copy of the test execution data sheets shall be signed by the Test Witnesses. Witness signatures at the bottom of the data sheets indicate that the witness agrees to the accuracy of the data recorded and comparisons made.

1. **Date of Test**--Record the date the test is performed.
2. **Gauge Transmission Address**--The transmission address of the gauge is prerecorded as TA-00 and TA-01.
3. **Equipment Serial Number(s)**--Record the serial numbers of any device used during the tests.
4. **Test Performed By**--Print the name of the person performing the test.
5. **Procedure Step Number**--This column contains the test steps requiring verification.
6. **Item**--This column contains the item or parameter being verified or recorded.
7. **Expected Result**--This column indicates the acceptable value of the item being recorded.
8. **Value**--Record the quantitative or qualitative measure (i.e., a line voltage may have a value of 120V, whereas a pump may have a value of ON or OFF) of the item being verified in this column.
9. **Accept/Reject**--Indicate whether the value obtained is acceptable in comparison with the Expected Value.
10. **Comment**--If the value is rejected, give a justification for denial.
11. **QA**--This column indicates that QA concurred with the items recorded or verified.

The second test data sheet is for the batch file profile results. These sheets are used to document values obtained through the PET during batch file profiles. These PET values and the batch file values are compared to make sure the batch file is getting the correct values generated by the gauge.

1. **Date of Test**--Record the date the test is performed.
2. **Test Performed By**--Print the name of the person performing the test.
3. **Procedure Step Number**--This column contains the test steps requiring verification.
4. **Item**--This column contains the item or parameter being verified or recorded.

5. **Gauge Transmission Address**--The transmission address of the gauge is prerecorded as TA=00 and TA=01.

6. **Level Dx**--This column contains the levels at which the corresponding densities are taken.

7. **Density Rx**--This column contains the density values taken at the corresponding levels.

8. **QA--**This column indicates that QA concurred with the items recorded.

Test data sheets are in Appendix A.

1.11 TEST LOG SHEET

Test Log Sheets are used to document test start and stop times and to document any other notes concerning the execution of the Acceptance Test Procedure. A Test Log Sheet is included in Appendix C.
2.0 CHANGE CONTROL AND EXCEPTIONS TO ACCEPTANCE TEST SECTION

2.1 ACCEPTANCE TEST PROCEDURE CHANGE CONTROL

Acceptance testing is to be conducted in accordance with the steps and requirements specified in this procedure. Any required field changes must be per Sections 1.4.1, 1.4.2, and 1.4.5. Field changes shall also be recorded as an exception.

2.2 TEST EXECUTION

The acceptance test procedures detailed in Sections 1.6, 1.7, 1.8, and 1.9 shall be performed in sequential steps starting with Section 1.6.1. As required by Section 1.4.4, the Recorder will check off every test step in the space provided on the Recorder’s copy of the ATP as each step is completed. Any step that requires a value recording or verification must also be recorded on the Test Data Sheet.

2.2.1 Without Exception

2.2.1.1 Check applicable space on the Test Execution Sheet (Appendix D) to show that the ATP has been performed and no exceptions have been recorded.

2.2.1.2 Sign and date the Test Execution Sheet in the spaces provided.

2.2.1.3 Distribute requisite copies of ATP.

2.2.2 With Exception/Resolved

2.2.2.1 Check applicable space on the Test Execution Sheet to show that the ATP has been performed with exceptions recorded and resolved.

2.2.2.2 Sign and date the Test Execution Sheet in the spaces provided.

2.2.2.3 Distribute requisite copies of ATP.

2.2.3 With Exception/Outstanding

2.2.3.1 Check applicable space on the Test Execution Sheet to show that the ATP has been performed with exceptions recorded, part or all of which are presently outstanding, unresolved.

2.2.3.2 Sign and date the Test Execution Sheet in the spaces provided.

2.2.3.3 Distribute requisite copies of ATP.
3.0 RECORDING AND RESOLVING EXCEPTIONS

3.1 GENERAL

Exceptions to the ATP are sequentially numbered and recorded on individual Exception Sheets. This enables case-by-case resolution, recording, approval, and distribution of each exception.

3.2 RECORDING

3.2.1 Number each exception sequentially as it occurs in the comments column on the Test Data sheet, if applicable, and record it on a Test Exception Sheet. If the exception occurs without a reference to the data sheet, record the exception on a Test Exception Sheet.

3.2.2 Enter name and organization of objecting party for each exception.

3.2.3 Enter planned action to resolve each exception when determined.

3.3 RETEST/RESOLUTION

3.3.1 Record the action taken to resolve each exception on the Test Exception Sheet. Action taken might not be the same as planned action.

3.3.2 When action taken results in an acceptable retest, sign and date Acceptable Retest section of the Test Exception Sheet.

3.3.3 When action taken does not involve an acceptable retest, mark the N/A block. Resolve exception per Section 3.4 below.

3.4 APPROVAL AND ACCEPTANCE

3.4.1 The Project Engineer provides final approval and acceptance of exception by checking one of the following on the Test Exception Sheet:

- Retest Approved and Accepted: Applicable when Retest Execution and Acceptance section is completed.
- Exception Accepted-As-Is: Requires detailed explanation.
- Other: Requires detailed explanation.

3.4.2 The Project Engineer signs and dates the Test Exception Sheet and obtains other internal approval, if required.
3.5 DISTRIBUTION

Distribute requisite copies of completed Test Exception Sheets to the ATP participants.
APPENDIX A - TEST DATA SHEETS

A-1
A-45
Test Data Sheets

Test Performed By:

VR ENDERLIN

Date of Test:

