ANNUAL REVIEW OF
CULTURAL RESOURCE INVESTIGATIONS BY
THE SAVANNAH RIVER ARCHAEOLOGICAL
RESEARCH PROGRAM

FISCAL YEAR 1995

MASTER

SAVANNAH RIVER ARCHAEOLOGICAL RESEARCH PROGRAM
SOUTH CAROLINA INSTITUTE OF ARCHAEOLOGY AND ANTHROPOLOGY
UNIVERSITY OF SOUTH CAROLINA

October 1995

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
ANNUAL REVIEW OF CULTURAL RESOURCE INVESTIGATIONS BY THE SAVANNAH RIVER ARCHAEOLOGICAL RESEARCH PROGRAM

FISCAL YEAR 1995

Prepared by the staff of the

SAVANNAH RIVER ARCHAEOLOGICAL RESEARCH PROGRAM

This report was prepared through funding provided by the United States Department of Energy under contract DE-FC09-88SR15199.

The report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor their employees, nor any of their contractors, subcontractors, or their employees, make any warranty for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represent that its use would not infringe privately-owned rights.

SAVANNAH RIVER ARCHAEOLOGICAL RESEARCH PROGRAM
SOUTH CAROLINA INSTITUTE OF ARCHAEOLOGY AND ANTHROPOLOGY
UNIVERSITY OF SOUTH CAROLINA

October 1995
SAVANNAH RIVER ARCHAEOLOGICAL RESEARCH PROGRAM

Full-Time Staff

Mark J. Brooks Co-Program Manager/Geoarchaeologist
Richard D. Brooks Co-Program Manager/Historian
Kenneth E. Sassaman Archaeologist
David C. Crass Curator/Historic Sites Archaeologist
Mary M. Inkrot Curator of Heritage Education
Melanie A. Cabak Site-Use Archaeologist
J. Christopher Gillam GIS Specialist/Archaeologist
Bruce R. Penner Curatorial Assistant
Tammy R. Forehand Curatorial Assistant
Tonya A. Browder Community Historian
George L. Wingard Administrative Assistant
George S. Lewis Field/Laboratory Technician
Monica L. Beck Field/Laboratory Technician
Stephanie A. Brown Field/Laboratory Technician
Douglas E. Vickery Field/Laboratory Technician

Graduate Research Assistants, University of South Carolina, Columbia

Kristin Wilson M.A. Program, Department of Anthropology
Roland Sawatzky M.A. Program, Department of Anthropology
Josh Fletcher M.A. Program, Department of Anthropology

Other Graduate Research Assistants

Gregory Wise Augusta College
John Huffman University of Idaho

Undergraduate Assistants

Victoria Rudolphi Östersund University, Sweden

Oak Ridge Associated Universities, Fellow

Garry B. McMilleon Northeast Louisiana University

Volunteers

Larry Potter Field/Laboratory Assistant
Lois Potter Field/Laboratory Assistant
MANAGEMENT SUMMARY

The Savannah River Archaeological Research Program (SRARP) continued through FY95 with the United States Department of Energy to fulfill a threefold mission of cultural resource management, research, and public education at the Savannah River Site.

Over 2,300 acres of land on the SRS came under cultural resources review in FY95. This activity entailed 30 field surveys, resulting in the recording of 86 new sites. Twenty-two existing sites within survey tract boundaries were revisited to update site file records.

Research conducted by SRARP was reported in 11 papers and monographs published during FY95. SRARP staff also presented research results in 18 papers at professional meetings. Field research included several testing programs, excavations, and remote sensing at area sites, as well as data collection abroad. Seven grants were acquired by SRARP staff to support off-site research.

In the area of heritage education, the SRARP expanded its activities in FY95 with a full schedule of classroom education, public outreach, and on-site tours. Volunteer excavations at the Tinker Creek site were continued with the Augusta Archaeological Society and other avocational groups, and other off-site excavations provided a variety of opportunities for field experience. Some 80 presentations, displays and tours were provided for schools, historical societies, civic groups, and environmental and historical awareness day celebrations. Additionally, SRARP staff taught four anthropology courses at area colleges.
TABLE OF CONTENTS

INTRODUCTION

PART I. CULTURAL RESOURCE MANAGEMENT

RESULTS OF FY95 SITE USE, TIMBER COMPARTMENT AND CLEARCUT SURVEYS (M. A. Cabak)

CURATION COMPLIANCE ACTIVITIES (D. C. Crass)

SAFETY AT THE SRARP (G. L. Wingard)

PART II. RESEARCH

RESEARCH ABSTRACTS

RESEARCH NOTES
- Carolina Bay Research (M. J. Brooks)
- Site Wide Historic Survey (M. A. Cabak)
- Current Research on the Eighteenth Century Savannah River Frontier (D. C. Crass)
- Woodrow Wilson Boyhood Home (D. C. Crass)
- Augusta Arsenal Research (D. C. Crass)
- Historic Brattonsville (38YK21) (M. L. Beck)
- Mims Point 1995 (K. E. Sassaman)
- Victor Mills Site Analysis (K. E. Sassaman)
- Ed Marshall Site (38ED5) (K. E. Sassaman)
- Soapstone Vessel Dating Project (K. E. Sassaman)

RESEARCH REPORTS
- Scales of Holocene Landscape Evolution in the South Atlantic Slope and Their Implications for Prehistoric Populations (M. J. Brooks, B. E. Taylor, and D. J. Colquhoun)

PART III. PUBLIC EDUCATION

Public Outreach
- Outreach to K-12 Students and Schools (M. M. Inkrot)
- Community Outreach (M. M. Inkrot)
- Historic Brattonsville Programs (M. L. Beck)
- Community History Project (T. A. Browder)
- Special Public Outreach Projects (T. A. Browder)

REFERENCES CITED

APPENDIX A: Publications and Activities
INTRODUCTION

A cooperative agreement with the United States Department of Energy provides the necessary funding for the Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, to render services required under federal law for the protection and management of archaeological resources on the Savannah River Site (SRS). Because the significance of archaeological resources is usually determined by research potential, the SRARP is guided by research objectives. An ongoing research program provides the theoretical, methodological, and empirical basis for assessing site significance within the compliance process specified by law. In accordance with the spirit of the law, the SRARP maintains an active public education program for disseminating knowledge about prehistory and history, and for enhancing awareness of historic preservation. This report summarizes the management, research, and public education activities of the SRARP during Fiscal Year 1995.

SRARP management procedures were modified in FY90 for the implementation in FY91 of a Programmatic Memorandum of Agreement (PMOA) among the United States Department of Energy-Savannah River Operations Office, the South Carolina State Historic Preservation Office and the Advisory Council on Historic Preservation. The SRARP is required under the PMOA to produce an annual review of all cultural resource activities conducted during the year. The reader is referred to the SRARP FY90 Annual Review for a detailed discussion of the current procedures and databases.

The following section (Part I) on Cultural Resource Management contains the results of the FY95 surveys and an update on curation activities. Research activities of the SRARP are summarized in Part II and include prehistoric, historic, and geoarchaeologic studies conducted on the SRS and in the surrounding region. An extralocal perspective is necessary for understanding the effects of regional processes on local conditions and, hence, enables the more effective management of the cultural resources of the SRS.

Public education activities of the SRARP are summarized in Part III, which highlights the heritage education program, volunteer excavations, involvement with avocational archaeology groups, and the community history project. An appendix at the end of the report lists the FY95 professional and public service activities of the SRARP staff.
PART I. CULTURAL RESOURCE MANAGEMENT

RESULTS OF FY95 SITE USE, TIMBER COMPARTMENT, AND CLEARCUT SURVEYS

Survey Coverage

Archaeological survey of Site Use Application and Timber Compartment Prescription land tracts by SRARP staff continued through the FY95 period according to procedures outlined and implemented in 1990 (SRARP 1990:7-17). In addition, clearcut surveys have continued this year as an important means of improving survey recovery from timber compartments. The results of noncompliance (opportunistic and research) related investigations are also included in this report. Altogether, 30 survey and testing projects were conducted in FY95. During this period 2,337 acres were covered resulting in the discovery of 86 new sites and revisitation of 22 previously recorded sites.

Site Use Applications. Fifty-two Site Use Applications were received by the SRARP during FY95. SRARP staff screened each of these applications for proposed land alteration, and found that six required detailed review of existing archaeological documentation. These projects comprise less than one percent, or only 22 acres, of the total land surveyed in FY95 (Table 1). This unusually small fraction for Site Use surveys reflects the overall scaling-back of DOE-sponsored initiatives on the SRS during FY95. At the time of this writing, however, two large-scale projects have been proposed that involve substantial archaeological survey efforts. The results of these surveys will be reported in FY96, a year that is expected to witness increased land alteration proposals as the federal government continues to redefine and expand its various missions at SRS.

The Site Use surveys completed in FY95 include one large-scale project, the Domestic Water Upgrade archaeological survey. A full report of this project was prepared and submitted to the Savannah River Operations Office, U. S. Department of Energy (Cabak et al. 1994). The remaining Site Use projects involved land-use activities on a more modest scale. These included construction of groundwater well sites and access roads, a soil harvesting area for the Savannah River Ecology Laboratory, and bridge replacements. Descriptions of these projects, survey methods, and results are provided in a section below. In addition to these projects, one large-scale survey for Site 7 of the proposed location for the Regional Landfill and Technology Center was initiated in the summer of FY95. Survey for a proposed 100-acre borrow pit also was recently completed.

Table 1. FY95 SR-88 Site Use Projects.

<table>
<thead>
<tr>
<th>Project</th>
<th>Area (acres)</th>
<th>Distance (ft)</th>
<th>Site Revisits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Water Upgrade</td>
<td>17*</td>
<td>123,024</td>
<td>38AK88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38AK89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38AK118</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38AK170</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38AK361</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38AK404</td>
</tr>
<tr>
<td>SU-88-05-O Amend. No. 3</td>
<td>1</td>
<td>787</td>
<td></td>
</tr>
<tr>
<td>SU-94-11-O Amend. No. 2</td>
<td>1</td>
<td>1,181</td>
<td></td>
</tr>
<tr>
<td>SU-93-10-C Amend. No. 1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SU Log No. 916</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opportunistic Preliminary Site Use</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*acres estimated from linear transect 6-ft wide
Timber Compartment Prescriptions. Most of the compliance related activities receiving archaeological review in FY95 involved timber compartment stands slated for thinning or regeneration. Fourteen compartment prescriptions were received by the SRARP in FY94. Portions of seven of the compartments were surveyed during this period. Thus, the carry over of unsurveyed FY94 compartment stands comprised a substantial portion of FY95 surveys. Nine additional prescriptions were received in FY95, two of which were completed in this period (compartments 18 and 31). Carry over slated for FY96 includes survey in seven compartments.

A review SRARP site files showed that 68 sites were located within compartments under prescription review in FY95. These include both sites within stands slated for timber harvest or thinning, as well as sites within unaffected stands. As is usually the case, the SRARP recommends to the Forest Service that sites with research potential be avoided altogether in thinning or harvesting operations. Thirteen such sites were identified within FY95 compartments; these sites will be flagged and avoided at the time of harvest or thinning.

Several stands slated for thinning or harvesting that were not been adequately surveyed in past efforts were earmarked for survey in FY95. Of the total 1,568 acres surveyed in such stands, the majority (895 acres) involved compartment stands slated for regeneration (formerly clearcutting), a land-use activity with moderate to heavy impact to the subsoil. Thirteen sites were located in these stands. Survey of 673 acres in timber stands slated for thinning, a land-use activity with minimal site impact, yielded an additional nine sites. Table 2 provides a listing of sites in surveyed regeneration or

<table>
<thead>
<tr>
<th>Timber Compartment</th>
<th>Prescribed Thinning</th>
<th>Prescribed Regeneration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area Reviewed (acres)</td>
<td>Area Surveyed (acres)</td>
</tr>
<tr>
<td>Timber Comp. 40</td>
<td>na</td>
<td>1</td>
</tr>
<tr>
<td>Timber Comp. 48</td>
<td>374</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timber Comp. 52</td>
<td>525</td>
<td>418</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timber Comp. 70</td>
<td>804</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timber Comp. 72</td>
<td>548</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timber Comp. 18</td>
<td>176</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timber Comp. 31</td>
<td>549</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1013</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2,976</td>
<td>673</td>
</tr>
</tbody>
</table>

*188 acres of this stand was surveyed in FY94.
thinning stands. Survey methods in both thinning and regeneration stands primarily involved pedestrian reconnaissance of exposed surfaces to cover as much area as possible and shovel test pits (STPs) excavated along transects bordering landforms overlooking stream stems and upland wetlands. Subsurface testing was employed to delineate site boundaries in all cases. Based on the results of this work, the SRARP recommended that the Forest Service avoid impacting three of the 22 sites (38BR33, 38BR242, 38BR339) located in newly surveyed stands. Another significant site involved in the FY94 prescription for Compartment 40, 38BR402, was revisited for subsurface testing in order to provide adequate boundaries for flagging.

Clearcut Survey. Additional archaeological coverage in timber compartments consisted of pedestrian survey in timber compartment stands that had been recently clearcut. As shown in Table 3, surface reconnaissance was conducted in 15 stands in seven timber compartments, for a total of 692 acres. This effort resulted in the discovery of 30 new sites and revisits to four sites. As noted in the FY93 report (SRARP 1993:7-8), replanting activities in clearcut stands seldom involve shearing and raking of detritus into windrows, a common practice in the past. Instead, debris usually is allowed to decompose in place. This procedure, although much more environmentally sound and protective of buried cultural deposits than mechanized site preparation, diminishes surface visibility. In fact, it is becoming increasingly more difficult to find clearcuts on

<table>
<thead>
<tr>
<th>Table 3. Site Inventory from Clearcut Survey, FY95.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timber Compartment</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>34</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>77</td>
</tr>
<tr>
<td>77</td>
</tr>
</tbody>
</table>
the SRS with enough surface exposure to conduct reliable surface reconnaissance. Also, because of the recent installation of Savannah River Ecology Lab set-asides, which protect the transitional vegetative zones along drainage margins, timber is no longer harvested in areas that are particularly sensitive to prehistoric archaeological sites.

Opportunistic Site Investigations. Periodically, SRARP personnel record sites on land tracts not undergoing compliance-related survey. Categorized as Opportunistic, such sites were located either fortuitously or brought to our attention by non-SRAW personnel. Site 38BR442 was encountered while walking to another site. The ground surface at the site contained pearlware and creamware sherds indicating the site was occupied in the late eighteenth and nineteenth centuries. Sites from this period are relatively rare on the SRS, therefore 38BR442 was tested to determine the integrity of subsurface deposits. Site 38AK657, a twentieth-century farmstead, was found in route to a timber compartment survey.

Opportunistic survey during FY95 also included subsurface testing along the perimeter of several Carolina bays. The significance of these upland wetlands lies in their potential to add to our understanding of prehistoric habitations at interfluvial locations. Previous settlement models on the SRS were designed with data regarding site densities and proximity to the Savannah River and its tributaries. Recent geoarchaeological investigations at bay locations (Brooks et al. 1993:27-37) have shown that these small wetland resources were exploited intensively on a seasonal, if not multiseasonal basis (see summary on ongoing bay research in section below). This evidence for bay occupations must be considered in future regional settlement studies by focusing on such questions as chronology, site formation, structure and function, and how bay sites relate in time and space to those along major tributaries.

