Fundamental Kinetics of Supercritical Coal Liquefaction: Effect of Catalysts and Hydrogen-Donor Solvents

PDF Version Also Available for Download.

Description

This is the quarterly report on our recent progress toward the overall objective to understand the supercritical fluid extraction of hydrocarbons from coal. Our strategy is to simulate coal as a high molecular-weight polymeric material by studying the degradation of polymers under various conditions. The hypothesis we are testing is that degradation of such macromolecules is applicable to the decomposition (depolymerization) of the coal network. Polymer degradation and coal liquefaction are influenced strongly by the solvent in the reaction. This motivated our investigation of the effect of hydrogen donor solvents on polymer degradation. In particular, we obtained new experimental data ... continued below

Creation Information

McCoy, Ben J.; Madras, Girodhar; Smith, J. M. & Kodera, Yoichi April 16, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This is the quarterly report on our recent progress toward the overall objective to understand the supercritical fluid extraction of hydrocarbons from coal. Our strategy is to simulate coal as a high molecular-weight polymeric material by studying the degradation of polymers under various conditions. The hypothesis we are testing is that degradation of such macromolecules is applicable to the decomposition (depolymerization) of the coal network. Polymer degradation and coal liquefaction are influenced strongly by the solvent in the reaction. This motivated our investigation of the effect of hydrogen donor solvents on polymer degradation. In particular, we obtained new experimental data to show how a hydrogen donor, 6-hydroxy tetralin, influences the degradation rate of polystyrene. We also developed a detailed radical mechanism for hydrogen donation based on the Rice-Herzfeld chain reaction concept with the elementary steps of initiation, depropagation, hydrogen abstraction, and termination. Expressions for the degradation rate parameters were obtained by applying continuous distribution kinetics to the MWD of the reacting polymer. The theory explains the different influences of the hydrogen donor solvent on the degradation rate coefficients for different polymers. Though developed for the degradation of polymers, the mechanism and the theory are potentially applicable for chain scission and addition reactions among distributions of paraffins, olefins, and radicals of all chain lengths. The concepts can, in principle, be extended to examine the effect of hydrogen donors on coal liquefaction and on the complex mixture of liquefaction compounds. Based on this work, a research paper titled �Effect of Hydrogen Donors on Polymer Degradation,� has been submitted for publication. Our research paper entitled, �Molecular weight effect on the dynamics of polystyrene degradation,� has been accepted for publication by the journal, Industrial and Engineering Chemistry Research.

Subjects

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE00002029
  • Report No.: DE-FG22-94PC94204--10
  • Grant Number: FG22-94PC94204
  • DOI: 10.2172/2029 | External Link
  • Office of Scientific & Technical Information Report Number: 2029
  • Archival Resource Key: ark:/67531/metadc667823

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 16, 1997

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Nov. 28, 2016, 6:12 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 12

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

McCoy, Ben J.; Madras, Girodhar; Smith, J. M. & Kodera, Yoichi. Fundamental Kinetics of Supercritical Coal Liquefaction: Effect of Catalysts and Hydrogen-Donor Solvents, report, April 16, 1997; Morgantown, West Virginia. (digital.library.unt.edu/ark:/67531/metadc667823/: accessed April 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.