MAY 10 95

<table>
<thead>
<tr>
<th>Procedure Step Number</th>
<th>Item</th>
<th>Expected Result</th>
<th>Value</th>
<th>(A/R)</th>
<th>Comment</th>
<th>QA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6.2.1</td>
<td>Sect. 1.6.1</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6.2.4</td>
<td>DV</td>
<td>Record value</td>
<td>890.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6.2.5</td>
<td>DV</td>
<td>Record value</td>
<td>147 cm³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6.3.2</td>
<td>EP Error</td>
<td>000</td>
<td>80000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6.3.3</td>
<td>ES Error</td>
<td>0000</td>
<td>65000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6.4.6</td>
<td>ANALOG DISPLAY</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6.4.10</td>
<td>LEVEL DISPLAY</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.1.5</td>
<td>AN</td>
<td>14.00</td>
<td>34.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.1.6</td>
<td>AN</td>
<td>2.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.1.9</td>
<td>Line 1</td>
<td>Record value</td>
<td>ANAL. OUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.1.10</td>
<td>Panel Display</td>
<td>Value of 1.7.1.9</td>
<td>-4.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.2.2</td>
<td>DC</td>
<td>Value of 1.6.2.5</td>
<td>33802E+100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.2.5</td>
<td>Access Level</td>
<td>30 - 34</td>
<td>33.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.2.7</td>
<td>H2</td>
<td>Value of 1.7.2.5</td>
<td>3340</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.2.8</td>
<td>WI</td>
<td>EDD</td>
<td>EDD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedure Step Number</td>
<td>Item</td>
<td>Expected Result</td>
<td>Value</td>
<td>(A/R)</td>
<td>Comment</td>
<td>QA</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>-----------------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>1.7.3.4</td>
<td>F25</td>
<td>Record Value</td>
<td>1.1374632E+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.3.10</td>
<td>F100</td>
<td>Record Value</td>
<td>1.12853825E+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.3.16</td>
<td>F175</td>
<td>Record Value</td>
<td>1.1287861165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.3.22</td>
<td>F250</td>
<td>Record Value</td>
<td>1.13560895E+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.3.26</td>
<td>F0</td>
<td>Value of 1.7.3.4</td>
<td>1.1374632E+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.3.27</td>
<td>F1</td>
<td>Value of 1.7.3.10</td>
<td>1.1253825E+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.3.28</td>
<td>F2</td>
<td>Value of 1.7.3.16</td>
<td>1.1287861165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.3.29</td>
<td>F3</td>
<td>Value of 1.7.3.22</td>
<td>1.128560385</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.3.30</td>
<td>D1</td>
<td>Value of 1.6.2.4</td>
<td>1.2907143E+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.3.31</td>
<td>D1</td>
<td>Value of 1.6.2.4</td>
<td>1.119E+3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.3.32</td>
<td>D1</td>
<td>Value of 1.6.2.4</td>
<td>1.119E+3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.3.33</td>
<td>S1</td>
<td>Value of 1.6.2.4</td>
<td>1.245E+3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.3.34</td>
<td>M1</td>
<td>Value of 1.7.4.3</td>
<td>2.245E+3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.3.35</td>
<td>R1</td>
<td>Value of 1.7.4.3</td>
<td>2.245E+3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.4.7</td>
<td>R1</td>
<td>Value of 1.7.4.3</td>
<td>36.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.4.13</td>
<td>R1</td>
<td>Value of 1.7.4.3</td>
<td>28.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.4.15</td>
<td>R1</td>
<td>Value of 1.7.4.3</td>
<td>26.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedure Step Number</td>
<td>Item</td>
<td>Expected Result</td>
<td>Value</td>
<td>(A/R)</td>
<td>Comment</td>
<td>QA</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------</td>
<td>-----------------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>1.7.5.5</td>
<td>UU</td>
<td>Record value</td>
<td>0.29212759</td>
<td>E+3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.5.7</td>
<td>UV</td>
<td>Record value</td>
<td>0.29174103</td>
<td>E+3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.5.8</td>
<td>OW</td>
<td>Value of 1.7.5.5</td>
<td>0.2997259</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procedure Step Number</th>
<th>Item</th>
<th>Expected Result</th>
<th>Value</th>
<th>(A/R)</th>
<th>Comment</th>
<th>QA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7.6.2</td>
<td>UU</td>
<td>36.00</td>
<td>36.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.6.3</td>
<td>NH</td>
<td>34.00</td>
<td>34.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.6.4</td>
<td>NZ</td>
<td>33.00</td>
<td>33.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.6.5</td>
<td>NH</td>
<td>32.10</td>
<td>32.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.6.6</td>
<td>NA</td>
<td>32.00</td>
<td>32.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.6.7</td>
<td>LA</td>
<td>3.10</td>
<td>3.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.6.8</td>
<td>LL</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.6.9</td>
<td>NL</td>
<td>2.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.6.13</td>
<td>TI/KL</td>
<td>Record value</td>
<td>27.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value of 1.7.6.15</td>
<td>Transfer value</td>
<td>28.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>< 0.1 inches</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.6.15</td>
<td>TG</td>
<td>Record value</td>
<td>27.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value of 1.7.6.13</td>
<td>Transfer value</td>
<td>37.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>< 0.1 inch</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.6.18</td>
<td>WO</td>
<td>Record value</td>
<td>0.29236146</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value of 1.7.5.5</td>
<td>Transfer value</td>
<td>0.2929259</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>< 3.0 g</td>
<td>0.649</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Procedure Step Number

<table>
<thead>
<tr>
<th>Procedure Step Number</th>
<th>Item</th>
<th>Expected Result</th>
<th>Value</th>
<th>(A/R)</th>
<th>Comment</th>
<th>QA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8.1.17</td>
<td>R0</td>
<td>Record value</td>
<td>1007.21</td>
<td>PNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td>Record value</td>
<td>1008.10</td>
<td>PNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K2</td>
<td>Record value</td>
<td>1007.66</td>
<td>PNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>Record value</td>
<td>1006.93</td>
<td>PNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>Record value</td>
<td>1007.17</td>
<td>PNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>Record value</td>
<td>1007.17</td>
<td>PNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>Record value</td>
<td>1002.48</td>
<td>PNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R7</td>
<td>Record value</td>
<td>1002.25</td>
<td>PNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R8</td>
<td>Record value</td>
<td>1005.73</td>
<td>PNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R9</td>
<td>Record value</td>
<td>1002.96</td>
<td>PNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.1.10</td>
<td>SC</td>
<td>Record value</td>
<td>1005.81</td>
<td>PNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.2.4</td>
<td>.RQS file</td>
<td>CYL_ATP</td>
<td>CYL ATIP</td>
<td>PNL</td>
<td>CYL ATIP</td>
<td></td>
</tr>
<tr>
<td>1.8.2.5</td>
<td>.RPL file</td>
<td>Record filename</td>
<td>MAY10-1</td>
<td>PNL</td>
<td>MAY10-1</td>
<td></td>
</tr>
<tr>
<td>1.8.2.6</td>
<td>Results record sheet</td>
<td>Complete</td>
<td>Complete</td>
<td>PNL</td>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td>1.8.2.8</td>
<td>.LOG file</td>
<td>Value in 1.8.2.5</td>
<td>MAY10-1</td>
<td>PNL</td>
<td>MAY10-1</td>
<td></td>
</tr>
<tr>
<td>1.8.2.12</td>
<td>PEI vs Batch</td>
<td>Values match</td>
<td>yes</td>
<td>PNL</td>
<td>yes</td>
<td></td>
</tr>
</tbody>
</table>