An opportunity to test one bay was provided during survey of the right-of-way for the Domestic Water Upgrade project (see below). Located in Stand 6 of Timber Compartment 16, the bay was outside of but adjacent to the project right-of-way. Survey entailed the excavation of 27 STPs at 30 m intervals around the bay rim. Two historic artifacts and one flake were found in two STPs on the southwestern edge of the bay. To further investigate this area, 31 additional STPs were dug in cruciform patterns from STPs 4 and 6. This work resulted in the delineation of one site (38AK590). Two small historic refuse dumps were also found, one was located along the northwestern rim and the other on the eastern rim.

Descriptions of SR-88 Site Use Archaeological Surveys, FY95

As noted above, few Site Use surveys were conducted in FY95. What follows are short summaries of these Site Use efforts, including information on the various survey methods used, circumstances that dictated these methods, and the results. Certain aspects of archaeological work were standardized for all projects. Specifically, prior to all field work, a review of mid-twentieth century aerial photographs was conducted to identify standing historic structures that existed within project areas. SRARP site files were consulted to identify previously recorded cultural resources. All shovel tests were 35 x 35-cm square, and were excavated to a depth of at least 80 cm BS unless clay substratum was encountered first. The soil from shovel tests was passed through a 0.25-inch wire mesh and artifacts were collected and bagged by provenience.

Domestic Water Upgrade. This description of archaeological investigations for the Domestic Water Upgrade is summarized from a report prepared by Cabak et al. (1994). The proposed Domestic Water pipeline route consists of numerous rights-of-way totaling 23.3 miles in length. Project specifications called for the installation of a six-
inch diameter pipe, buried an average of three feet below surface with a Ditch Witch or small backhoe. Eleven previously recorded sites existed within project rights-of-way (38AK88, 38AK89, 38AK107, 38AK118, 38AK146, 38AK169, 38AK170, 38AK310, 38AK361, 38AK404, and 38BR57). Archaeological evidence for three of the sites (38AK107, 38AK169 and 38AK310) could not be located. Testing at the other sites showed that five (38AK118, 38AK170, 38AK361, 38AK404, and 38BR57) consisted of limited and/or disturbed contexts with limited research potential, while three (38AK88, 38AK89, and 38AK146) contained intact cultural deposits with sufficient content and research potential to be recommended as eligible for the National Register of Historic Places (NRHP). Fortunately, it was possible to mitigate adverse impacts to the latter sites through avoidance.

Access Roads and Lithologic and Water Sampling, Transect Area I (SU Log #916). Archaeological review was conducted for an application to construct ten 10-20-ft long lithologic and water sampling locations and associated access roads. Only one of the sampling locations (T14-2 and road 12) was in a previously undeveloped and unsurveyed area. Pedestrian survey in October, 1994 revealed this area was already altered by a borrow pit. No artifacts were observed. The locations of the remaining testing areas and access roads were in the E Area, which was surveyed in FY94. Two of the access roads intersected the western edge of 38AK546, a site potentially eligible to the NRHP. The SRARP recommended that potential adverse effects to this site be mitigated through avoidance. Westinghouse Engineers obliged this request by rerouting the roads.

Access Roads for Geotechnical Sampling (SU-94-11-O Amendment No. 2). An application for subsurface characterization of the proposed Solid Waste Research Complex involved the installation of two new access roads. SRARP personnel evaluated the project area with linear transects of STPs, spaced 30 m apart, placed in the center of each route. No cultural material was observed in the 14 STPs that were excavated.

Sodar Equipment Installation (SU-88-05-O Amendment No. 3). An application for the construction of an access road for installation of sodar equipment prompted limited subsurface testing by the SRARP. Excavated were nine STPs down the center of the proposed route; cultural material was not encountered.

Replacement of Four Bridges (SU-95-10-C Amendment No. 1). An application for the replacement of four SRS bridges was reviewed in April 1995 by SRARP. A surface reconnaissance survey of the proposed areas revealed that replacements would not involve previously undisturbed soil.

SREL Preliminary Site Use. An application for the removal of soils from a 30 x 30-ft area by Savannah River Ecology Laboratory prompted SRARP personnel to conduct limited shovel testing. The area contained only 35 cm of soil over the clay substrate. No artifacts were recovered in the five shallow STPs excavated at this location.

Special Projects

Additional archaeological survey coverage was completed during two special research projects in FY95. The Site-Wide Historic Survey and the Carolina Bay Research Project are designed to address particular research problems, yet each contributes directly to the compliance goals of the SRARP by increasing the inventory of sites, and, more importantly, by providing new information for improving our ability to locate, evaluate, and protect sites.
The Site Wide Historic Survey. Melanie Cabak and Mary Inkrot initiated a site-wide survey project to locate and test rural postbellum sites in an effort to evaluate the archaeological potential of these resources for research on economic development, land-use patterns, and socioeconomic variation. A sample of 59 land tracts were randomly selected for analysis from the 1,151 rural tracts the Atomic Energy Commission purchased from landowners in 1951. The yeoman and tenant farmsteads on 26 of these land tracts were then selected for archaeological evaluation. Field work has involved detailed mapping, and cruciform shovel testing to delineate site boundaries and to sample subsurface deposits. The ongoing project has thus far entailed over 800 STPs at 35 sites (see Table 4 for inventory). Analysis of the AEC Land Acquisition Records is providing independent data on tract size, structure size and number, and land use. The results of this work, to be reported in FY96, will be incorporated into future resource management plans for the SRS.

The Carolina Bay Research Project. Archaeological survey was conducted around the sand rims of seven Carolina bays during field work for this research project headed by Mark Brooks. This study is designed to explore how environmental, climatic, and landscape changes affected human use of upland wetlands. Shovel testing of the bays was conducted along 7,470 m of linear transects. During the course of this project eight new sites were discovered and tested (Table 4). A total of 468 STPs were excavated to locate and define sites around the bays. Nine 1 x 2-m units were excavated to further test six of the sites. Results of this work are beginning to appear (see report in section below) and will be reported in additional papers in FY96. Again, the results of this special project are adding significant new data on site occurrence for the purposes of resource management on the SRS.

Survey Results

Eighty-six new archaeological sites were located and documented in FY95. Twenty-two existing sites within survey tract boundaries were revisited to update site file records. A tabulation of existing and new sites by project type is provided in Table 4. Summary data on new and existing sites are provided in Tables 5 and 6.

A total of 2,337 acres was surveyed by the SRARP in FY95 for six Site Use Applications, six Timber Compartment Prescriptions, 15 clearcut stands, and two special research projects. In addition to surface reconnaissance, 2,170 shovel tests were excavated to locate and define sites. Eleven controlled test units were excavated at eight sites to assess subsurface integrity and content.

The figures provided in Table 7 illustrate that the acreage surveyed by the SRARP decreased in FY95 from that surveyed in FY94. Although, the number of projects and acres surveyed decrease, the volume of sites discovered increased. This is largely attributed to the two noncompliance research projects described above. These two projects accounted for 42 of the new sites discovered in FY95.

Nine timber compartment prescriptions issued in FY94 and FY95 could not be surveyed before the end of the fiscal year. These will be carried over to FY96 and form a substantial portion of the survey activity in the next several months. The completion of the report for Site 7 of the proposed Three River's Regional Landfill and Technology Center is expected in the early fall 1995. The results of the E Area survey are expected to be released in FY96. In addition, a large volume of clearcut surveys and other site use activities is anticipated for FY96.
Table 4. Tabulation of Existing Sites and New Sites by Survey Project Type, FY95.

<table>
<thead>
<tr>
<th>SITE-USE</th>
<th>EXISTING SITES</th>
<th></th>
<th>NEW SITES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prehistoric</td>
<td>Historic</td>
<td>Both</td>
<td>Prehistoric</td>
</tr>
<tr>
<td></td>
<td>38AK88</td>
<td>38AK404</td>
<td>38AK118</td>
<td>38AK594</td>
</tr>
<tr>
<td></td>
<td>38AK89</td>
<td>38AK170</td>
<td>38AK361</td>
<td>38AK595</td>
</tr>
<tr>
<td></td>
<td>38BR33</td>
<td>38AK598</td>
<td>38AK664</td>
<td>38BR749</td>
</tr>
<tr>
<td></td>
<td>38BR231</td>
<td>38AK665</td>
<td></td>
<td>38BR747</td>
</tr>
<tr>
<td></td>
<td>38BR224</td>
<td>38BR756</td>
<td></td>
<td>38BR748</td>
</tr>
<tr>
<td></td>
<td>38BR339</td>
<td>38BR760</td>
<td></td>
<td>38BR755</td>
</tr>
<tr>
<td></td>
<td>38BR358</td>
<td></td>
<td></td>
<td>38BR766</td>
</tr>
<tr>
<td></td>
<td>38BR402</td>
<td></td>
<td></td>
<td>38BR773</td>
</tr>
<tr>
<td></td>
<td>38BR540</td>
<td></td>
<td></td>
<td>38BR774</td>
</tr>
<tr>
<td>TIMBER</td>
<td>38AK75</td>
<td>38AK591</td>
<td>38AK607</td>
<td>38AK608</td>
</tr>
<tr>
<td>COMPARTMENTS</td>
<td>38AK76</td>
<td>38AK592</td>
<td>38BR741</td>
<td>38BR739</td>
</tr>
<tr>
<td></td>
<td>38BR233</td>
<td>38BR737</td>
<td>38BR742</td>
<td>38BR740</td>
</tr>
<tr>
<td></td>
<td>38BR66</td>
<td>38BR743</td>
<td>38BR749</td>
<td>38BR745</td>
</tr>
<tr>
<td></td>
<td>38BR231</td>
<td>38BR744</td>
<td>38BR772</td>
<td>38BR758</td>
</tr>
<tr>
<td></td>
<td>38BR224</td>
<td>38BR746</td>
<td>38BR767</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38BR339</td>
<td>38BR747</td>
<td>38BR768</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38BR358</td>
<td>38BR748</td>
<td>38BR764</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38BR402</td>
<td>38BR754</td>
<td>38BR765</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38BR540</td>
<td>38BR755</td>
<td>38BR766</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38BR739</td>
<td>38BR773</td>
<td>38BR774</td>
<td></td>
</tr>
<tr>
<td>CLEARCUT</td>
<td>38BR222</td>
<td>38BR256</td>
<td>38AK591</td>
<td>38AK607</td>
</tr>
<tr>
<td></td>
<td>38BR357</td>
<td>38AK592</td>
<td>38BR741</td>
<td>38BR739</td>
</tr>
<tr>
<td></td>
<td>38BR645</td>
<td>38BR737</td>
<td>38BR742</td>
<td>38BR740</td>
</tr>
<tr>
<td></td>
<td>38BR743</td>
<td>38BR744</td>
<td>38BR772</td>
<td>38BR758</td>
</tr>
<tr>
<td></td>
<td>38BR224</td>
<td>38BR746</td>
<td>38BR767</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38BR339</td>
<td>38BR747</td>
<td>38BR768</td>
<td></td>
</tr>
<tr>
<td>OPPORTUNISTIC</td>
<td>38BR442</td>
<td>38AK657</td>
<td>38AK590</td>
<td></td>
</tr>
<tr>
<td>SITE WIDE HISTORIC</td>
<td>38BR443</td>
<td>38AK597</td>
<td>38AK607</td>
<td>38AK604</td>
</tr>
</tbody>
</table>
Table 4. (continued).

<table>
<thead>
<tr>
<th>Prehistoric</th>
<th>Historic</th>
<th>Both</th>
<th>Prehistoric</th>
<th>Historic</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAROLINA BAY SURVEY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38AK600</td>
<td>38AK601</td>
<td>38AK602</td>
<td>38AK669</td>
<td>38BR751</td>
<td>38BR752</td>
</tr>
<tr>
<td>38BR753</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL					

13	4	5	32	33	21

Table 5. Data on the Extent, Depth, and Content of New Sites Located in FY95 Surveys.

<table>
<thead>
<tr>
<th>Site</th>
<th>Project</th>
<th>Size (m)</th>
<th>Depth (cm BS)</th>
<th>Methods</th>
<th>Surface Visibility</th>
<th>#</th>
<th>STPs</th>
<th>TU</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>38AK590</td>
<td>Opportunistic</td>
<td>100x125</td>
<td>70</td>
<td>Surf., STP</td>
<td>1-25</td>
<td>33</td>
<td>0</td>
<td>MW, 19th c.</td>
<td></td>
</tr>
<tr>
<td>38AK591</td>
<td>Clearcut Survey</td>
<td>60x110</td>
<td>60</td>
<td>Surf., STP</td>
<td>26-50</td>
<td>14</td>
<td>0</td>
<td>MW, LW</td>
<td></td>
</tr>
<tr>
<td>38AK592</td>
<td>Clearcut Survey</td>
<td>20x20</td>
<td>60</td>
<td>STP</td>
<td>26-50</td>
<td>12</td>
<td>0</td>
<td>Unk. Preh.</td>
<td></td>
</tr>
<tr>
<td>38AK593</td>
<td>TC Survey</td>
<td>60x75</td>
<td>30</td>
<td>STP</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>Unk. Preh., Unk. Hist.</td>
<td></td>
</tr>
<tr>
<td>38AK594</td>
<td>TC Survey</td>
<td>90x110</td>
<td>70</td>
<td>STP</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>MW, LW</td>
<td></td>
</tr>
<tr>
<td>38AK595</td>
<td>TC Survey</td>
<td>80x85</td>
<td>50</td>
<td>STP</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>MW</td>
<td></td>
</tr>
<tr>
<td>38AK596</td>
<td>TC Survey</td>
<td>160x200</td>
<td>70</td>
<td>STP</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>MW, LW, Unk. Hist.</td>
<td></td>
</tr>
<tr>
<td>38AK597</td>
<td>SWHS</td>
<td>90x90</td>
<td>40</td>
<td>Surf., STP</td>
<td>1-25</td>
<td>29</td>
<td>0</td>
<td>19th-20th c.</td>
<td></td>
</tr>
<tr>
<td>38AK598</td>
<td>TC Survey</td>
<td>40x200</td>
<td>80</td>
<td>STP</td>
<td>1-25</td>
<td>16</td>
<td>0</td>
<td>Unk. Preh.</td>
<td></td>
</tr>
<tr>
<td>38AK599</td>
<td>SWHS</td>
<td>50x75</td>
<td>20</td>
<td>Surf., STP</td>
<td>1-25</td>
<td>21</td>
<td>0</td>
<td>20th c.</td>
<td></td>
</tr>
<tr>
<td>38AK600</td>
<td>CB Research</td>
<td>15x80</td>
<td>30</td>
<td>STP</td>
<td>0</td>
<td>13</td>
<td>2</td>
<td>Woodland</td>
<td></td>
</tr>
<tr>
<td>38AK601</td>
<td>CB Research</td>
<td>70x100</td>
<td>91</td>
<td>STP</td>
<td>0</td>
<td>19</td>
<td>2</td>
<td>MA-Miss.</td>
<td></td>
</tr>
<tr>
<td>38AK602</td>
<td>CB Research</td>
<td>35x160</td>
<td>80</td>
<td>STP</td>
<td>0</td>
<td>27</td>
<td>2</td>
<td>EA, MW-LW</td>
<td></td>
</tr>
<tr>
<td>38AK603</td>
<td>SWHS</td>
<td>40x75</td>
<td>30</td>
<td>Surf., STP</td>
<td>76-100</td>
<td>18</td>
<td>0</td>
<td>Late 19th-20th c.</td>
<td></td>
</tr>
<tr>
<td>38AK604</td>
<td>SWHS</td>
<td>80x100</td>
<td>35</td>
<td>Surf., STP</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>Unk. Preh., 20th c.</td>
<td></td>
</tr>
<tr>
<td>38AK605</td>
<td>SWHS</td>
<td>30x45</td>
<td>20</td>
<td>Surf., STP</td>
<td>1-25</td>
<td>17</td>
<td>0</td>
<td>Unk. Preh., 20th c.</td>
<td></td>
</tr>
<tr>
<td>38AK606</td>
<td>SWHS</td>
<td>65x75</td>
<td>40</td>
<td>STP</td>
<td>1-25</td>
<td>24</td>
<td>0</td>
<td>Unk. Preh., 20th c.</td>
<td></td>
</tr>
<tr>
<td>38AK607</td>
<td>Clearcut Survey</td>
<td>110x130</td>
<td>IN Surf.</td>
<td>76-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20th c.</td>
<td></td>
</tr>
<tr>
<td>38AK608</td>
<td>Clearcut Survey</td>
<td>120x340</td>
<td>95</td>
<td>Surf., STP</td>
<td>76-100</td>
<td>24</td>
<td>0</td>
<td>EA, EW-LW, 19th c.</td>
<td></td>
</tr>
<tr>
<td>38AK609</td>
<td>SWHS</td>
<td>90x100</td>
<td>25</td>
<td>Surf., STP</td>
<td>1-25</td>
<td>25</td>
<td>0</td>
<td>Late 19th-20th c.</td>
<td></td>
</tr>
<tr>
<td>38AK610</td>
<td>SWHS</td>
<td>60x80</td>
<td>20</td>
<td>STP</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td>Late 19th-20th c.</td>
<td></td>
</tr>
<tr>
<td>38AK611</td>
<td>SWHS</td>
<td>60x130</td>
<td>40</td>
<td>STP</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>19th-20th c.</td>
<td></td>
</tr>
<tr>
<td>38AK612</td>
<td>SWHS</td>
<td>110x200</td>
<td>50</td>
<td>Surf., STP</td>
<td>1-25</td>
<td>33</td>
<td>0</td>
<td>Late 19th-20th c.</td>
<td></td>
</tr>
<tr>
<td>38AK613</td>
<td>SWHS</td>
<td>40x90</td>
<td>80</td>
<td>Surf., STP</td>
<td>1-25</td>
<td>15</td>
<td>0</td>
<td>20th c.</td>
<td></td>
</tr>
<tr>
<td>38AK662</td>
<td>SWHS</td>
<td>55x85</td>
<td>60</td>
<td>Surf., STP</td>
<td>1-25</td>
<td>22</td>
<td>0</td>
<td>Late 19th-20th c.</td>
<td></td>
</tr>
<tr>
<td>38AK664</td>
<td>TC Survey</td>
<td>60x105</td>
<td>90</td>
<td>Surf., STP</td>
<td>1-25</td>
<td>16</td>
<td>0</td>
<td>EA, Unk. Preh.</td>
<td></td>
</tr>
<tr>
<td>38AK665</td>
<td>TC Survey</td>
<td>43x490</td>
<td>90</td>
<td>Surf., STP</td>
<td>1-25</td>
<td>102</td>
<td>0</td>
<td>MW-Miss.</td>
<td></td>
</tr>
<tr>
<td>38AK657</td>
<td>Opportunistic</td>
<td>100x120</td>
<td>IN Surf.</td>
<td>26-50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20th c.</td>
<td></td>
</tr>
<tr>
<td>38AK669</td>
<td>CB Research</td>
<td>10x40</td>
<td>25</td>
<td>STP</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>Unk. Preh.</td>
<td></td>
</tr>
<tr>
<td>38BR737</td>
<td>Clearcut Survey</td>
<td>200x480</td>
<td>IN Surf.</td>
<td>76-100</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>MA, EW, MW, LW</td>
<td></td>
</tr>
<tr>
<td>38BR738</td>
<td>TC Survey</td>
<td>160x230</td>
<td>30</td>
<td>Surf., STP</td>
<td>1-25</td>
<td>26</td>
<td>0</td>
<td>Late 19th c., 20th c.</td>
<td></td>
</tr>
<tr>
<td>38BR739</td>
<td>Clearcut Survey</td>
<td>150x150</td>
<td>IN Surf.</td>
<td>76-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>LA-EW, 20th c.</td>
<td></td>
</tr>
<tr>
<td>38BR740</td>
<td>Clearcut Survey</td>
<td>50x70</td>
<td>IN Surf.</td>
<td>76-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unk. Preh., 19th c.</td>
<td></td>
</tr>
<tr>
<td>38BR741</td>
<td>Clearcut Survey</td>
<td>90x120</td>
<td>IN Surf.</td>
<td>76-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20th c.</td>
<td></td>
</tr>
<tr>
<td>38BR742</td>
<td>Clearcut Survey</td>
<td>55x60</td>
<td>IN Surf.</td>
<td>76-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20th c.</td>
<td></td>
</tr>
<tr>
<td>38BR743</td>
<td>Clearcut Survey</td>
<td>50x120</td>
<td>IN Surf.</td>
<td>76-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>EW, MW, LW</td>
<td></td>
</tr>
<tr>
<td>38BR744</td>
<td>Clearcut Survey</td>
<td>10x30</td>
<td>IN Surf.</td>
<td>76-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>LA-EW</td>
<td></td>
</tr>
<tr>
<td>38BR745</td>
<td>Clearcut Survey</td>
<td>110x340</td>
<td>IN Surf.</td>
<td>76-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>EW, 19th c.</td>
<td></td>
</tr>
<tr>
<td>38BR746</td>
<td>Clearcut Survey</td>
<td>10x20</td>
<td>IN Surf.</td>
<td>76-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unk. Preh.</td>
<td></td>
</tr>
<tr>
<td>38BR747</td>
<td>Clearcut Survey</td>
<td>25x40</td>
<td>IN Surf.</td>
<td>76-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unk. Preh.</td>
<td></td>
</tr>
<tr>
<td>38BR748</td>
<td>Clearcut Survey</td>
<td>30x170</td>
<td>IN Surf.</td>
<td>76-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unk. Preh.</td>
<td></td>
</tr>
</tbody>
</table>
Table 5. (continued).

<table>
<thead>
<tr>
<th>Site</th>
<th>Project</th>
<th>Size</th>
<th>Depth</th>
<th>Surface</th>
<th>Visibility</th>
<th># STPs</th>
<th>TU</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>30x90</td>
<td>15</td>
<td>Surf.,STP</td>
<td>1-25</td>
<td>26</td>
<td>20th c.</td>
<td>Middle Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>70x105</td>
<td>35</td>
<td>Surf.,STP</td>
<td>1-25</td>
<td>26</td>
<td>Unk. Hist.</td>
<td>Late Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>80x170</td>
<td>40</td>
<td>Surf.,STP</td>
<td>1-25</td>
<td>30</td>
<td>Late 19th-20th c.</td>
<td>Late Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>65x150</td>
<td>60</td>
<td>Surf.,STP</td>
<td>1-25</td>
<td>0</td>
<td>20th c.</td>
<td>Late Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>100x260</td>
<td>70</td>
<td>Surf.,STP</td>
<td>76-100</td>
<td>5</td>
<td>Unk. Preh.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>Clearcut Survey</td>
<td>40x110</td>
<td>50</td>
<td>Surf.,STP</td>
<td>76-100</td>
<td>3</td>
<td>Unk. Preh.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>110x150</td>
<td>45</td>
<td>STP</td>
<td>1-25</td>
<td>28</td>
<td>20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>50x80</td>
<td>40</td>
<td>STP</td>
<td>0</td>
<td>24</td>
<td>20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>80x90</td>
<td>25</td>
<td>STP</td>
<td>1-25</td>
<td>20</td>
<td>20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>35x50</td>
<td>25</td>
<td>Surf.,STP</td>
<td>0</td>
<td>21</td>
<td>20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>45x60</td>
<td>40</td>
<td>Surf.,STP</td>
<td>1-25</td>
<td>17</td>
<td>20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>65x75</td>
<td>40</td>
<td>Surf.,STP</td>
<td>1-25</td>
<td>25</td>
<td>20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>75x250</td>
<td>60</td>
<td>Surf.,STP</td>
<td>1-25</td>
<td>35</td>
<td>EW-LW, 19th-20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>80x150</td>
<td>60</td>
<td>Surf.,STP</td>
<td>1-25</td>
<td>39</td>
<td>MW, 20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>100x100</td>
<td>30</td>
<td>STP</td>
<td>0</td>
<td>27</td>
<td>20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>40x60</td>
<td>30</td>
<td>Surf.,STP</td>
<td>1-25</td>
<td>19</td>
<td>20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>40x45</td>
<td>30</td>
<td>Surf.,STP</td>
<td>1-25</td>
<td>19</td>
<td>20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>80x80</td>
<td>40</td>
<td>Surf.,STP</td>
<td>0</td>
<td>27</td>
<td>20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>80x100</td>
<td>50</td>
<td>STP</td>
<td>0</td>
<td>25</td>
<td>20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>90x180</td>
<td>80</td>
<td>Surf.,STP</td>
<td>1-25</td>
<td>36</td>
<td>MW, 19th-20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>55x60</td>
<td>70</td>
<td>Surf.,STP</td>
<td>1-25</td>
<td>21</td>
<td>Unk. Preh.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>85x120</td>
<td>30</td>
<td>Surf.,STP</td>
<td>1-25</td>
<td>26</td>
<td>Late 19th-20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>45x80</td>
<td>35</td>
<td>Surf.,STP</td>
<td>1-25</td>
<td>20</td>
<td>Late 19th-20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>35x50</td>
<td>35</td>
<td>Surf.,STP</td>
<td>1-25</td>
<td>20</td>
<td>20th c.</td>
<td>Emergence Woodland</td>
</tr>
<tr>
<td>SWHS</td>
<td>SWHS</td>
<td>55x125</td>
<td>30</td>
<td>STP</td>
<td>1-25</td>
<td>23</td>
<td>Unk. Preh.</td>
<td>Emergence Woodland</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CB Research - Carolina Bay Survey</th>
<th>TU - Test Unit</th>
<th>MW - Middle Woodland</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC Survey - Timber Compartment</td>
<td>EA - Early Archaic</td>
<td>LW - Late Woodland</td>
</tr>
<tr>
<td>SWHS - Site Wide Historic Survey</td>
<td>MA - Middle Archaic</td>
<td>Miss. - Mississippian</td>
</tr>
<tr>
<td>STP - Shovel Test Pit</td>
<td>LA - Late Archaic</td>
<td>Unk. Preh. - Unknown Prehistoric</td>
</tr>
<tr>
<td>Surf. - Surface Reconnaissance</td>
<td>EW - Early Woodland</td>
<td>Unk. Hist. - Unknown Historic</td>
</tr>
</tbody>
</table>
Table 6. Data on the Extent, Depth, and Content of Existing Sites Revisited in FY95 Surveys.

<table>
<thead>
<tr>
<th>Site</th>
<th>Project</th>
<th>Size (m)</th>
<th>Depth (cm BS)</th>
<th>Methods</th>
<th>Surface Visibility</th>
<th>STPs</th>
<th>TU</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>38AK75</td>
<td>TC Survey</td>
<td>120x400</td>
<td>80</td>
<td>Surf., STP</td>
<td>1-25</td>
<td>49</td>
<td>0</td>
<td>Woodland</td>
</tr>
<tr>
<td>38AK76</td>
<td>TC Survey</td>
<td>115x120</td>
<td>60</td>
<td>STP</td>
<td>1-25</td>
<td>10</td>
<td>0</td>
<td>Unk. Preh.</td>
</tr>
<tr>
<td>38AK88</td>
<td>DWU</td>
<td>200x380</td>
<td>90</td>
<td>Surf., STP, TU</td>
<td>1-25</td>
<td>46</td>
<td>1</td>
<td>EA, LA, EW, MW, LW</td>
</tr>
<tr>
<td>38AK89</td>
<td>DWU</td>
<td>100x150</td>
<td>100</td>
<td>Surf., STP, TU</td>
<td>25-50</td>
<td>13</td>
<td>1</td>
<td>EA, LA, EW, MW, LW</td>
</tr>
<tr>
<td>38AK118</td>
<td>DWU</td>
<td>8x60</td>
<td>IN</td>
<td>Surf., STP</td>
<td>50-75</td>
<td>2</td>
<td>0</td>
<td>Unk. Preh., Unk. Hist</td>
</tr>
<tr>
<td>38AK170</td>
<td>DWU</td>
<td>60x60</td>
<td>IN</td>
<td>Surf., STP</td>
<td>25-50</td>
<td>6</td>
<td>0</td>
<td>EA, Unk. Hist</td>
</tr>
<tr>
<td>38AK361</td>
<td>DWU</td>
<td>70x80</td>
<td>70</td>
<td>Surf., STP</td>
<td>25-75</td>
<td>18</td>
<td>0</td>
<td>EA, Late 18th-19th c.</td>
</tr>
<tr>
<td>38AK404</td>
<td>DWU</td>
<td>125x4</td>
<td>Surf.</td>
<td>1-25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20th c.</td>
</tr>
<tr>
<td>38BR222</td>
<td>Clearcut Survey</td>
<td>100x230</td>
<td>75</td>
<td>Surf., STP</td>
<td>51-75</td>
<td>29</td>
<td>0</td>
<td>LA, EW, MW, LW</td>
</tr>
<tr>
<td>38BR231</td>
<td>TC Survey</td>
<td>80x250</td>
<td>90</td>
<td>Surf.</td>
<td>51-76</td>
<td>0</td>
<td>0</td>
<td>MA-Miss.</td>
</tr>
<tr>
<td>38BR242</td>
<td>TC Survey</td>
<td>5x10</td>
<td>IN</td>
<td>Surf., STP</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>Unk. Preh.</td>
</tr>
<tr>
<td>38BR256</td>
<td>Clearcut Survey</td>
<td>100x140</td>
<td>IN</td>
<td>Surf.</td>
<td>1-25</td>
<td>0</td>
<td>0</td>
<td>19th-20th c.</td>
</tr>
<tr>
<td>38BR337</td>
<td>Clearcut Survey</td>
<td>60x130</td>
<td>IN</td>
<td>Surf.</td>
<td>76-100</td>
<td>0</td>
<td>0</td>
<td>20th c.</td>
</tr>
<tr>
<td>38BR339</td>
<td>TC Survey</td>
<td>INxIN</td>
<td>IN</td>
<td>Surf.</td>
<td>1-25</td>
<td>2</td>
<td>0</td>
<td>Unk. Preh.</td>
</tr>
<tr>
<td>38BR358</td>
<td>TC Survey</td>
<td>30x40</td>
<td>30</td>
<td>Surf., STP</td>
<td>1-25</td>
<td>10</td>
<td>0</td>
<td>Unk. Preh.</td>
</tr>
<tr>
<td>38BR402</td>
<td>TC Survey</td>
<td>20x20</td>
<td>40</td>
<td>Surf., STP</td>
<td>26-50</td>
<td>8</td>
<td>0</td>
<td>Unk. Preh.</td>
</tr>
<tr>
<td>38BR442</td>
<td>Opportunistic</td>
<td>80x100</td>
<td>60</td>
<td>Surf., STP</td>
<td>26-50</td>
<td>23</td>
<td>0</td>
<td>Unk. Preh., 18-20th c.</td>
</tr>
<tr>
<td>38BR443</td>
<td>SWHS</td>
<td>80x100</td>
<td>50</td>
<td>STP</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>Unk. Preh., 19-20th c.</td>
</tr>
<tr>
<td>38BR540</td>
<td>TC Survey</td>
<td>60x290</td>
<td>90</td>
<td>STP</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>LW, Unk. Preh.</td>
</tr>
<tr>
<td>38BR645</td>
<td>Clearcut Survey</td>
<td>80x90</td>
<td>IN</td>
<td>Surf.</td>
<td>26-50</td>
<td>0</td>
<td>0</td>
<td>20th c.</td>
</tr>
</tbody>
</table>