Test Performed By

VR ENDERLIN

Date of Test

MAY 10, 1995
<table>
<thead>
<tr>
<th>Procedure Step Number</th>
<th>Item</th>
<th>Expected Result</th>
<th>Value</th>
<th>(A/R)</th>
<th>Comment</th>
<th>QA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8.3.17</td>
<td>R0</td>
<td>Record value</td>
<td>1294.14</td>
<td>PKH</td>
<td>1285.51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td>Record value</td>
<td>1296.13</td>
<td>PKH</td>
<td>1300.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>Record value</td>
<td>1295.62</td>
<td>PKH</td>
<td>1297.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>Record value</td>
<td>1294.50</td>
<td>PKH</td>
<td>1297.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>Record value</td>
<td>1293.11</td>
<td>PKH</td>
<td>1296.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>Record value</td>
<td>1281.65</td>
<td>PKH</td>
<td>1273.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>Record value</td>
<td>1292.02</td>
<td>PKH</td>
<td>1290.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R7</td>
<td>Record value</td>
<td>1286.15</td>
<td>PKH</td>
<td>1289.66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R8</td>
<td>Record value</td>
<td>1286.22</td>
<td>PKH</td>
<td>1287.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R9</td>
<td>Record value</td>
<td>1285.97</td>
<td>PKH</td>
<td>1285.54</td>
<td></td>
</tr>
<tr>
<td>1.8.3.18</td>
<td>SC</td>
<td>Record value</td>
<td>1291.45</td>
<td>PKH</td>
<td>1294.26</td>
<td></td>
</tr>
</tbody>
</table>
Date of test:

<table>
<thead>
<tr>
<th>Procedure Step Number</th>
<th>Item</th>
<th>Expected Result</th>
<th>Value</th>
<th>(A/H)</th>
<th>Comment</th>
<th>QA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8.4.1</td>
<td>NaCl level</td>
<td>Record value</td>
<td>4.0</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.4.1</td>
<td>Water level</td>
<td>Record value</td>
<td>21.5</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.4.1</td>
<td>Oil level</td>
<td>Record value</td>
<td>30.00</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.4.4</td>
<td>IQ</td>
<td>Record value</td>
<td>28.22</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.4.6</td>
<td>DL</td>
<td>Value of 1.8.4.4</td>
<td>28.22</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.4.10</td>
<td>Dk</td>
<td>30.00</td>
<td>30.00</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.4.11</td>
<td>Dn</td>
<td>4.00</td>
<td>4.00</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.4.13</td>
<td>D4</td>
<td>Record value</td>
<td>28.29</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.4.15</td>
<td>D0</td>
<td>Record value</td>
<td>3.99</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D1</td>
<td>Record value</td>
<td>6.88</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td>Record value</td>
<td>9.77</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D3</td>
<td>Record value</td>
<td>12.66</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D4</td>
<td>Record value</td>
<td>15.55</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D5</td>
<td>Record value</td>
<td>18.44</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D6</td>
<td>Record value</td>
<td>21.33</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D7</td>
<td>Record value</td>
<td>24.32</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D8</td>
<td>Record value</td>
<td>27.11</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D9</td>
<td>Record value</td>
<td>29.99</td>
<td>D/H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedure Step Number</td>
<td>Item*</td>
<td>Expected Result</td>
<td>Value</td>
<td>(A/N)</td>
<td>Comment</td>
<td>QA</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------</td>
<td>-----------------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>1.8.4.16</td>
<td>R0</td>
<td>Record value</td>
<td>1062.20</td>
<td></td>
<td>PH4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td>Record value</td>
<td>1037.85</td>
<td></td>
<td>PH4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>Record value</td>
<td>1032.19</td>
<td></td>
<td>PH4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>Record value</td>
<td>1031.89</td>
<td></td>
<td>PH4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>Record value</td>
<td>1024.74</td>
<td></td>
<td>PH4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>Record value</td>
<td>991.80</td>
<td></td>
<td>PH4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>Record value</td>
<td>932.39</td>
<td></td>
<td>PH4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R7</td>
<td>Record value</td>
<td>126.28</td>
<td></td>
<td>PH4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R8</td>
<td>Record value</td>
<td>601.10</td>
<td></td>
<td>PH4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R9</td>
<td>Record value</td>
<td>9999999</td>
<td></td>
<td>PH4</td>
<td></td>
</tr>
<tr>
<td>1.8.4.17</td>
<td>SC</td>
<td>Record value</td>
<td>958.94</td>
<td></td>
<td>PH4</td>
<td></td>
</tr>
<tr>
<td>Procedure Step Number</td>
<td>Item</td>
<td>Expected Result</td>
<td>Value</td>
<td>(A/R)</td>
<td>Comment</td>
<td>QA</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>1.8.5.1</td>
<td>NaCl level</td>
<td>Record value</td>
<td>4.0</td>
<td>PAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.5.1</td>
<td>Water level</td>
<td>Record value</td>
<td>21.5</td>
<td>PAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.5.1</td>
<td>Oil level</td>
<td>Record value</td>
<td>30</td>
<td>PAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.5.4</td>
<td>.RQS file</td>
<td>IP_ATP</td>
<td>IP_ATP</td>
<td>PAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.5.5</td>
<td>.RPL file</td>
<td>Record filename</td>
<td>MAY11-1</td>
<td>PAH</td>
<td>complete</td>
<td>PAH</td>
</tr>
<tr>
<td>1.8.5.6</td>
<td>Results record sheet</td>
<td>Complete</td>
<td>PAH</td>
<td></td>
<td>complete</td>
<td>PAH</td>
</tr>
<tr>
<td>1.8.5.8</td>
<td>.LOG file</td>
<td>Value of 1.8.5.5</td>
<td>MAY11-1</td>
<td>PAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.5.12</td>
<td>PET vs Batch</td>
<td>Values match</td>
<td>PAH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9.2.1</td>
<td>Completed</td>
<td>Yes</td>
<td>PAH</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Batch File Results