CB Research - Carolina Bay Survey
TC Survey - Timber Compartment
SWHS - Site Wide Historic Survey
STP - Shovel Test Pit
Surf. - Surface Reconnaissance
TU - Test Unit
MW - Middle Woodland
EA - Early Archaic
LA - Late Archaic
MA - Middle Archaic
LA - Late Archaic
Unk. Preh. - Unknown Prehistoric
Unk. Hist - Unknown Historic

Table 7. Comparison of FY94 and FY95 Survey Results

<table>
<thead>
<tr>
<th></th>
<th>FY94</th>
<th>FY95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Area Surveyed (acres)</td>
<td>5,261</td>
<td>2,337</td>
</tr>
<tr>
<td>Site Use Applications</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>Timber Compartments Prescriptions</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Clearcut Surveys</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Shovel Tests</td>
<td>2792</td>
<td>2170</td>
</tr>
<tr>
<td>Test Units</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>New Sites</td>
<td>64</td>
<td>86</td>
</tr>
<tr>
<td>Site Revisits</td>
<td>24</td>
<td>22</td>
</tr>
</tbody>
</table>

Status of the SRARP GIS Operations

The SRARP initiated in FY95 a program to transfer field compliance data and geographic analyses to a Geographic Information Systems (GIS)-based operation. Christopher Gillam returned to the staff to undertake this task, after completing in May 1995 his M.A. degree in anthropology at the University of Arkansas. Implementation of the GIS facility is moving ahead as equipment arrives and a working knowledge of the Sun operating system and Arc/Info software develops. A few bugs have been
encountered and are being dealt with to eradicate the potential for future problems. The GIS operation is being outfitted with a Sun Sparc 20 workstation, HP 650C D-size raster plotter, HP 1600CM color printer, and large-format Calcomp digitizer. These tools will increase considerably the SRARP's ability to manage and evaluate the cultural resources of the SRS and adjacent areas. Global Positioning System and laser transit equipment are also under evaluation for future application to the system.

CURATION COMPLIANCE ACTIVITIES

SRARP recuration efforts continued in FY95, bringing more of the artifact collections into compliance with 38CFR79. The Master Baseline Database now includes 9,283 records, compared to the 4,400 records on file as of the FY94 report. Each of these records characterizes the artifacts from one provenience and level at one site. As a result of a staff study carried out in FY94, records of incoming collections are now merged with the recurred collections. Over 850,133 artifacts have been recurred since December of 1993 (Figure 1). Ninety-two percent of these (n = 780,809) are prehistoric; 8 percent (n = 69,324) are historic (Figure 2). Work also continues on updating the duplicate acid-free site files housed in Columbia at the SCIAA in Columbia.

As was reported in the SRARP Annual Reports for both FY93 and FY94, building 760-11G, which houses SRARP, continues to be out of 36CFR79 compliance. Areas of DOE noncompliance include lack of dedicated curation space, security, fire detection and suppression, and humidity and temperature control. The space constraints in particular are critical; of the 32 shelf bays available, only seven remain. These seven shelf bays represent 22 percent of the total space; however, 35 percent of the current collections remain to be recurred. To this, of course, must be added the yearly increase in collection volume due to SRARP field compliance activities.

![Artifacts Analyzed/Recurred Graph](image)

Figure 1. Artifacts analyzed/recurred over three years by six-month periods.
SAFETY AT THE SRARP

Safety is, undoubtedly, the main concern governing the everyday activities on the Savannah River Site. This past year, the Savannah River Archaeological Research Program implemented several new procedures which will upgrade the safety related practices in the field and in the office. George Wingard has been designated the Safety Coordinator for the SRARP and has met with several key people from Westinghouse and the Department of Energy to work with the program in upgrading safety practices. Wingard has also taken safety related classes offered by DOE. These classes, *OSHA Awareness for Managers and Supervisors and Introduction to Industrial Hygiene*, were essential in understanding what is required and expected of an SRS contractor. These classes, together with the support of the Safety Officers on the SRS, have been instrumental in the improvement of the safety program at the SRARP which will continue to grow and offer a safe working environment for its employees.
PART II. RESEARCH

RESEARCH ABSTRACTS

"An Industrious Family to be Reckoned With": The Archaeological and Historical Significance of Historic Brattonsville

Monica L. Beck

The Bratton Plantation, originally an upstate farm, began agricultural operations of plantation scale in the early 1800s, affording the construction of a large main house completed in 1832. This house, renovated in 1975, is protected as a county-owned historic site along with two original brick outbuildings and the Bratton's earlier frontier log house. The upcountry has not received the research attention that the wealthy lowcountry has attracted, yet this site offers the opportunity to study the interactive/antagonistic relationship between the two regions in an effort to understand the upcountry's role in the development of the plantation system.

Ethnicity and the Archaeological Record

Monica L. Beck

As participants in culture, we know or sense that ethnicity exits. Questions surrounding the concept of ethnicity are: What is ethnicity? How is it defined? How is it expressed? And, most importantly for archaeologists, what does it look like in the archaeological record? Historically, motivation for the use of the term and the search for ethnicity has been politically based. Political environments have influenced the focus of research on particular ethnic groups. This has been a difficult endeavor due to the inherent fluidity of ethnicity and the changing material reflections of such a dynamic concept. This paper reviews the variety of definitions of ethnicity, political reasons to determine ethnicity, and discusses the problematic implications of ethnic expression for archaeology.

Bratton Plantation: The Preliminary Archaeology of an Upcountry Plantation

Monica L. Beck

The Bratton family settled within the upcountry of South Carolina in the late 1700s and operated a flourishing short-staple cotton plantation into the late 1800s. The initial homeplace, a log house within a subsistence farm, grew into a large antebellum plantation. The purpose of this study is to investigate the cultural expression of slavery on a South Carolina upcountry plantation by examining the relationship between the Bratton family and their house slaves from the late 1700s through the antebellum period. This archaeological study focuses on the proximity and location of house slave dwellings within the layout of the original farmstead compared to the later antebellum plantation.
Scales of Holocene Landscape Evolution in the South Atlantic Coastal Plain and Their Implications for Prehistoric Populations

Mark J. Brooks, Barbara E. Taylor, and Donald J. Colquhoun

Invited paper presented at the joint annual meetings of the Southeastern Archaeological Conference and the Midwest Archaeological Conference, Lexington, Kentucky.

The Holocene landscape of the South Atlantic Coastal Plain evolved at multiple temporal and spatial scales, each having implications for prehistoric populations. Coastal Plain spatial scales range from the province itself down to microenvironments of the coastal, fluvial and upland systems. Temporal scales range from long-term environmental trends and transitions on the order of thousands of years to short-term periodicity at intervals of hundreds of years to decades and less. The scales and their socioeconomic implications are reviewed, emphasizing the long term.

Cotton and Black Draught: Consumer Behavior on a Postbellum Farm

David Colin Crass and Mark J. Brooks (editors)

Savannah River Archaeological Research Papers 5.

Excavations at archaeological sites 38BR619, 38BR629, and 38BR522 were conducted by staff of the Savannah River Archaeological Research Program from October 1, 1992 through February 15, 1993. Over 700 m² of hand excavation produced over 32,000 artifacts and associated features, dating primarily from ca. 1900-1951. Analysis efforts focused on the development of a framework for assessing assemblage diversity and relative monetary worth, using Works Progress Administration data compiled in the mid-1930s. This SRARP study represents a sharp departure from most previous research at postbellum farms, in that it eschews the implicit assumption that land ownership is a primary determinant of material culture. That classical Marxist perspective has proven of limited utility in examining such sites elsewhere in the Southeast. Here, the emphasis is placed on the role of the individual and the level at which decisions about planting, harvesting, and other operations are made. This study indicates that such an emphasis may offer the potential for significant insights into the material life of the postbellum Southeast.

Soapstone Lamps, Teacups, and the Awakening: The Role of Inuit Women in the Development of 19th-century Inuit Moravian Communities

Melanie Cabak

Paper presented at the Annual Meeting of the Society of Historical Archaeology, Washington D.C.

During the late 18th and early 19th centuries, Moravian missions were established along the coast of Labrador. Inuit women were instrumental in the transformation of these mission stations into Inuit communities and served as both political and cultural intermediaries between their people and Moravian missionaries. This paper explores the role of women in transforming Inuit culture as expressed through the archaeological record. Archaeological data were recovered from a late 18th and 19th century village midden in Nain, Labrador. These artifacts illustrate the rapid trajectory of culture change that transpired within Inuit households, the differential manner in which the Inuit selected
and interpreted aspects of Western material culture, and the economic relationship that existed between Inuit women and the missionaries. This study, through consideration of women's roles, demonstrates Inuit women were active catalysts of change and underscores the material correlates that accompanied these changes.

Blue Beads as Amulets Among African Americans

Melanie Cabak and Mark Groover

Blue Beads are typical finds at African-American sites. Archaeologists speculate these artifacts were used for adornment and as amulets. Bead data from African-American sites in South Carolina and Georgia were analyzed. The results indicate blue is the predominant color for beads recovered from African-American sites. The predominance of blue beads by African Americans are subsequently explored through reference to ethnographic information, folklore, and oral history associated with West Africa and the Southeast.

Health Care and the Wayman A.M.E. Church

Melanie Cabak, Mark D. Groover, and Scott J. Wagers

Historical Archaeology 29(2):55-76.

Research conducted at the Wayman African Methodist Episcopal Church in Bloomington, Illinois underscores the multifaceted role of the black church. Although the Wayman Church served as a religious center, medical artifacts from excavation suggest the church as an institution provided health care to segments of the congregation and local community during the late nineteenth and early twentieth centuries. Historical information in combination with archaeological data illustrates a dual health care strategy was practiced by the congregation. This dual strategy was based on the use of both traditional, or folk, healing practices and formal medical care. More importantly, the health care artifacts highlight the inequality that blacks have experienced in obtaining adequate medical care. Corresponding temporally to a series of epidemics in Bloomington, the health care artifacts suggest the church congregation did not passively accept the inequality characteristic of the period.

Archaeological Research at New Windsor Township: The 1994 Season

David Colin Crass, Bruce R. Penner, and Tammy R. Forehand

Paper presented at the Fall Meeting of the Society for Georgia Archaeology, Statesboro.

This paper offers an assessment of the second field season of excavations at 38AK615, the Bartley Site, in New Windsor Township (modern Beech Island). Excavations during the second season concentrated on the area surrounding the house, where trash pits yielded a variety of mid-eighteenth century domestic refuse, including faunal and floral remains. Plans for future excavations at this site and others in the township are presented.
Evolution of Carolina Bays on the Savannah River Site, South Carolina: New Constraints from Ground Penetrating Radar

John A. Grant, Mark J. Brooks, and Barbara E. Taylor

Poster session at the Spring Meeting of the American Geophysical Union, Baltimore, Maryland.

Carolina Bays are enigmatic landforms dotting much of the Coastal Plain from Delaware to Florida and occur on the upland surfaces of the Savannah River Site (SRS) in South Carolina. As shallow, isolated temporary ponds typically bounded by small, enclosed basins, the geohydrologic evolution of the bays likely reflects past local to regional-scale environmental conditions. In recognition of their potential as paleoenvironmental indicators, numerous studies have focused on bay origins, and processes ranging from dissolution to impact to eolian have been hypothesized to account for their evolution over varying time scales. These studies have been impeded, however, by subdued bay topography, typically dense vegetation cover, and a paucity of preserved organics in many bays for dating their interiors.

Because ground penetrating radar (GPR) provides a rapid, portable means of delineating shallow stratigraphy, it is an ideal instrument for probing the evolution of the SRS bays. GPR data, combined with additional geological, archaeological, and ecological data, collected around seven bays permits several conclusions to be drawn. First, first-order similarities in bay-margin stratigraphy are noted that are similar to the more regional stratigraphic sequence. These similarities include the possible occurrence of a widespread, basal, pedogenic B/C marker horizon that could be used to further constrain the age and processes of bay formation. Second, a number of second-order exceptions to the generalized stratigraphic sequence occur around individual bays. Such variability may reflect factors ranging from varying degrees of oxidation in the subsurface to subtle changes in grain size and/or occurrence of prehistoric occupation surfaces. Third, stratigraphy around and between paired bays reveals no obvious evidence of bay transgression with time or age. Fourth, the rim around the bays examined reflects locally increased thickness in a regional surficial sand body, thereby creating parabolic-shaped relief in plan view. Collectively, these GPR and other data suggest bay evolution at SRS occurred somewhat episodically and in situ over an extended period (late Pleistocene-Holocene). Formation was likely dominated by basin deflation, rim accretion via eolian deposition, and basin flooding with lacustrine redistribution of sediments. Additional GPR work is planned to better correlate bay formation with specific geologic/climatic events.

The Color Blue: Symbol and Myth in Southeastern African-American Archaeology

Linda France Stine and Melanie Cabak

Southeastern historical archaeologists have generated a mythology about the presence of blue beads on African-American sites. Although archaeologists speculate that blue beads should be used as marker artifacts for slave sites, and/or that these items may have carried social and symbolic meaning, no systematic study was available to test those assumptions. To redress this lack an African-American Bead Project was begun to collect bead data from numerous archaeological sites. The research is driven by two major questions. The first concerns the possible symbolic meaning of beads for people of African descent living in the United States. The second question concerns how these
artifacts were obtained. Multiple data sets are used in this research including numerous ethnographic and archaeological monographs, collections of oral histories and folk beliefs, and historic resources.

In the Shadow of Stallings Island

Kenneth E. Sassaman

Stallings Island looms large in the topography of the middle Savannah River valley and in depictions of Late Archaic settlement and subsistence. Unfortunately, its size, complexity, and level of destruction limit its value for understanding the rise and fall of Stallings culture. Instead, many smaller shell-midden sites in the vicinity of Stallings Island contain preserved, discrete contexts for subsistence remains, biocultural data, diagnostic artifacts, and samples for radiometric dating. Recent work at Mims Point and the Victor Mills site is producing a series of time-lapsed pictures of community organization that is improving our understanding of Stallings Island.

Social Controls over Resource Expansion and Contraction

Kenneth E. Sassaman

Invited paper presented at the Annual Meeting of the Society for American Archaeology, Minneapolis.

Alliance building and exchange are first-line defenses against subsistence stress among hunter-gatherers. In these same arenas of social action lie the seeds of economic intensification. The dialectic of simultaneously overcoming and creating subsistence stress is exemplified by Late Archaic societies of the American Southeast. The expanded use of shellfish, aquatic reptiles, and perhaps anadromous fish coincides with increased group integration, larger coreresident group size, and nonsubsistence production. Diminished use of these resources after 3500 B.P. is traced to variation in the commitment of local groups to extralocal social obligations and the influence this had on group disintegration.

The Archaic Southeast: 7000 Years of Hunter-Gatherer Diversity

Kenneth E. Sassaman

Invited paper presented in symposium on Southeastern Archaeology at the 161st National Meeting of the American Association for the Advancement of Science, Atlanta.

Spanning 7000 years from the end of the Paleoindian period (ca. 10,000 B.P.) to the beginning of the Woodland period (ca. 3000 B.P.), the Archaic is usually viewed as the time during which native populations adapted to the modern climatic and vegetational regimes of the postglacial era. In the broad brush strokes of prehistory, Archaic populations are considered hunters and gatherers, an anthropological category that carries a load of conceptual baggage. In the minds of many analysts, to be a hunter-gatherer is to be mobile, to live in small groups, to have simple technology, limited or no use of domesticated resources, and a lack of political and social inequality. Whereas these are generally appropriate attributes, recent research has revealed considerable diversity
among the scores of different societies that existed through the millennia and across the vast landscape that is the Archaic Southeast. Groups varying in their levels of technological, economic, and sociopolitical complexity are found at various times and places in the Archaic. A straightforward, evolutionary model of gradually increasing complexity does not fit the data currently available, nor can we extrapolate from specific reconstructions of Archaic life to the greater Southeast. This does not mean that Archaic populations were isolated in time and space, failing to have any historical or cultural influence on one another. Quite to the contrary, both historical process and large-scale interaction contributed to the diversity of Archaic societies, and in this regard, there are lessons to be gained for humanity in general from archaeological studies of these particular, diversified prehistoric peoples.

Predictability of Water Level in a Carolina Bay: A Baseline for Interpreting the Activities of Modern Copepods and Prehistoric Humans

Barbara E. Taylor and Mark J. Brooks

Paper presented at the Annual Meeting of the Ecological Society of America, Snowbird, Utah

Flamingo Bay, a Carolina bay on the Savannah River Site in South Carolina, presently supports a rich assemblage of temporary pond biota, including, in some years, the calanoid copepod *Diaptomus stagnalis*. The archaeological record from the rim of the pond indicates that it supported intensive usage by prehistoric humans as early as 9500-8300 yr B.P., but that this usage declined after 4000 yr B.P. The copepod requires fall desiccation of the pond so that its resting eggs can hatch; prehistoric humans probably required inundation of the pond so that it could serve as a base for seasonal food procurement in the uplands. From analysis of an extensive, but incomplete, 15-yr record of water level for the pond and weather records from Blackville, South Carolina, we found that a function of cumulative precipitation since the beginning of winter (1 December) best explained the water level at the beginning of each season. We then used these relations with the 60-yr precipitation record to estimate the frequency of extreme drawdown (<30 cm and <0.04 ha surface area) by season. These frequencies were <0.02 for spring (1 March) and summer (1 June) and 0.2 for fall (1 September) and winter (1 December). We discuss the possible timing of climatic and successional changes that caused the hydrologic shift from a habitat favorable for prehistoric humans to a habitat favorable for the copepod.

Holocene Climate and Upland Landscape Evolution in the Upper Coastal Plain of South Carolina

Barbara E. Taylor, Mark J. Brooks, and Donald J. Colquhoun

Invited paper presented at the joint annual meetings of the Southeastern Archaeological Conference and the Midwest Archaeological Conference, Lexington, Kentucky.

It is commonly assumed that non-fluvial deposition in the upland landscape indicates sparse vegetation cover under dry climatic conditions. While climate may have been comparatively drier during the early Holocene than at present, data from the Sandhills region of the Upper Coastal Plain of South Carolina suggest that higher rates of net sediment accumulation do not necessarily require or indicate dry climate. Available sediments and an energy source sufficient for transport are all that is required. These conditions can be met by circumstances other than dry climate.
Putting the Ogeechee in its Place

Kristin J. Wilson, Kenneth E. Sassaman, and Frankie Snow

The Ogeechee River valley of Georgia is the black box of Late Archaic prehistory. Its numerous shell middens have attracted many looters, but few professionals. A large collection of pottery from two looted sites provides the first opportunity to situate the Ogeechee in the cultural and technological landscapes of the Late Archaic. Stylistic traits of sherds from over 600 vessels match assemblages from Stallings Island in the adjacent Savannah River valley, but not St. Simons pottery from sea islands downriver. Technologically, the Ogeechee and Savannah river assemblages diverge. Alternative hypotheses for stylistic similarities and technological differences are explored.

RESEARCH NOTES

Carolina Bay Research

Mark Brooks, Barbara Taylor (SREL, UGA), John Grant (SUNY, Buffalo), and Evelyn Gaiser (SREL) continued their Carolina bay research this year on a number of fronts. Emphasizing environmental, climatic and landscape changes, particularly as they pertain to humans, archaeological survey supervised by George Lewis was conducted on the sand rims at the seven bays comprising the SRS sample. Sites discovered at four of the seven bays were tested and continuous sediment columns were obtained from 1 x 2-m units. The archaeological components identified, ranging from Early Archaic to Mississippian and late nineteenth/early twentieth century, varied by site and bay and, based on the artifact assemblages, in the nature and intensity of occupation. Most prehistoric sites occur in the area of maximum rim development on the east-southeast bay margins. The sediment columns, calibrated by archaeological dating, indicate rim development through eolian deposition, much of which occurred during the Holocene. The depth of the deposits and rates of deposition/net sediment accumulation decrease to the north along the eastern rim.

For Flamingo bay, a 5-ft contour interval map was digitized as a GIS base map for compiling archaeological, geological, and ecological data layers. Historical/archival research conducted for the seven bays suggests that at least some of the bays were used during the mid- to late nineteenth century for upland rice production. Using more refined ground penetrating radar (GPR) instrumentation than was available in 1993, additional stratigraphic data were obtained from the bay rims (Figure 3). Hydrologic modeling for Flamingo Bay, using modern water level data from the bay and precipitation data from nearby Blackville, was enhanced this year due to more refined chrono-stratigraphic data. Siliceous microfossils (sponge spicules, diatoms, and phytoliths) from the sand-dominated, basin fill sequences continue to be studied for the information they provide on paleohydrology and the associated, local vegetation communities. Because pollen is the regional paleoenvironmental indicator, palynological studies of the basin sediments were initiated this past summer. More detailed stratigraphic and sedimentological studies of the basin fill sequences were also initiated.

Site Wide Historic Survey

Since February 1995, Melanie Cabak and Mary Inkrot have researched yeoman and tenant farms located on the Savannah River Site. These post-World War II farms
Figure 3. William Pepe (above) deploys Ground Penetrating Radar unit as John Grant (below) analyzes output from his truck-mounted computer operations.
represent a time when Southern agriculture became more mechanized and commercial as well as when rural lifeways rapidly changed. In 1951, when the Atomic Energy Commission (AEC) purchased 1,700 land tracts in the Aiken Plateau to create the Savannah River Plant, landowners abandoned their farms. These farm residences therefore provide a unique opportunity to study rural lifeways in the Aiken Plateau at a significant point in agricultural modernization.

AEC appraisers located, measured, described, assessed, and photographed all structures on the Savannah River Site in 1951. Crops and timber at these farms were also evaluated. For this project, records associated with over 100 tenant and yeoman dwellings were analyzed. Archaeological resources associated with half of these structures were investigated. As a result of the survey, architectural and archaeological analysis will provide a characterization of postbellum farms in the region. Project results will also be used to develop settlement pattern models for the historic occupation of the Savannah River Site.

Current Research on the Eighteenth Century Savannah River Frontier

Since 1989 significant resources have been devoted to the management of historic-period archaeological sites on the SRS. Much progress has been made over the last five years in the development of management strategies for post-bellum and early twentieth-century agricultural sites. Nonetheless, for sites dating to the eighteenth and early nineteenth centuries, a management strategy remains a goal to be met, rather than a practical reality. Formulating such a strategy is important not just in meeting the letter and spirit of preservation laws and regulations, but also because SRARP is committed to updating its Archaeological Resource Management Plan to account for new developments in our knowledge base.

Great Britain, Ulster (Northern Ireland), Switzerland, and Germany (principally the Rhineland Palatinate) were the hearth areas for most of the European immigrants to the Central Savannah River Valley in the eighteenth and early nineteenth centuries. All of these ethnic groups, as well as Native Americans and Africans, interacted on various levels. These interactions had significant and long-lasting impacts on the culture history of the area, giving rise to a heterogeneous society which reflected its diverse roots. Little information is available on how these interactions might be reflected archaeologically, or more generally in the material culture of the backcountry. In fact, very few historians have attacked these problems. There are at least two reasons for this lack of attention. First, primary documents research for the South Carolina backcountry is sparse indeed—most scholarly attention has focused on biography and political history. Second, historians generally are uncomfortable working with material culture data, which in any case are relatively rare for the region. While several ambitious attempts to write a social history of the backcountry have recently been published, these are flawed by a strong tendency to portray the founding populations as lacking in any cultural variability whatsoever, particularly in terms of adaptive behaviors which would have been necessary for survival.

The Central Savannah River Valley has great potential for the explication of these processes of interaction and adaptation precisely because the SRS has preserved these fragile archaeological resources from modern development. However, locating these sites through normal survey and testing procedures developed by the SRARP has proved problematic. Eighteenth and early nineteenth century sites have extremely low artifact densities, making them difficult to locate. One possible solution to this problem is the development of a predictive model which would allow SRARP field compliance crews to target specific environmental settings for intensive shovel testing. For the past six years
various individuals on staff (Richard Brooks, David Crass, Bruce Penner, Tammy Forehand and numerous graduate assistants) have made contributions to this effort. Such models already exist for prehistoric sites on the SRS. This strategy for detecting early historic period sites would then be combined with a strategy for evaluating the discovered sites, which would be couched in terms of SRARP’s research agenda. The following is a summary of the results to date.

There are several broad data sets that are needed to develop an effective site discovery and evaluation strategy for eighteenth- and early nineteenth-century sites on the SRS. First, in order to predict site location, a model must be developed, preferably incorporating archaeological data. Just upstream from the SRS, in the community of Beech Island, SC (settled ca. 1685), lie the remains of colonial New Windsor Township. Beech Island offers three advantages for the development of archaeological predictive models for the SRS. First, Beech Island’s economy has always been largely agricultural, and remains so to the present day. Ground surface visibility at specific times of year between harvesting and planting cycles is on the order of 100 percent for areas of hundreds of acres. This makes site location relatively straightforward. Second, New Windsor was the economic and political center for communities in the SRS area during the early to mid-eighteenth century. While archaeological sites on the SRS may not be carbon copies of those in Beech Island, they almost certainly were part of a social and economic network which had its center in New Windsor. Third, local informants in Beech Island already know where many colonial sites are located. Over the last fiscal year, excavations were concluded at the mid-eighteenth-century farmstead of Leonard, Ulrich, and Michael Meyer (38AK615), located in Beech Island. The site, which covered an area 60 m north/south by 25 m east/west, included at least nine earthfast structures. The house itself appears to have been constructed using a variant of puncheon construction, with walls of five-foot weatherboards and a thatched or sodded roof. A combination of machine- strip ing of the plow zone and hand excavation of the over 200 features yielded traces of nine structures, including the house, a barn, related service structures, a possible slave house, and a set of twin cellars apparently related to a small structure which rested on a ground-laid sill. Although interior posts were scarce, it is possible that the interior was laid out on the kammer, stube, and küche floorplan typical of German homes in the Pennsylvania and Virginia backcountry. The site layout was generally U-shaped, with the open end of the complex facing north toward the property line and the eighteenth century road. The base of the U included the house and outbuildings, while the two legs were formed by the barn on one side and a complex of small workshops and a smaller, possible domestic structure on the other. The center of the complex appears to have been an open area which probably served as a muck-yard.

All feature fill was returned to the SRARP laboratory at SRS for water screening and flotation. The majority of the domestic artifacts were recovered from a cluster of borrow pits associated with the house (Figure 4). The ceramics subassemblage was dominated by salt-glazed stoneware, tin-glazed earthenwares, creamware, and the ubiquitous combed yellow slipwares. Very small amounts of porcelain and Colono Ware were found. Several different types of domestically-manufactured earthenwares were recovered as well, including a type similar to the trailed red wares thrown by Gottfried Aust of Bethabara, North Carolina. A large subassemblage of metal artifacts is currently being conserved by the College of William and Mary Conservation Laboratory, and the faunal remains have been turned over to Colonial Williamsburg for analysis. Analysis of the assemblage should be completed by the end of the year, and an SRARP monograph on the site is planned for early spring. Two graduate students from the Department of Anthropology at the University of South Carolina are translating German articles on vernacular architecture and drafting elevations and isometric illustrations of the structures at the site.
In addition to the excavations at the Meyer farmstead, survey and testing was carried out on three adjacent properties. Nearly 200 shovel tests and three 1 x 2-m units yielded 1,950 artifacts. All three sites appear to have good integrity, although one (the David Zubly site, ca. 1750-ca. 1830) may have lost some of the barnyard area to post-occupational drainage ditching. However, the household garbage pits appear to be intact, and based on our experiences with the neighboring 38AK615, it may be that archaeological remains of the house and its associated outbuildings are still extant. The Ulrich Eggar site yielded rather dense sheet midden deposits, while the Johann Tobler site (which appears to have been abandoned before the Revolution) yielded both structural remains (a wall trench) and a possible forge area (Figure 5). The preliminary work at these three sites was carried out as part of thesis research by John Huffman, a graduate student at the University of Idaho. Further work in New Windsor is planned for the fall, with block excavations tentatively scheduled for the three sites listed above in the early spring. The data resulting from this survey, combined with archival documents, should allow the design of a locational model that can then be used on the Savannah River Site for compliance purposes.

In addition to the field archaeology aspect of the New Windsor project, primary documents research is also being carried out. Tammy Forehand attended several symposia and training seminars organized by the Augusta Genealogical Society and
Augusta College. She and Bruce Penner continued the search for primary documents relating to the residents of the New Windsor Township Area. Research trips to the South Carolina Department of Archives and History, the South Carolina Historical Society, and the Abbeville County Courthouse have yielded a total of 277 land plats, 30 probate inventories, and 25 wills. Such documents are invaluable tools when excavating and interpreting historical archaeological sites. Probate inventories and wills often yield important evidence regarding the material culture of the historic period, and therefore contain a record of the types of artifacts that an archaeologist might expect to find on a particular site. By studying these documents, we will be able to assess how testate patterns were influenced by the cultural, religious, and ethnic affiliations of the inhabitants of New Windsor. Research regarding land plats will assist in constructing a cadastral map of the New Windsor Township Area.