Date of Test: 5/10/75
Test Performed by: F. Enderlin

<table>
<thead>
<tr>
<th>Procedure Step Number</th>
<th>Item (x)</th>
<th>Gauge T=00</th>
<th>Gauge T=01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Level Dk</td>
<td>Density Dk</td>
</tr>
<tr>
<td>1.3.2.5 Top profile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>15.99</td>
<td>1007.20</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>16.44</td>
<td>1003.33</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>16.88</td>
<td>1004.55</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>17.33</td>
<td>1001.47</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>17.77</td>
<td>1007.51</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>18.22</td>
<td>1006.63</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>18.66</td>
<td>1006.58</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>19.11</td>
<td>1003.53</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>19.55</td>
<td>1003.22</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>20.00</td>
<td>998.07</td>
</tr>
<tr>
<td>1.3.2.6 Middle profile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>12.99</td>
<td>1007.29</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>13.77</td>
<td>1001.25</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>14.55</td>
<td>1004.34</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>15.33</td>
<td>1007.52</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>16.11</td>
<td>1005.08</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>16.89</td>
<td>1007.48</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>17.67</td>
<td>1004.89</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>18.45</td>
<td>1006.82</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>19.22</td>
<td>1001.23</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>20.00</td>
<td>1003.89</td>
</tr>
<tr>
<td>1.3.2.7 Bottom profile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>9.99</td>
<td>1005.74</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>10.44</td>
<td>1006.61</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>10.88</td>
<td>1001.46</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>11.32</td>
<td>1004.00</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>11.76</td>
<td>1006.87</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>12.20</td>
<td>1006.50</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>12.64</td>
<td>1006.90</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>13.08</td>
<td>1004.03</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>13.53</td>
<td>1006.32</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>13.97</td>
<td>1001.39</td>
</tr>
<tr>
<td>Procedure Step Number</td>
<td>Item (X)</td>
<td>Gauge TA=00</td>
<td>Level IX</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>1.8.5.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top profile</td>
<td>0</td>
<td>17.99</td>
<td>100.179</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>18.88</td>
<td>986.33</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>19.77</td>
<td>959.67</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>21.55</td>
<td>928.75</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>21.55</td>
<td>928.75</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>22.44</td>
<td>922.27</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>23.33</td>
<td>931.27</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>24.22</td>
<td>926.75</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>25.11</td>
<td>917.65</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>25.99</td>
<td>870.28</td>
</tr>
<tr>
<td>Middle profile</td>
<td>0</td>
<td>10.99</td>
<td>1026.49</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11.88</td>
<td>1029.11</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.77</td>
<td>1030.74</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>13.66</td>
<td>1024.72</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>14.55</td>
<td>1027.70</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>15.44</td>
<td>1026.99</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>16.33</td>
<td>1026.20</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>17.22</td>
<td>1027.81</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>18.11</td>
<td>1001.02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>18.99</td>
<td>980.86</td>
</tr>
<tr>
<td>Bottom profile</td>
<td>0</td>
<td>2.09</td>
<td>99999</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3.19</td>
<td>99999</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.29</td>
<td>1034.37</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.39</td>
<td>1027.06</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6.49</td>
<td>1027.81</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.59</td>
<td>1029.93</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8.69</td>
<td>1025.08</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>9.79</td>
<td>1028.43</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>10.89</td>
<td>1030.71</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>11.99</td>
<td>1029.66</td>
</tr>
</tbody>
</table>

Test Director: [Signature] Date: 5/11/95

Quality Control: [Signature] Date: 5/11/95

Recorder: [Signature] Date: 5/11/95

A-13
THIS IS THE BATCH FILE FOR THE ACCEPTANCE TEST USING THE CYLINDER.
THE FILE RUN 3 DENSITY PROFILE SCANS, EACH SCAN STARTING AND ENDING 3 INCHES PROGRESSIVELY DEEPER THAN THE PREVIOUS SCAN.
WRITTEN BY V.R. ENDERLIN ON MARCH 9, 1995, LAST REVISED APRIL 20, 1995
PROGRAM NAME CYL_ATP.RQS

GET DATE AND TIME.
!DATE 05-10-1995 09:34:21
STATE WHICH GAUGE IS ACTIVE FOR THIS TEST
TA=00
UN= &
SEND TO INTERFACE
I1= &
GET SOME INFO WHILE WAITING TO GET TO I1
STATE NUMBER OF SAMPLES PER LEVEL
DO=5
CURRENT REFERENCE LEVEL (I1)
RL=+00027.99
FORCE ON TRANSDUCER AT I1 (TO DETERMINE DENSITY ASSUMPTION OF FLUID)
S1=+.24500000E+03
STATE WHICH GAUGE IS ACTIVE FOR THIS TEST
TA=01
UN= &
SEND TO INTERFACE
I1= &
GET SOME INFO WHILE WAITING TO GET TO I1
STATE NUMBER OF SAMPLES PER LEVEL
DO=5
CURRENT REFERENCE LEVEL (I1)
RL=+00026.10
FORCE ON TRANSDUCER AT I1 (TO DETERMINE DENSITY ASSUMPTION OF FLUID)
S1=+.24500000E+03
UPPER PROFILE

TA=00
SET UPPER AND LOWER BOUNDS FOR PROFILE SCAN
W1=&
DB=+00008.00&
DZ=+00016.00&
TA=01
SET UPPER AND LOWER BOUNDS FOR PROFILE SCAN
W1=&
DB=+00008.00&
DZ=+00016.00&
WAIT FOR COMMUNICATIONS TO COME BACK
!PAUSE 30 05-10-1995 09:35:14
TA=00
CLEAR THE DEFAULT FREEZE
UN= &
SEND TO I1

A-58
I1=&
'TA=01
'CLEAR THE DEFAULT FREEZE
UN=&
'SEND TO I1
I1=&
'MAKE SURE THEY GET THERE
'!PAUSE 60 05-10-1995 09:36:18
'TA=00
'GET INNAGE LEVEL FOR START OF PROFILE SCAN
Y4=@@+00028.00
'START SCAN FOR TA=00
TP=&
'TA=01
'GET INNAGE LEVEL FOR START OF PROFILE SCAN
Y4=@@+00026.09
'START SCAN FOR TA=01
TP=&
'WAIT FOR 25 MINUTES TO COMPLETE SCANS AND DISPLACERS TO RETURN TO I1
'!PAUSE 1500 05-10-1995 10:01:22
'STATE WHICH GAUGE IS ACTIVE FOR THIS TEST
TA=00
'GET LEVELS AT WHICH DENSITIES WERE TAKEN
D0=@@+00015.99
D1=@@+00016.44
D2=@@+00016.88
D3=@@+00017.33
D4=@@+00017.77
D5=@@+00018.22
D6=@@+00018.66
D7=@@+00019.11
D8=@@+00019.55
D9=@@+00020.00
'GET DENSITIES
R0=@@+01007.20
R1=@@+01003.33
R2=@@+01004.55
R3=@@+01001.47
R4=@@+01007.51
R5=@@+01006.63
R6=@@+01006.58
R7=@@+01003.53
R8=@@+01003.22
R9=@@+00998.07
'GET AVERAGE DENSITY OVER ENTIRE SCAN RANGE
SC=@@+01004.21
'!DATE 05-10-1995 10:01:48
'STATE WHICH GAUGE IS ACTIVE FOR THIS TEST
TA=01
'GET LEVELS AT WHICH DENSITIES WERE TAKEN
D0=@@+00015.99
D1=@@+00016.23
D2=@@+00016.46
D3=@@+00016.69
D4=@@+00016.93
D5=@@+00017.16
D6=@@+00017.39
D7=@@+00017.63
D8=@@+00017.86
D9=@@+00018.09

'GET DENSITIES
R0=@@+01008.35
R1=@@+01008.10
R2=@@+01008.00
R3=@@+01007.21
R4=@@+01008.55
R5=@@+01008.50
R6=@@+01008.90
R7=@@+01009.14
R8=@@+01007.59
R9=@@+01004.15

'GET AVERAGE DENSITY OVER ENTIRE SCAN RANGE
SC=@@+01007.85

''DATE 05-10-1995 10:02:14
**************MIDDLE PROFILE***************
'TA=00
'SET UPPER AND LOWER BOUNDS FOR PROFILE SCAN
W1=&
DB=! 053
DZ=+00013.00&
'TA=01
'SET UPPER AND LOWER BOUNDS FOR PROFILE SCAN
W1=&
DB=+00011.00&
DZ=+00013.00&

'WAIT FOR COMMUNICATIONS TO COME BACK
''PAUSE 30 05-10-1995 10:02:54
'TA=00
'CLEAR THE DEFAULT FREEZE
UN=&
'SEND TO I1
I1=&
'TA=01
'CLEAR THE DEFAULT FREEZE
UN=&
'SEND TO I1
I1=&

'MAKE SURE THEY GET THERE
''PAUSE 60 05-10-1995 10:03:58
'TA=00
'GET INNAGE LEVEL FOR START OF PROFILE SCAN
Y4=@@-+00028.01

'START SCAN FOR TA=00
TP=&
'TA=01
'GET INNAGE LEVEL FOR START OF PROFILE SCAN
Y4=@@+-00026.08
'START SCAN FOR TA=01
TP=&
'WAIT FOR 25 MINUTES TO COMPLETE SCANS AND DISPLACERS TO RETURN TO I1
'!PAUSE 1500 05-10-1995 10:29:02
'STATE WHICH GAUGE IS ACTIVE FOR THIS TEST
TA=00
'GET LEVELS AT WHICH DENSITIES WERE TAKEN
D0=@@+00012.99
D1=@@+00013.77
D2=@@+00014.55
D3=@@+00015.33
D4=@@+00016.11
D5=@@+00016.89
D6=@@+00017.67
D7=@@+00018.45
D8=@@+00019.22
D9=@@+00020.00
'GET DENSITIES
R0=@@+01007.29
R1=@@+01001.25
R2=@@+01004.34
R3=@@+01007.52
R4=@@+01005.08
R5=@@+01007.48
R6=@@+01004.89
R7=@@+01006.82
R8=@@+01001.28
R9=@@+01003.84
'GET AVERAGE DENSITY OVER ENTIRE SCAN RANGE
SC=@@+01004.98
'!DATE 05-10-1995 10:29:27
'STATE WHICH GAUGE IS ACTIVE FOR THIS TEST
TA=01
'GET LEVELS AT WHICH DENSITIES WERE TAKEN
D0=@@+00012.99
D1=@@+00013.23
D2=@@+00013.46
D3=@@+00013.69
D4=@@+00013.92
D5=@@+00014.16
D6=@@+00014.39
D7=@@+00014.62
D8=@@+00014.85
D9=@@+00015.08
'GET DENSITIES
R0=@@+01007.84
R1=@@+01008.21
R2=@@+01010.22
R3=@@+01010.42

A-61
R4=+01009.32
R5=+01007.83
R6=+01009.48
R7=+01009.67
R8=+01009.95
R9=+01009.81
'GET AVERAGE DENSITY OVER ENTIRE SCAN RANGE
SC=+01009.28
' !DATE 05-10-1995 10:29:54
'**
'TA=00
'SET UPPER AND LOWER BOUNDS FOR PROFILE SCAN
W1=&
DB=+00014.00&
DZ=+00010.00&
'TA=01
'SET UPPER AND LOWER BOUNDS FOR PROFILE SCAN
W1=&
DB=+00014.00&
DZ=+00010.00&
'WAIT FOR COMMUNICATIONS TO COME BACK
' !PAUSE 30 05-10-1995 10:30:34
'TA=00
'CLEAR THE DEFAULT FREEZE
UN=&
'SEND TO I1
I1=&
'TA=01
'CLEAR THE DEFAULT FREEZE
UN=&
'SEND TO I1
I1=&
'MAKE SURE THEY GET THERE
' !PAUSE 60 05-10-1995 10:31:38
'TA=00
'GET INNAGE LEVEL FOR START OF PROFILE SCAN
Y4=@@-+00027.97
'START SCAN FOR TA=00
TP=&
'KEEP THE DISPLACER AT THE LOWER LEVEL WHEN DONE WITH SCAN
I3=&
'TA=01
'GET INNAGE LEVEL FOR START OF PROFILE SCAN
Y4=@@-+00026.07
'START SCAN FOR TA=01
TP=&
'KEEP THE DISPLACER AT THE LOWER LEVEL WHEN DONE WITH SCAN
I3=&
'WAIT FOR 25 MINUTES TO COMPLETE SCANS AND DISPLACERS TO GET TO I3
' !PAUSE 1500 05-10-1995 10:56:44
'STATE WHICH GAUGE IS ACTIVE FOR THIS TEST
TA=00
'GET LEVELS AT WHICH DENSITIES WERE TAKEN
D0=@@+00009.99
D1=@@+00010.44
D2=@@+00010.88
D3=@@+00011.32
D4=@@+00011.76
D5=@@+00012.20
D6=@@+00012.64
D7=@@+00013.08
D8=@@+00013.53
D9=@@+00013.97

'GET DENSITIES
R0=@@+01005.74
R1=@@+01006.61
R2=@@+01001.46
R3=@@+01004.00
R4=@@+01006.87
R5=@@+01006.50
R6=@@+01000.90
R7=@@+01004.03
R8=@@+01006.82
R9=@@+01001.39