The second dataset needed to develop a management plan for eighteenth- and early nineteenth-century European sites at SRS relates to site evaluation. As part of the evaluation process, sites are assessed for their research potential. For the eighteenth and early nineteenth centuries, a large percentage of this research potential is based on the themes of cultural interaction and adaptive behaviors. This necessitates baseline data
from the hearth areas in such categories as site proxemics, material culture, architecture, and settlement patterning. David Crass began gathering data from Ulster in 1994 under the auspices of the British Council. Additional proxemic, testate, and material culture data were gathered this year in Ulster and the Border counties in Scotland and England, which is the hearth area for the Scots who migrated to Ulster. Bruce Penner began gathering such data this year in Appenzell, Switzerland, while Richard Brooks collected data from England, Wales, and Northern Germany/Denmark.

The third dataset needed concerns archival materials. It has become evident that the majority of South Carolina Colonial Period historians use the incomplete Sainsbury’s South Carolina in the British Public Records Office. These records are incomplete in that they do not include the material coming from South Carolina or the frontier trade outposts (i.e., the detailed reports that decisions were based on). There is virtually nothing in the records on the Yamasee War or the origins of Fort Moore, just upstream from the SRS. All these records directly and indirectly affect the research at SRARP.

The site survey and testing program in Beech Island is yielding locational data which will prove useful in the design of a predictive model for eighteenth- and early nineteenth-century sites. Upon completion of the planned overseas research, the various datasets will be synthesized and used to design an evaluation procedure for archaeological sites on the SRS. This procedure can be refined as further material culture and archival data are gathered in the future, and should also prove useful in site discovery and evaluation elsewhere in the midlands and upstate of South Carolina. The overseas research has already provided unique and valuable data on the early European settlement of the SRS area. While in Ulster, for instance, David Crass recorded farm layout information that helps us understand how space was utilized by the Scots-Irish who settled the backcountry. This helps us make informed inferences about the function of features uncovered during excavations. On a broader level, it has become evident that the program under which the English crown organized settlement in the South Carolina backcountry was in essence a replay of the Ulster Plantation period of the early seventeenth century. Many of the organizational principles which guided the eighteenth-century township system seem to have been first tested in the attempt of the early 1600s to conquer and control the native Irish of the northern counties. Bruce Penner recorded settlement pattern data in Appenzell, Switzerland, that indicates that the Swiss usually established their farms in rural neighborhoods. Visual contact was maintained between individual farms, allowing families to maintain a degree of privacy at the same time that they made themselves available to their neighbors for help. Richard Brooks noted similar rural neighborhood occurrences in England, Wales, and northern Germany/Denmark. Penner also discovered folk art collections which give us new insights into the use of interior space of Swiss households—information which is invaluable, given the ephemeral nature of interior partitions in the archaeological record. Brooks recorded house and farm layout information from dozens of sixteenth to eighteenth-century farms across England, Wales, and northern Germany/Denmark. Numerous similarities in construction and farm layout were noted across the area of study.

Woodrow Wilson Boyhood Home (9RI432)

David Crass and George Lewis continued their involvement with the restoration of Woodrow Wilson’s boyhood home in Augusta, Georgia. Fieldwork concentrated on uncovering evidence to restore the front facade of the house to its ca. 1860 appearance. Demolition of late nineteenth-century additions to the house should allow further work under the floor of the kitchen, where extensive mid-nineteenth-century deposits were discovered during preliminary testing in FY93. These deposits appear to date to the Wilson family occupancy (1859-1872) as well as to the decade following.
Augusta Arsenal Research

David Crass and Christopher Murphy (Augusta College) are currently analyzing early to mid-nineteenth-century artifact collections recovered by Dr. Murphy in excavations on the old campus of Augusta College, which from the 1820s to the mid-twentieth century was a U. S. Army arsenal. The collections appear to relate to a now-destroyed frame structures inside the arsenal walls. The dominance of domestic refuse and a paucity of ordnance and other arms-related artifacts indicate that the collection may derive from a officer’s barracks dating to ca. 1840. The collection and excavations (which were carried out in the mid-1970s) will be reported in a future journal article, which should be completed by early 1996.

This research is just part of a larger effort, spearheaded by Augusta College President William Bloodworth, to develop a historic preservation strategy for the college, which includes not only elements from the mid-nineteenth-century arsenal, but an early nineteenth-century plantation house as well. Crass and Murphy are also working with the college development officials to recover archaeological data from a ca. 1820s magazine building, which stands on a site slated for development next year.

Excavations at 38GR226

Staff at the SRARP assisted Tommy Charles of SCIAA in his June 1995 excavations at 38GR226 in Greenville County, South Carolina. This Connestee-phase Late Woodland village site had been mechanically stripped of its plowzone to expose a rich assemblage of pits and postholes. A detailed site map was recorded by Charles as features were excavated by the volunteer crew. Faunal and floral remains, as well as numerous sherd, lithic debris and other artifacts, were recovered from the features. Ongoing analysis will provide much-needed data on the community organization and subsistence economy of this poorly known Late Woodland culture. SRARP staff participating in this expedition included Monica Beck, Chris Gillam, Brent McMilleon, and Keith Stephenson.

Historic Brattonsville (38YK21)

During the summer of 1994, Monica Beck conducted archaeological survey and testing around Colonel Bratton’s Revolutionary Period log house in an effort to located an associated slave cabin. The only historic record indicating a possible location was an 1840s panoramic painting of the Bratton homeplace. Shovel tests were conducted by local community volunteers and Junior Docents of Historic Brattonsville. From test-unit excavation, two features were located indicating a late 1780s shallow trash pit and the work area where bricks from the cabin’s chimney were salvaged after the cabin was torn down or moved. Artifact analysis has been completed and a report is anticipated by December 1995. This research was undertaken by Beck as a Masters thesis project for the Department of Anthropology, University of South Carolina.

Mims Point 1995

SRARP staff and U.S.D.A. Forest Service archaeologists returned to the Mims Point site (38ED9) on the Sumter National Forest for a third season of excavation. This ongoing project, sponsored by a Challenge Cost-Share Agreement between SCIAA and the Forest Service, and under the direction of Kenneth E. Sassaman, aims to uncover and document an array of subsurface prehistoric features from looted portions of the site. Components ranging from the Early Archaic through Late Woodland periods were identified in previous seasons, although the main target of investigation continues to be
features of the Late Archaic Stallings Culture (ca. 3800-3500 B.P.). Mims Point is one of several Stallings sites in the vicinity of Stallings Island that were identified in the early 1900s and have since been impacted by looting, erosion, and other disturbances. Even so, such sites have been shown to contain intact portions, particularly subsurface features such as hearths, earth ovens, and storage pits—contexts rich in food remains and diagnostic artifacts (Figure 6). The long-term goal of the Mims Point project is to collect data on the seasonality, community patterning, and function of this and several similar sites in the middle Savannah River area for the purposes of a detailed paleoethnography of Stallings Culture. At the same time, the project is serving to salvage what remains of damaged and threatened resources.

Excavation at Mims Point resumed in March 1995 to expand the total block area to 372 m² (Figure 7). Results from the previous season of work suggested that expansion of the block to the south would increase chances of isolating Stallings period features. This indeed proved to be the case as over 35 new features were defined and excavated. Many of the features contained diagnostic pottery and lithic artifacts of Stallings age, while none contained definitive evidence of earlier or later occupations. The features were generally divided between clusters in the southeast and southwest corners of the block, although the intervening area was highly disturbed and thus probably a one-time locus of many other features. Nevertheless, the clusters each contained assemblages of hearths, post holes, small pits, and large pits in configurations indicative of domestic dwellings and associated activity areas. One large pit was particularly productive in its rich assemblage of faunal remains, as well as a diverse array of bone tools (including at least three fish hooks), a large sample of fiber-tempered pottery, a grooved ax fragment, and soapstone. Other pits contained unusually large volumes of fish bone and other aquatic vertebrate remains. Analyses of the 1995 faunal and floral remains should provide the best data to date on site seasonality, along with a detailed reconstruction of subsistence. Sorting of the large volume of feature matrix and flotation samples

Figure 6. Monica Beck removes fill from Stallings period storage pit at Mims Point, as a second pit (Feature 41) is prepared for mapping and excavation.
progresses with the assistance of Kristin Wilson and Douglas Vickery. Additional funding by the Forest Service was provided to expand the program of paleoenvironmental analyses. Toward this goal, Gary Crites (University of Tennessee), Art Cohen (University of South Carolina), and Cheryl Claassen (Appalachian State University) have been commissioned to analyze, respectively, samples of plant remains, pollen, and shellfish.

In the meantime, analyses of the 1993 feature assemblage continues after hundreds of hours of matrix sorting was completed by Monica Beck. A report on the faunal material by Renee B. Walker (University of Tennessee) documents a preponderance of turtle remains in contexts dating to the Middle Archaic, Late Archaic, and Late Woodland periods. Various fish species and white-tailed deer are also well represented. Three radiocarbon dates were obtained on 1993 features: two at
approximately 5700-5800 B.P. corroborate the presence of a late Middle Archaic feature assemblage first revealed in 1992 by a human interment; and a third date of approximately 3660 B.P. constitutes the first assay consistent with previous estimates for "classic" Stallings phase occupations (ca. 3800-3500 B.P.). Pending radiocarbon dates on several of the 1995 features are expected to duplicate the 3660 B.P. assay.

Victor Mills Site Analysis

A second Stallings period site was investigated by SRARP staff in early 1994 when George Lewis received word of ongoing looting. The Victor Mills site (9CB138) in Columbia County, Georgia is a small Stallings shell-midden site with a surprisingly large assemblage of deep pits lacking shellfish remains. The 65 m² of test excavation conducted under the direction of Sassaman exposed over two dozen such features in a cluster upslope from the small shell midden. Both the midden and pit features were sampled for floral and faunal remains. Artifacts in both types of contexts included a consistent array of plain fiber-tempered pottery, perforated soapstone slabs, and small stemmed bifaces. With the exception of an isolated hearth of probable Middle Woodland age, the feature and artifact assemblage reflects an exclusively early Stallings component. Funds to support analysis of the Victor Mills assemblage were provided by a grant from the Robert L. Stephenson Research Fund of SCIAA. Two radiocarbon dates of approximately 3940 B.P. were obtained, one each from the shell midden and a large pit feature. The onerous task of sorting the large amount of fine-waterscreened midden matrix was accomplished by volunteer Kevin Eberhard. Renee Walker's analysis of the animal bone from a shell-midden sample revealed an unusually large proportion and variety of small fishes, especially species of sunfish. Unfortunately, no shad bone was identified, which greatly diminishes the potential that this anadromous resource formed an integral part of the Stallings diet, at least at the Victor Mills site. Bulk processing of shad was one of several hypothesized functions of the large pits at this site. Importantly, if shad were baked at low temperatures for long periods of time, its bone would have dissolved to the point of being fully edible, hence it is possible shad were routinely captured and eaten but not represented in the assemblage of bony remains. To examine this possibility, soil samples of pit fill and control samples from unaffected soil outside of pits were submitted to the University of Georgia Chemical Analysis Lab for mercury vapor analysis. The results were negative: mercury (a possible measure of shad) occurred in only minor traces in both samples. In other analytical efforts, soil blocks collected from the profile of one of the pit features were injected with epoxy and thin sectioned for analysis by Paul Goldberg, a specialist in soil micromorphology. His pending results may help to determine the function(s) of these pits. Irrespective of the specific function(s), the size and quantity of these features is truly remarkable given the overall small size of the site occupation. Strategies of either long-term bulk storage or communal feasting likely are implicated by this evidence.

Ed Marshall Site (38ED5)

In late 1994 Christopher Judge of South Carolina Heritage Trust received notice that a small shell-midden site near Stallings Island was being looted. He contacted Sassaman at the SRARP, who then obtained permission from the landowner to conduct limited testing. In January, 1995, SRARP archaeologists opened two small units adjacent to looters' pits to reveal a stratified sequence consisting of a 20-30 cm thick Stallings-age shell stratum over an equally thick organic midden with artifacts of the Late Archaic Mill Branch phase (ca. 4200-3800 B.P.). Several features were observed, including post holes, shell-filled pits, and a hearth.
Sassaman obtained grant money from USC's Research and Productive Scholarship Fund to support analyses for more extensive text excavations at Ed Marshall (38ED5) in August, 1995. The SRARP field crew, along with volunteers Kevin Eberhard, Doug Vickery, Victoria Rudolphi, and members of the Augusta Archaeological Society, excavated a total of 41 m² in two long stratigraphic trenches, a 5 x 5-m block, and several isolated tests (Figure 8). The northern edge of the shell stratum was uncovered to reveal a series of shell-filled pit features and accumulations of animal bone, pottery, fire-cracked rock, soapstone slabs, and stemmed points. Along with detailed stratigraphic profiles, this evidence verifies that the shell stratum is an amalgam of intersecting pits emanating from a common surface (Figure 9). At the topographic high of this landform the shell stratum lies at the present-day surface. Away from this high area, however, the stratum dips well below an overlying clay stratum of recent alluvium up to 80 cm thick. Thus, a large portion of the shell midden is preserved beneath a thick mantle of clay. The Mill Branch stratum beneath the shell appears to be much smaller in extent, being concentrated in the highest portion of the landform.

In addition to identifying and sampling numerous pits (36 total features), we exposed a layer of fired clay on top of the shell stratum in the southern portion of our test trench. A shallow block excavation was conducted to fully expose the clay deposit. With an approximately 4-m diameter outline and a few possible post holes along its perimeter, the clay deposit resembles the prepared clay floors of structures at shell mounds in the MidSouth and lower Midwest. Such features have been also mentioned in early reports of Stallings shell-midden digs, but none have been uncovered and described in the modern era. Our efforts were limited to exposing and mapping the floor, along with the several large looters' pits that had disturbed the feature. Some pit features appear to have emanated from the clay floor, while others found in the walls and bottoms of looters' pits predate the clay. Its stratigraphic position points to a Stallings age for the floor. Analyses and report preparation of the Ed Marshall excavations will continue into FY96.

Soapstone Vessel Dating Project

Soapstone was used to make cooking vessels in the Late Archaic and Early Woodland periods across much of eastern North America. The precise timing of this technology, however, is very poorly known, as the innovation appears very early in some places, and many centuries later elsewhere. What is more, the technology figured prominently in the regionwide Poverty Point exchange network, yet a lack of sound chronological data prevents us from commenting on the role of vessel production in the rise and fall of Poverty Point exchange, or what roles, if any, Georgia-Carolina producers had in the network.

An effort to date a large sample of soapstone vessels from across the greater Southeast was launched in 1995 by Sassaman. Submitted for AMS dating was soot from the exterior surfaces of two vessel sherds from sites in the Aiken Plateau, and one from Telfair County, Georgia (courtesy of Frankie Snow). The uncorrected dates on Aiken Plateau specimens are 3340±60 B.P. (Beta-84698) and 3160±60 B.P. (Beta-79986). The Telfair County sample returned a date of 3500±60 B.P. At the suggestion of Sassaman, Eric Poplin of Brockington and Associates submitted sherd soot from a site in northern Berkeley County, South Carolina. His uncorrected date of 3200±60 B.P. (Beta-81405) is well within the range established thus far.