'GET AVERAGE DENSITY OVER ENTIRE SCAN RANGE
SC=@@+01004.43

!DATE 05-10-1995 10:57:09

STATE WHICH GAUGE IS ACTIVE FOR THIS TEST
TA=01

'GET LEVELS AT WHICH DENSITIES WERE TAKEN
D0=@@+00009.99
D1=@@+00010.46
D2=@@+00010.82
D3=@@+00011.32
D4=@@+00011.76
D5=@@+00012.20
D6=@@+00012.64
D7=@@+00013.08
D8=@@+00013.53
D9=@@+00013.97

'GET DENSITIES
R0=@@+01008.82
R1=@@+01009.18
R2=@@+01009.13
R3=@@+01007.54
R4=@@+01009.37
R5=@@+01009.23
R6=@@+01009.23
R7=@@+01009.23
R8=@@+01007.67
R9=@@+01009.61

'GET AVERAGE DENSITY OVER ENTIRE SCAN RANGE
SC=@@+01008.90

'GET THE FINISH TIME
' DATE 05-10-1995 10:57:36
' # END CYL_ATP.RQS 05-10-1995 10:57:36
THIS IS THE BATCH FILE FOR THE ACCEPTANCE TEST USING THE CYLINDER.
THE FILE RUNS 3 PROFILE SCANS, EACH RUNNING OVER
OVER AN 8 INCH RANGE, OVERLAPPING 1 INCH WITH THE NEXT SCAN'S RANGE.
WRITTEN BY V.R. ENDERLIN ON MARCH 9, 1995, LAST REVISED APRIL 20, 1995
PROGRAM NAME IP_ATP.RQS

'GET DATE AND TIME.
' !DATE 05-11-1995 13:02:33
'STATE WHICH GAUGE IS ACTIVE FOR THIS SECTION
TA=00
'UNLOCK JUST IN CASE
UN=&
'SEND TO INTERFACE 1
I1=&
'GET SOME INFO WHILE WAITING TO GET TO I1
'STATE NUMBER OF SAMPLES PER LEVEL
DO=5
'CURRENT REFERENCE LEVEL (I1)
RL=+00028.22
'FORCE ON TRANSDUCER AT I1 (TO DETERMINE DENSITY ASSUMPTION OF FLUID)
S1=+.24500000E+03
'STATE WHICH GAUGE IS ACTIVE FOR THIS SECTION
TA=01
'UNLOCK JUST IN CASE
UN=&
'SEND TO INTERFACE 1
I1=&
'GET SOME INFO WHILE WAITING TO GET TO I1
'STATE NUMBER OF SAMPLES PER LEVEL
DO=5
'CURRENT REFERENCE LEVEL (I1)
RL=+00027.48
'FORCE ON TRANSDUCER AT I1 (TO DETERMINE DENSITY ASSUMPTION OF FLUID)
S1=+.24500000E+03
'TA=00
'SET UPPER AND LOWER BOUNDS FOR PROFILE SCAN
DK=+00026.00&
DN=+00018.00&
'CLEAR THE DEFAULT FREEZE
UN=&
'SEND TO I1 INSTEAD OF DEFAULT I3
I1=&
'TA=01
'SET UPPER AND LOWER BOUNDS FOR PROFILE SCAN
DK=+00026.00&
DN=+00018.00&
'SEND TO I1 INSTEAD OF DEFAULT I3
I1=&
'MAKE SURE THEY GET THERE
' !PAUSE 60 05-11-1995 13:03:55
'START SCAN FOR TA=00
IP=&
'START SCAN FOR TA=01
IP=&
'WAIT FOR 25 MINUTES TO COMPLETE SCANS AND DISPLACERS TO RETURN TO I1
'!PAUSE 500 05-11-1995 13:12:16
'GET CURRENT TRANSMISSION ADDRESS
TA=00
'GET LEVELS AT WHICH DENSITIES WERE TAKEN
D0=@@+00017.99
D1=@@+00018.88
D2=@@+00019.77
D3=@@+00020.66
D4=@@+00021.55
D5=@@+00022.44
D6=@@+00023.33
D7=@@+00024.22
D8=@@+00025.11
D9=@@+00025.99
'GET DENSITIES
R0=D+01001.79
R1=D+00986.33
R2=D+00959.67
R3=D+00934.12
R4=D+00928.92
R5=D+00922.27
R6=D+00931.27
R7=D+00925.75
R8=D+00917.65
R9=D+00870.28
'GET AVERAGE DENSITY OVER ENTIRE SCAN RANGE
SC=D+00937.80
'!DATE 05-11-1995 13:12:42
'GET CURRENT TRANSMISSION ADDRESS
TA=01
'GET LEVELS AT WHICH DENSITIES WERE TAKEN
D0=@@+00017.99
D1=@@+00018.88
D2=@@+00019.77
D3=@@+00020.66
D4=@@+00021.55
D5=@@+00022.44
D6=@@+00023.33
D7=@@+00024.22
D8=@@+00025.11
D9=@@+00025.99
'GET DENSITIES
R0=D+00982.37
R1=D+00962.00
R2=D+00932.62
R3=D+00924.71
R4=D+00928.02
R5=D+00926.53
R6=D+00921.08
R7=D+00918.56
R8=D+00860.32
R9=D+00656.33

GET AVERAGE DENSITY OVER ENTIRE SCAN RANGE
SC=D+00901.25

DATE 05-11-1995 13:13:08

************************MIDDLE PROFILE**************************

TA=00

SET UPPER AND LOWER BOUNDS FOR PROFILE SCAN
DK=+00019.00
DN=+00011.00

CLEAR THE DEFAULT FREEZE
UN=&

SEND TO I1 INSTEAD OF DEFAULT I3
I1=&

TA=01

SET UPPER AND LOWER BOUNDS FOR PROFILE SCAN
DK=+00019.00
DN=+00011.00

CLEAR THE DEFAULT FREEZE
UN=&

SEND TO I1 INSTEAD OF DEFAULT I3
I1=&

MAKE SURE THEY GET THERE

PAUSE 60 05-11-1995 13:14:18

START SCAN FOR TA=00

START SCAN FOR TA=01

WAIT FOR 25 MINUTES TO COMPLETE SCANS AND DISPLACERS TO RETURN TO I1

GET CURRENT TRANSMISSION ADDRESS
TA=00

GET LEVELS AT WHICH DENSITIES WERE TAKEN
D0=@@+00010.99
D1=@@+00011.88
D2=@@+00012.77
D3=@@+00013.66
D4=@@+00014.55
D5=@@+00015.44
D6=@@+00016.33
D7=@@+00017.22
D8=@@+00018.11
D9=@@+00018.99

GET DENSITIES
R0=D+01026.49
R1=D+01029.11
R2=D+01030.74
R3=D+01024.72
R4=D+01027.70
R5=D+01026.99
R6=D+01026.20
R7=D+01027.81
R8=D+01001.02
R9=D+00980.86

'GET AVERAGE DENSITY OVER ENTIRE SCAN RANGE
SC=D+01020.16
' !DATE 05-11-1995 13:23:05
'GET CURRENT TRANSMISSION ADDRESS
TA=01

'GET LEVELS AT WHICH DENSITIES WERE TAKEN
D0=@@+00010.99
D1=@@+00011.88
D2=@@+00012.77
D3=@@+00013.66
D4=@@+00014.55
D5=@@+00015.44
D6=@@+00016.33
D7=@@+00017.22
D8=@@+00018.11
D9=@@+00018.99

'GET DENSITIES
RO=D+01027.62
R1=D+01026.06
R2=D+01029.62
R3=D+01029.74
R4=D+01033.73
R5=D+01035.57
R6=D+01024.09
R7=D+01002.31
R8=D+00976.93
R9=D+00962.18

'GET AVERAGE DENSITY OVER ENTIRE SCAN RANGE
SC=D+01014.79

'***BOTTOM PROFILE***
'TA=00

'SET UPPER AND LOWER BOUNDS FOR PROFILE SCAN
DK=+00012.00&
DN=+00002.10&

'CLEAR THE DEFAULT FREEZE
UN=&

'SEND TO I1 INSTEAD OF DEFAULT I3
I1=&

'TA=01

'SET UPPER AND LOWER BOUNDS FOR PROFILE SCAN
DK=+00012.00&
DN=+00002.10&

'CLEAR THE DEFAULT FREEZE
UN=&

'SEND TO I1 INSTEAD OF DEFAULT I3
I1=&

'MAKE SURE THEY GET THERE
'PAUSE 60 05-11-1995 13:24:42
'START SCAN FOR TA=00
IP=&
'KEEP DISPLACER AT LOWER LEVEL WHEN DONE WITH SCAN
I3=&
'START SCAN FOR TA=01
IP=&
'KEEP DISPLACER AT LOWER LEVEL WHEN DONE WITH SCAN
I3=&
'WAIT FOR 25 MINUTES TO COMPLETE SCANS AND DISPLACERS TO GET TO I3
'PAUSE 500 05-11-1995 13:33:05
'GET CURRENT TRANSMISSION ADDRESS
TA=00
'GET LEVELS AT WHICH DENSITIES WERE TAKEN
D0=@@@@+00002.09
D1=@@@@+00003.19
D2=@@@@+00004.29
D3=@@@@+00005.39
D4=@@@@+00006.49
D5=@@@@+00007.59
D6=@@@@+00008.69
D7=@@@@+00009.79
D8=@@@@+00010.89
D9=@@@@+00011.99
'GET DENSITIES
R0=F-99999999
R1=F-99999999
R2=D+01034.37
R3=D+01027.06
R4=D+01027.81
R5=D+01029.93
R6=D+01025.08
R7=D+01028.43
R8=D+01030.71
R9=D+01029.66
'GET AVERAGE DENSITY OVER ENTIRE SCAN RANGE
SC=F-99999999
'!DATE 05-11-1995 13:33:31
'GET CURRENT TRANSMISSION ADDRESS
TA=01
'GET LEVELS AT WHICH DENSITIES WERE TAKEN
D0=@@@@+00002.09
D1=@@@@+00003.19
D2=@@@@+00004.29
D3=@@@@+00005.39
D4=@@@@+00006.49
D5=@@@@+00007.59
D6=@@@@+00008.69
D7=@@@@+00009.79
D8=@@@@+00010.89
D9=@@@@+00011.99
'GET DENSITIES
R0=F-99999999
R1=F-99999999
R2=D+01036.91
R3=D+01030.49
R4=D+01029.32
R5=D+01025.02
R6=D+01027.87
R7=D+01025.27
R8=D+01029.59
R9=D+01029.38

'GET AVERAGE DENSITY OVER ENTIRE SCAN RANGE
SC=F-99999999

'GET THE FINISH TIME
' !DATE 05-11-1995 13:33:58
' # END IP_ATP.RQS 05-11-1995 13:33:58
Test Exception #1

Test Title: WHC-SD-WM-ATP-120, REV 0
Gauge Transmission Address:

<table>
<thead>
<tr>
<th>Procedure Step Number</th>
<th>Date</th>
<th>Description</th>
<th>Initials/Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8.5.6</td>
<td>5/11/95</td>
<td>Density values for lower profile not read from PET. Default values were written over data before density were accessed.</td>
<td>DJK</td>
</tr>
</tbody>
</table>

Objecting Party: Test Director
Recorded by: VRendel 5/11/95
Acceptable Retest Performed: Yes
Quality Date: DJK 5/11/95
Test Director Date: VRendel 5/11/95

Retest Approved and Accepted: _Exception Accepted As-Is_
Explanation: Previous 50 density values read from PET were identical without exception. Time precluded a retest.

Exception Resolved:
Project Engineer Date: VRendel 5/11/95
Quality Date: DJK 5/11/95

B-2

A-72
APPENDIX C - TEST LOG SHEET
(Copy as needed)
<table>
<thead>
<tr>
<th>DATE/TIME</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/10/95 8 AM</td>
<td>Started test w/ JL Dowell, DT Hummer & NR Enderlin present</td>
</tr>
<tr>
<td>5/11/95 2:40</td>
<td>Ended testing at 2:40. Test to resume 5/11/95 8 AM for sect. 18.4 and 18.5</td>
</tr>
<tr>
<td>5/11/95 1:30</td>
<td>Started test at 1:30</td>
</tr>
<tr>
<td>5/11/95 2:15</td>
<td>Revised IP-ATP file to reflect more efficient pause value of 500 sec instead of 1500 sec</td>
</tr>
<tr>
<td>5/11/95 3:15</td>
<td>Test exception #1 recorded. Density values for lower-level IP scan in batch mode were replaced with defaults before read off PET</td>
</tr>
</tbody>
</table>
TEST EXECUTION SHEET

Date: 5/11/95
Document Number: WHC-SD-WM-ATP-120, REV 0
Test Unit Number: SN 854-15-772 SN 854-15-774

TEST PERSONNEL

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Engineer</td>
<td>J. L. Dowell</td>
<td></td>
</tr>
</tbody>
</table>
| Recorder | V. R. Enderlin| D. T. Hummer (S)
| Test Director | V. R. Enderlin| ICF-XH QC #58202|

TEST EXECUTION

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Director</td>
<td>Val Enderlin</td>
<td>5/11/95</td>
</tr>
<tr>
<td>Recorder</td>
<td>Val Enderlin</td>
<td>5/11/95</td>
</tr>
<tr>
<td>Quality</td>
<td>DT Hummer</td>
<td>5/11/95</td>
</tr>
</tbody>
</table>