The goal of this research endeavor in FY96 is to establish a list of potential samples for dating from across the entire Southeast and to obtain grant money to fund up to 100 AMS dates. A call for samples was issued in the recent newsletter of the Southeastern Archaeological Conference.
Figure 8. Test trench and block excavation (background, right) at Ed Marshall site.

Figure 9. Portion of a stratigraphic profile of test trench at Ed Marshall site.
RESEARCH REPORTS

SCALES OF HOLOCENE LANDSCAPE EVOLUTION IN THE SOUTH ATLANTIC COASTAL PLAIN AND THEIR IMPLICATIONS FOR PREHISTORIC POPULATIONS

Mark J. Brooks
Barbara E. Taylor
and
Donald J. Colquhoun

The Holocene landscape of the South Atlantic Coastal Plain (Figure 10) evolved at multiple temporal and spatial scales that are linked intimately to climate and sea level. These "external controls" conditioned the availability and distribution of surface water that influenced the distribution and productivity of resources relevant to humans. The South Carolina Coastal Plain, particularly the coastal zone and the U. S. Department of Energy's 803 km² Savannah River Site (SRS) in the Upper Coastal Plain of the Savannah River valley (Figure 11), is the reference area, where we focus on the evolution of coastal zone, fluvial, and upland environments as they pertain to humans over the long-term.

Paleoenvironmental Overview

During the early Holocene in the South Carolina Coastal Plain: 1) oak and herb-dominated vegetation was replaced by pine (Pinus) forest as early as 8000 B.P., 2) there were greater extremes of winter and summer temperature, 3) there was high summer precipitation accompanying frequent thunderstorms, and 4) the climate was apparently not as dry as areas to the south, particularly Florida (Watts et al. 1994). Even though pine was dominant in the South Carolina Coastal Plain, the uplands likely consisted of a diverse mosaic that contained abundant surface water with aquatic and mesic-adapted resources in association. This is counter to the notion that the uplands were marginal for human existence during the early Holocene.

Many changes occurred during the mid-Holocene from ~6000-4000 B.P. that marked the onset of the modern environment: 1) regional climate became wetter and the transition toward pine-dominated forests continued; 2) the rate of sea-level rise slowed and the modern barrier island-estuarine complex was initiated; and 3) stream valleys continued to aggrade and the modern, comparatively stable river and tributary stream floodplains developed. Overall, with the establishment and comparative stability of estuarine and floodplain areas, mid- to late Holocene subsistence resource productivity and predictability were probably much higher than in the early Holocene.

Landscape Evolution and Archaeological Patterning

The South Carolina Coast

Variation in sea level is the major factor conditioning the evolution of the coastal environment. Our Holocene sea-level change curve (Figure 12) for the South Carolina Coast has been developed from extensive stratigraphic and radiocarbon data (Colquhoun and Brooks 1986). Cores from barrier island, marsh, estuarine and shallow shelf stratigraphic settings have yielded peat, wood and marine shells for over 200 radiocarbon dates (Brooks et al. 1979; Brooks and Colquhoun 1991; Colquhoun et al. 1980, 1981; Colquhoun and Brooks 1986; Eckerd 1986; Imperato 1984; Moslow 1980). Additional radiocarbon dates have been obtained from charcoal and marine shells in stratigraphic
context at estuarine shell middens (e.g., Colquhoun and Brooks 1986; Lepionka et al. 1983).

The curve (Figure 12) indicates rapid rise in sea level beginning prior to 10,000 radiocarbon years before present (uncorrected) and continuing until ~6000 B.P. The rapid rise of early Holocene sea level inundated vast areas of the continental shelf, thereby eliminating a significant portion of the Coastal Plain and its resources for prehistoric use and burying or destroying untold segments of Paleoindian through Middle Archaic settlement systems. Formation of the modern coastal zone began from ~6000 to 4200 B.P. Very slow rise occurred after 6000 B.P., with sea-level position being within a meter or two of its present elevation as early as 4200 B.P. Against the backdrop of
Figure 11. The Savannah River Site (SRS) in the Upper Coastal Plain of the Savannah River Valley (note the fluvial terraces and the modern floodplain) (after Brooks and Sassaman 1990).
general rise, the data indicate several minor fluctuations (transgressive-regressive cycles) in sea level around the general trend.

The mid- to late Holocene general rise in sea level is reflected in the distribution of estuarine shell middens (e.g., Michie 1973, 1980; Brooks et al. 1989). The earlier Stallings, Thom's Creek and Refuge shell middens are usually located near estuarine mouths adjacent to major tidal channels, and often occur as island hammocks where they were cut off from the mainland by sea level rise and marsh infilling. Later Woodland shell middens are more likely to occur in the landward and lateral areas of estuaries adjacent to small tidal creeks or just above the high marsh surface along the modern estuarine margin. Because they are typically smaller, more numerous, and have lower subsistence resource and artifact assemblage diversity, the later Woodland shell middens seem to represent shorter, less intensive occupation than the earlier sites.

Reflecting fluctuations in sea level, late mid-Holocene shell middens tended to occur within the lower fluvial-upper estuarine transition zone in protected back-barrier areas (Brooks et al. 1986). As this ecotonal, fresh-brackish water transition zone and associated tidal channel network shifted with fluctuations in sea level, sites were

![Figure 12. Holocene sea-level change curve for the South Carolina Coast (after Colquhoun and Brooks 1986).](image-url)
abandoned and new ones were established landward with transgressions or seaward with regressions. The onset of episodes of sea-level rise or fall seems to have been quite rapid (Figure 12) and would have been readily apparent to individuals. For sites established in protected, back-barrier areas during regressive intervals, their subsequent burial by marsh infilling is consistent with rapid sea level rise (see DePratter and Howard 1977). Prolonged exposure to high-energy, intertidal processes under conditions of slow sea-level rise would have destroyed these sites.

The Savannah River Valley

While sea-level change is no doubt the dominant process in the near-Coastal Zone and regional climate exerts greatest influence in headwater areas, the relative contributions of sea level and climate to changes in the fluvial system are not easy to differentiate. Without discounting the importance of geologic structure, the fluvial system can be envisioned as representing the dynamic equilibrium between opposing, external control processes. Climate strongly conditions the nature of the vegetation cover and, in turn, runoff and sedimentation in a downstream direction. In contrast, influences of sea level, the ultimate hydrologic base level, occur in an upstream direction with rises in base level. Rises in base level reduce stream gradients and promote aggradation and infilling. Sea-level rise and associated aggradation can affect fluvial systems far inland from the coast through "up-the-line" raising of local base levels. Incision tends to occur with higher stream gradients accompanying falls in sea level. Because of the dynamic nature of both sea level and climate, their relative influence varies within and among fluvial systems, and over time.

Depositional modes in the Savannah River floodplain changed substantially during the Holocene. In several areas of the Middle and Upper Coastal Plain of the Savannah River valley, early to mid-Holocene alluvial sedimentation formed a raised, sandy terrace (T1a) composed of chute-bar and point-bar deposits, overlain by flood-related sand layers (Brooks 1990; Brooks et al. 1986, 1990; Brooks and Colquhoun 1991; Brooks and Sassaman 1990) (Figure 11). Based on archaeological dating, stacked surfaces associated with T1a development were established from ~10,500 to 4000 B.P. At ~4000 B.P. there was a change in the mode of terrace deposition from large pulses of flood-related sedimentation, with occupation surfaces at the tops of sediment fining-upward sequences, to small increments of similar sedimentation resulting in net accumulations of only 25-30 cm. Periods of early to mid-Holocene T1a surface stability were punctuated by episodic depositional events, suggesting rapid run off, flashy discharge, and an inherently unstable fluvial landscape in terms of human habitation and resource predictability. The high sediment yields are consistent with the notion that the early Holocene was at least somewhat drier than the mid-Holocene and later, although the reduction in ground cover as the dominant vegetation shifted from oak to pine could have been as important as the drier conditions. If summer was the time of maximum instability of the fluvial system due to storm-related flooding, then there may have been substantial use of the uplands during that season. This is consistent with data indicating that some Carolina bays were used intensively by Paleoindian and Archaic populations (Brooks et al. 1993, 1995) and that aquatic resource availability of upland wetlands is highest during the spring and summer. It is also consistent with the general provisions of the Anderson and Hanson (1988) Early Archaic settlement model, which suggests that winter base camps were located on river terraces of the Upper Coastal Plain and that groups were again in the Upper Coastal Plain during the late spring and summer on their way to the Piedmont from the coast. Therefore, late spring and summer residence in the Upper Coastal Plain may well have occurred and centered on the uplands, with some Carolina bays being the focus of activity.
Development of the modern Savannah River floodplain began as early as 6000 B.P. in the lower fluvial-upper estuarine transition zone and as late as 4000 B.P. in the Upper Coastal Plain in the vicinity of the SRS (Stevenson 1982; Brooks et al. 1986, 1990; Brooks and Colquhoun 1991; Brooks 1992). The Rabbit Mount shell midden in the floodplain in the upper Middle Coastal Plain of the valley dates to ~4500 B.P. (Stoltman 1974) and may have been established in the high flow-low flow energy transition zone early in the development of the modern floodplain in that reach of the valley. Thus, as with the early shell middens in the estuarine areas, there may have been a selection for transitional zones or ecotonal areas. The occurrence and preservation of Late Archaic-Late Woodland middens within and adjacent to the Savannah River floodplain throughout the Coastal Plain reaches of the valley (e.g., Stoltman 1974; Hanson and DePratter 1985; Brooks et al. 1986, 1990; Sassaman 1991; Sassaman et al. 1990; Brooks 1992), along with abundant aquatic subsistence resource remains, attests to the long-term stability and productivity of the modern floodplain. However, our data are currently inadequate to delineate the short-term valley-wide and local variation that was of most direct importance to humans, as it is today.

Tributary stream floodplain development occurred after 4000 B.P. in the uplands of the SRS. It was at about this time that dispersed household groups began fairly intensive seasonal or multiseasonal occupations along the tributaries (e.g., Brooks and Hanson 1989; Sassaman 1987, 1993). As with the Savannah River floodplain, the data suggest fairly stable and productive tributary stream floodplains. The upland interflues, including Carolina bays, typically contain Middle and Late Woodland lithic and ceramic scatters of low density and diversity (Sassaman et al. 1990; Brooks et al. 1993, 1995), which are consistent with activities such as fall deer hunting and nut collecting. A similar pattern has been documented for upland areas of the Lower Coastal Plain (Brooks and Scurry 1978). The evidence, at least for Carolina bays, suggests a much lower intensity of use by Woodland than by Archaic groups (Brooks et al. 1993, 1995). Thus, the mid-to late Holocene use of the SRS uplands seems to have involved habitation around, and intensive use of, the tributary floodplains and their adjacent mesic slopes, as well as less intensive use of interfluvial areas.

Environmental and Social Correlates of Scalar Variability

What are the implications of the variability we have considered? For human societies, environmental variation produces risk and uncertainty at seasonal, interannual, and long-term temporal scales (e.g., Rowley-Conwy and Zvelebil 1989). To cope with this variation, mechanisms available to hunter-gatherers to insure adequate food supplies and other resources include mobility, diversification, storage, and exchange (e.g., Halstead and O'Shea 1989).

In the South Atlantic Coastal Plain, particularly in South Carolina, direct, unequivocal archaeological evidence of food exchange and storage is virtually non-existent. However, the inferential evidence of mobility and diversification is somewhat better, and we see a pattern that appears typical of temperate environments: a general trend from an emphasis on mobility to an emphasis on diversification. At this scale of analysis, factors other than climatic or environmental characteristics unique to the South Atlantic Coastal Plain are implicated. As Anderson and Hanson (1988) point out, the high mobility indicated for the Early Archaic of the South Atlantic Slope is probably related as much to availability of suitable mates over a vast landscape under conditions of low population density as to characteristics of the physical environment. This is not inconsistent with our view of the early Holocene environment of the Coastal Plain. While overall subsistence resource productivity probably increased over the course of the Holocene, particularly in estuarine and fluvial areas since the mid-Holocene, the Coastal
Plain was probably always a good place for people with the flexibility characteristic of hunter-gatherers.

A seemingly marked shift from an emphasis on mobility to diversification and at least semi-sedentism occurred during the mid-Holocene with the Late Archaic and continued through the Woodland period. It is tempting to equate this with the mid-Holocene establishment of essentially modern, highly productive estuarine and floodplain areas. Indeed, if a case can be made for a causal relationship between broad-scale environmental change and cultural evolution in the South Atlantic Coastal Plain, it has to be for the mid-Holocene. Clearly, whether from a push or pull perspective, highly productive estuarine and floodplain resources would have facilitated intensive habitation and at least semi-sedentism. At seasonal and interannual scales, these overall highly productive environments are probably also the most unpredictable and would, therefore, favor the diversified economies indicated. This all sounds good, but archaeological patterning at the long-term scale of hundreds of years is not readily interpretable in terms of our current paleoenvironmental data. In the Upper Coastal Plain of the Savannah River valley, the Late Archaic through Mississippian periods are characterized by cycles of aggregated and dispersed settlement, with the Late Archaic, Middle Woodland, and Mississippian periods having seasonal or multi-seasonal, intensive habitation sites and the intervening Early and Late Woodland periods having the year-round dispersal of small household groups (Brooks and Hanson 1989). While this cyclic pattern may well reflect social process (e.g., an alternating core-periphery scenario), its long-term occurrence attests to the accommodating nature of the physical environment as, presumably, populations were generally expanding and territories were becoming smaller.

Conclusions

No single scale is sufficient in itself for deriving a holistic understanding of the past. We must use multiple scales of analysis and play them off against one another as in Marquardt’s (1992) dialectical approach. What is suggested at one scale of analysis, contradiction or otherwise, must be investigated at another, back and forth, for more refined understandings of the past.

The small temporal and spatial scales of most direct importance to humans are the most difficult to derive from the archaeological record, which tends to be a record of stability (success stories) and the long-term, rather than rapid change, stochastic events or short-term periodicity. While short-term environmental phenomena are frequently manifested in the record as, for example, discrete depositional events, our dating and interpretation of the events relative to regional environmental processes are usually inadequate.
PART III. PUBLIC EDUCATION

Public Outreach

Throughout FY95, SRARP staff members continued their involvement in a variety of public outreach activities. Efforts for outreach programs geared toward K-12 students continued as a priority for the Curator of Public Outreach. The Community History Project neared completion of a new volume on the town of Ellenton. The monthly on-site volunteer excavations at Tinker Creek also continued as did SRARP involvement with avocational archaeological societies.

Outreach to K-12 Students and Schools

The SRARP program Discovering Archaeology teaches students about archaeology to promote understanding and to provide a sense of stewardship towards archaeological sites. In FY95, approximately 1,500 school children in various grade levels participated in the program. Each presentation included activities that explain the scientific methods archaeologists use. Students learned how artifacts are clues to past lifeways and were able to examine artifacts representing different cultures. Discovering Archaeology continues as a flexible program, designed to meet teacher curriculum needs.

Some of the most rewarding education efforts continue to be programs that reach students over a several day period. Three schools, Redcliffe Elementary (Jackson, SC); Ridge Springs-Monetta Middle (Ridge Springs, SC); and Westmont Elementary (Augusta, GA) were involved in a program that included a classroom introduction to archaeology followed by a visit to a site undergoing excavation (38AK615). SRARP also continued with its involvement in Aiken Elementary’s Enrichment Program.