TEST APPROVAL AND ACCEPTANCE

<table>
<thead>
<tr>
<th>Without Exception</th>
<th>With Exception/Resolved</th>
<th>With Exception/Outstanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>_</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Engineer</td>
<td>5/11/95</td>
</tr>
<tr>
<td>Quality</td>
<td></td>
</tr>
<tr>
<td>ITEM DESCRIPTION1</td>
<td>ITEM</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Displacer area</td>
<td>DA</td>
</tr>
<tr>
<td>Drum circumference</td>
<td>DC</td>
</tr>
<tr>
<td>Level measurement type</td>
<td>DE</td>
</tr>
<tr>
<td>Display format</td>
<td>DF</td>
</tr>
<tr>
<td>Tenth millimetre selection</td>
<td>DG</td>
</tr>
<tr>
<td>Displacer volume²</td>
<td>DV</td>
</tr>
<tr>
<td>Displacer weight</td>
<td>DW</td>
</tr>
<tr>
<td>Error restart</td>
<td>ER</td>
</tr>
<tr>
<td>Gauge TOI</td>
<td>GT</td>
</tr>
<tr>
<td>Host command mode</td>
<td>HC</td>
</tr>
<tr>
<td>Hydrostatic def. factor</td>
<td>HF</td>
</tr>
<tr>
<td>Hydrostatic def. level</td>
<td>HL</td>
</tr>
<tr>
<td>Level dimension</td>
<td>LD</td>
</tr>
<tr>
<td>Wire tension during AR cmd.</td>
<td>RM</td>
</tr>
<tr>
<td>Integration time at 11</td>
<td>T1</td>
</tr>
<tr>
<td>Integration time at 12</td>
<td>T2</td>
</tr>
<tr>
<td>Integration time at 13</td>
<td>T3</td>
</tr>
<tr>
<td>Transmission address for gauge</td>
<td>TA</td>
</tr>
<tr>
<td>Field comm. coll. det. enable</td>
<td>TC</td>
</tr>
<tr>
<td>Tank identifier</td>
<td>TI</td>
</tr>
</tbody>
</table>

1. ENRAF 854 ATG STATIC OPERATING PARAMETERS
2. Table I: ENRAF 854 ATG STATIC OPERATING PARAMETERS
Table I: ENRAF 854 ATG Static Operating Parameters

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Item</th>
<th>Units</th>
<th>Default</th>
<th>TA-00</th>
<th>TA-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacer area</td>
<td>DA</td>
<td>cm²</td>
<td>+.65000000E+02</td>
<td>+.16000000E+02</td>
<td>+.16000000E+02</td>
</tr>
<tr>
<td>Transmission speed, field bus</td>
<td>TS</td>
<td>Baud</td>
<td>1200</td>
<td>2400</td>
<td>2400</td>
</tr>
<tr>
<td>Security Level 1 Password</td>
<td>W1</td>
<td>ENRAF1</td>
<td>ENRAF2</td>
<td>ENRAF1</td>
<td>ENRAF2</td>
</tr>
<tr>
<td>Security Level 2 Password</td>
<td>W2</td>
<td>ENRAF2</td>
<td>ENRAF2</td>
<td>ENRAF2</td>
<td>ENRAF2</td>
</tr>
<tr>
<td>Wire tension protection</td>
<td>WT</td>
<td>EEE</td>
<td>EDE</td>
<td>EDE</td>
<td>EDE</td>
</tr>
</tbody>
</table>

- Displacer volume and weight values are from the Westinghouse Standards Laboratory Physical and Electrical Report Reference Number 386405.
Table II: ENRAF 854 ATG Setup Dependent Operating Parameters

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>ITEM</th>
<th>UNITS</th>
<th>DEFAULT</th>
<th>ACCEPTANCE TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TA-00</td>
</tr>
<tr>
<td>High alarm level</td>
<td>HLA</td>
<td>-LD</td>
<td>+026.0000</td>
<td>+00032.00</td>
</tr>
<tr>
<td>High high alarm</td>
<td>HHH</td>
<td>-LD</td>
<td>+026.1000</td>
<td>+00032.10</td>
</tr>
<tr>
<td>Level offset for Interface 2</td>
<td>L2</td>
<td>-LD</td>
<td>+000.0000</td>
<td>+00000.00</td>
</tr>
<tr>
<td>Level offset for Interface 3</td>
<td>L3</td>
<td>-LD</td>
<td>+000.0000</td>
<td>+00000.00</td>
</tr>
<tr>
<td>Low alarm level</td>
<td>LA</td>
<td>-LD</td>
<td>+002.0000</td>
<td>+00003.10</td>
</tr>
<tr>
<td>Low low alarm level</td>
<td>LL</td>
<td>-LD</td>
<td>+001.9000</td>
<td>+00003.00</td>
</tr>
<tr>
<td>Motor limit high level</td>
<td>MH</td>
<td>-LD</td>
<td>+027.0000</td>
<td>+00034.00</td>
</tr>
<tr>
<td>Motor limit low level</td>
<td>ML</td>
<td>-LD</td>
<td>+001.0000</td>
<td>+00002.00</td>
</tr>
<tr>
<td>Lock test limit-switch level</td>
<td>MZ</td>
<td>-LD</td>
<td>+050.0000</td>
<td>+00033.00</td>
</tr>
<tr>
<td>Reference level</td>
<td>RL</td>
<td>-LD</td>
<td>+026.0000</td>
<td>TBD during test</td>
</tr>
<tr>
<td>Setpoint, displacer wt. at I/F 1</td>
<td>S1</td>
<td>g</td>
<td>+.20800000E+03</td>
<td>+.24500000E+03</td>
</tr>
<tr>
<td>Setpoint, displacer wt. at I/F 2</td>
<td>S2</td>
<td>g</td>
<td>+.20800000E+03</td>
<td>+.15100000E+03</td>
</tr>
<tr>
<td>Setpoint, displacer wt. at I/F 3</td>
<td>S3</td>
<td>g</td>
<td>+.20800000E+03</td>
<td>+.12500000E+03</td>
</tr>
<tr>
<td>Tank top level</td>
<td>TT</td>
<td>-LD</td>
<td>+027.0000</td>
<td>+00036.00</td>
</tr>
<tr>
<td>Upper reference level</td>
<td>UR</td>
<td>-LD</td>
<td>+027.0000</td>
<td>+00036.00</td>
</tr>
</tbody>
</table>