With an all-out effort by Mary Inkrot and other members of the staff, the student summer camps continued and expanded this year. Twelve area students participated in the Digging for Data Camp, with its emphasis on prehistoric archaeology. Fourteen 7th and 8th grade area students enrolled in More Digging for Data. This camp, new in FY95, focused on historic archaeology. Both camps aim at having students duplicate the archaeological process as closely as possible. Students carefully excavate a mock site, study artifacts, and interpret their findings. The camps are possible through a collaborative effort between SRARP staff, the Natural Resources Science, Mathematics, and Environmental Education Program of the Savannah River Forest Station, and the University of South Carolina-Aiken Continuing Education Department.

Beginning in August, Mary Inkrot, Richard Brooks, and Tammy Forehand formed a strategic planning team for the public outreach education program. The impetus for strategic planning efforts was the need to improve and expand education programs. The draft of the plan will be competed in early FY96.

Community Outreach

In order to be more responsive to the community, SRARP joined the SRS Educational Outreach Council. Mary Inkrot participates in the monthly meetings. A noteworthy achievement of the council was the development of a booklet describing all the education programs offered at SRS, including Discovering Archaeology and the SRARP Grants Program.

The exhibit "Looking Back: Archaeology in the Southeast" was installed at the Aiken County Historical Museum in gradual stages throughout FY95. First to be added
was a timeline, which highlights some world and local events taking place in prehistory and history. Next, artifacts representing prehistoric cultures of the southeast and five historic sites were placed in the exhibit cases. Illustrations depicting how people used the artifacts in the past accompany the artifacts. The final stage consisted of placing illustrated text panels above the exhibit cases. These panels provide general descriptions of the prehistoric cultures and historic sites displayed. SRARP also funded additional track lighting for the exhibit room. Future plans include adding a "Please Touch" section, which will allow museum visitors to physically examine some artifacts and artifact reproductions. The official opening of the exhibit will take place early in FY96.

In addition to "Looking Back: Archaeology in the Southeast," SRARP has added a permanent display at the Savannah River Ecology Lab's Conference Center. This display currently highlights prehistoric archaeology.

Richard Brooks, David Crass, and Bruce Penner produced a pamphlet entitled "On the Edge of the English World 1685-1776: Savanno Town, Fort Moore and New Windsor." The pamphlet will be distributed throughout the Central Savannah River Area to heighten local awareness to the area's rich history and the contributions being made by local volunteers.

The 1995 South Carolina Archaeology Week, one of the largest outreach efforts of the year, will be September 30 through October 7, 1995. Although most of the events take place in FY96, SRARP preparations began in FY95. For the fourth year, Ken Sassaman helped to format the Calendar of Events booklet. Mary Inkrot and avocational archaeologist Adrienne DeBiase (SREL) developed an activity guide for use at the Archaeological Society of South Carolina's annual Fall Field Day. The guide includes descriptions of Maritime Archaeology (the 1995 theme), artifacts to identify, questions to answer, a crossword puzzle, hidden word search, and a bibliography of books to read. Illustrations by Buddy Wingard added to the guide's appeal. The activity guide was mailed to over 200 interested teachers throughout South Carolina. Each educator was encouraged to duplicate the guide as needed for classroom use. Extra copies of the guide will be distributed at Fall Field Day, October 7, 1995.

SRARP continues to provide traveling displays at various community events. New this year was SRARP participation at Science Partners Involved in Community Education Day, which is held for families in the Allendale area. SRARP brought their children's display and offered a children's activity on dating historic artifacts. Buddy Wingard presented displays at the Allendale Harvest Happening Festival and the SRS Boy Scout Jamboree. Tammy Forehand and Bruce Penner participated at the annual Beech Island Heritage Day with a display of artifacts from Fort Moore and 38AK615. Mary Inkrot provided a display and children activity on ceramic reconstruction and identification for Fall Field Day, the last day of Archaeology Week 1994.

Historic Brattonsville Programs

An archaeological educational segment was included in the York County third grade history day. Tours conducted by Monica Beck and others introduced students to an archaeology station near a partially excavated brick slave cabin. The purpose of the station was to relay the systematic, scientific approach employed by archaeologists in their efforts to interpret the past. Questions were asked to provoke comments regarding assumptions and how facts and artifacts could be used to construct a more accurate picture of African-American slave life.
Archaeology was also an important aspect of the teenage Summer History Camp at Historic Brattonville. Archaeological research was emphasized as a major contributor to the accurate reconstruction of historic sites. Campers screened for artifacts from a partially excavated slave cabin and reconstructed interpretations of the residents' lives based on the recovered artifact assemblage.

A Teacher Recertification program held at Historic Brattonsville included participants from over thirty local grade schools. The day-long segment included lecture, an archaeological tour of the site, and hands-on screening for artifacts. The most interesting aspect of archaeology for the teachers was how the inherent fascination for artifacts and excavation could be used to teach science, math, and history subjects.

Community History Project

For the past four years, the SRARP Community History Project has collected both oral and written interviews from people who once lived on the Savannah River Site (SRS). Our efforts initially concentrated on Dunbarton and Meyers Mill, two of the communities that were in the area and were abandoned, in 1951, when the Atomic Energy Commission (AEC) acquired the land for the SRS in Aiken, Barnwell, and Allendale Counties, South Carolina. The collected data are presented in the SRARP Heritage Education Series Monograph Number 1, entitled Memories of Home: Dunbarton and Meyers Mill Remembered, which is now in circulation.

Following the Dunbarton/Meyers Mill volume, three further volumes will be prepared. The second volume, which focuses on the town of Ellenton, is under preparation now. A third volume will discuss the small communities within the bounds of the present-day SRS, such as Sleepy Hollow, Leigh, and Hawthorne. A final volume will focus on the construction and impact of the AEC weapons complex on traditional lifeways in the area.

Overall, seventy-two written and forty-five oral interviews have been collected for the Ellenton volume. Hundreds of oral histories, family photographs, school, church, and business records, and family diaries have been acquired for inclusion into the upcoming monograph as well.

In addition to conducting interviews and collecting historical data, the SRARP has led numerous tours at SRS since the inception of the Community History Project. We have had five tours this year, permitting people to visit their former homeplaces, church grounds, and old town sites. These tours help us to make the public aware of our Community History Project, and perhaps encourage involvement in our work. Also for public outreach, we set up displays at public events, and present papers on the results of our on-going research.

Special Public Outreach Projects

Copying, Editing, and Publishing Memoirs of Former Residents

The unpublished memoirs of two former residents of the town of Ellenton have been acquired by SRARP, and are in the process of being copied and edited to be later published in a companion volume to the Ellenton book. George Wingard is currently dealing with four notebooks comprised of one of these Ellenton resident's life history.
Four Projects on the Former Towns of the SRS Place in National History Day

In January 1994, Tonya Browder took Sarah Beth and her father, Timothy, on a tour of the former towns. Sarah Beth decided to do her History Day project on the towns of Dunbarton and Meyers Mill. Miss Browder gave her photographs, newspaper clippings, and maps, as well as put her in contact with some former residents and even helped her conduct several of the interviews. Sarah Beth won first place in the regional competition, and placed third in the state finals. She was not able to go on to the National Contest, but her effort in this project was very commendable.

In February 1994, Tonya Browder also took Shannon and her mother, Marla, on a tour of the former towns. Shannon decided to do her History Day project on all of the towns. Miss Browder gave her photographs, newspaper clippings, and maps, as well as put her in contact with some former residents. Shannon won first place in the regional competition, and went on to the state finals, winning first place. She then proceeded to the National Contest of National History Day held in Washington, D.C. on June 16th, where she placed second at the National level.

In January 1994, Jennifer Powell and Kenny Brown were taken on a tour of the former towns by Tonya Browder. They decided to do their History Day project on the town of Ellenton. Miss Browder gave them photographs, newspaper clippings, and maps, as well as put them in contact with some former residents. They won first place in the regional competition, and represented their school in the state finals, placing first at the state level as well. After teaming up with two other students, they refined their project and were asked to display it in the Smithsonian Institute for the week prior to the Nationals. They then went on to the National Contest of National History Day held in Washington, D.C. on June 16th, where they placed fourth at the National level.

On September 6, 1994 Tonya Browder spoke to Mrs. Carol Hayes' eighth grade students at New Ellenton Middle School about the town of Ellenton, and on the following day, Miss Browder took the class on a tour of the old town. She emphasized the impact the Savannah River Site had on the town, which prompted the class to do a project on Ellenton and enter it in the regional History Day competition. George Wingard also spoke to the class and supplied them with newspaper clippings and photographs for the project. The students won second place and represented their school in the state finals held at the South Carolina State Museum. The project won second place at the state level and the students were invited to the National History Day finals held in Washington, D.C. on June 15th. The SRARP donated three hundred dollars to the students for their trip where they placed sixth at the National level and first place overall in the Oral History section of the competition.
REFERENCES CITED

Anderson, D. G., and G. T. Hanson

Brooks, M. J.

Brooks, M. J., and D. J. Colquhoun

Brooks, M. J., and K. E. Sassaman

Brooks, M. J., K. E. Sassaman, and G. T. Hanson

Brooks, M. J., and J. D. Scurry
1978 An Intensive Archaeological Survey of Amoco Realty Property in Berkeley County, South Carolina, with a Test of Two Subsistence-settlement Hypotheses for the Prehistoric Period. Research Manuscript Series 147. South Carolina Institute of Archaeology and Anthropology, University of South Carolina, Columbia.
Brooks, M. J., P. A. Stone, D. J. Colquhoun, J. G. Brown, and K. B. Steele

Brooks, M. J., P. A. Stone, D. J. Colquhoun, and J. G. Brown

Brooks, M. J., B. E. Taylor, and J. A. Grant

Brooks, M. J., B. E. Taylor, J. A. Grant, and E. E. Gaiser

Cabak, Melanie A., George S. Lewis, Kenneth E. Sassaman, and George L. Wingard

Colquhoun, D. J., and M. J. Brooks

DePratter, C. B., and J. D. Howard
Eckard, T. L.
1986 *Stratigraphy and Depositional History of the Santee River Delta, South Carolina*. M.S. thesis, Department of Geology, University of South Carolina, Columbia.

Halstead, P., and J. O'Shea

Hanson, G. T., and C. B. DePratter

Imperato, D. D.
1984 *Sandy Depositional Environments of the North Edisto Tidal Basin*. M.S. thesis, Department of Geology, University of South Carolina, Columbia.

Marquardt, W. H.

Michie, J. L.

Moslow, T. F.
1980 *Stratigraphy of Mesotidal Barrier Islands*. Ph.D. dissertation, Department of Geology, University of South Carolina, Columbia.

Rowley-Conwy, P., and M. Zvelebil

Sassaman, K. E.

Sassaman, K. E., M. J. Brooks, G. T. Hanson, and D. G. Anderson

Savannah River Archaeological Research Program

Savannah River Archaeological Research Program

Stevenson, A. E.
1982 *Geomorphic History of a Portion of the Savannah River Floodplain, Barnwell County, South Carolina.* M.S. thesis, Department of Geology, University of South Carolina, Columbia.

Stoltman, J. B.

Watts, W. A., E. C. Grimm, and T. C. Hussey
APPENDIX A

PUBLISHED PAPERS AND MONOGRAPHS

Elliott, D. T., and K. E. Sassaman

Cabak, M. A., M. D. Groover, and S. J. Wagers

Crass, D. C., and M. J. Brooks (editors)

Lewis, G. S.

Nassaney, M. S., and K. E. Sassaman (editors)

Sassaman, K. E.

1995 Twenty-Five Lessons in Twenty-Five Years of Middle and Late Archaic Archaeology. South Carolina Antiquities 25:30-42.

1995 Archaeological Testing at the Brassel Site (9GL6), Glascock County, Georgia. Early Georgia 23(1):41-76.

Sassaman, K. E., K. J. Wilson, and F. Snow

TECHNICAL REPORTS

Cabak, M., G. S. Lewis, K. E. Sassaman, and G. Wingard
POPULAR LITERATURE

Brooks, R. D., D. C. Crass, and B. R. Penner

BOOK REVIEWS

Crass, David Colin

Penner, Bruce

PROFESSIONAL PAPERS PRESENTED

Beck, Monica L.

Brooks, M. J., B. E. Taylor, and D. J. Colquhoun
1994 Scales of Holocene Landscape Evolution in the South Atlantic Coastal Plain and Their Implications for Prehistoric Populations. Invited paper presented in symposium at the joint annual meetings of the Southeastern Archaeological Conference and the Midwest Archaeological Conference, Lexington, KY.

Cabak, M. A.

Cabak, M. A., and M. D. Groover

Crass, D. C., B. R. Penner, and T. R. Forehand
Grant, J. A., M. J. Brooks, and B. E. Taylor

Sassaman, K. E.
1994 Recent Excavations at Mims Point (38ED9), Edgefield County, South Carolina. Paper presented at the Fall Meeting of the Society for Georgia Archaeology, Statesboro.
1994 Changes in the Landscape: The Savannah River Valley. Invited paper presented in symposium at the joint annual meetings of the Southeastern Archaeological Conference and the Midwest Archaeological Conference, Lexington, KY.

Stine, L. F., and M. A. Cabak

Taylor, B. E., and M. J. Brooks

Taylor, B. E., M. J. Brooks, and D. J. Colquhoun
1994 Holocene Climate and Upland Landscape Evolution in the Upper Coastal Plain of South Carolina. Invited paper presented in symposium at the joint annual meetings of the Southeastern Archaeological Conference and the Midwest Archaeological Conference, Lexington, KY.

Wilson, K. J., K. E. Sassaman, and F. Snow
WORKSHOPS

Sassaman, K. E.
1995 Participant, South Carolina Prehistoric Ceramics Workshop, Council of South Carolina Professional Archaeologists, Hobcaw Barony, Georgetown, South Carolina.

OFFICES/APPOINTMENTS HELD

Crass, D. C.
Secretary, Council of South Carolina Professional Archaeologists.

Member, Beech Island Heritage Corridor Committee.

Associate Editor, The Backcountry: A Multidisciplinary Forum on Early American Frontiers.

Member, SRS Photographic Center Committee Committee.

Forehand, T. R.
Member, Beech Island Heritage Corridor Committee.

Member, Education Outreach Strategic Planning Committee, SRARP.

Lewis, G. S.
Editor, Debitage (bi-monthly newsletter of the Augusta Archaeological Society).

Member, Board of Directors, Society for Georgia Archaeology.

Executive Committee, Archaeological Society of South Carolina.

Treasurer, Augusta Chapter of the Society for Georgia Archaeology.

Penner, B.
Member, U.S. Department of Energy-Savannah River Site - Site Comprehensive Planning Task Team.

Sassaman, K. E.
President, Council of South Carolina Professional Archaeologists.

Editor, Archaeological Society of South Carolina (South Carolina Antiquities).

Editor, Southeastern Archaeological Conference (Southeastern Archaeology).

Member, South Carolina Review Board of the National Register of Historic Places.

Member, Cultural Resources Subcommittee, South Carolina Heritage Trust.

TEACHING AND GRADUATE COMMITTEES

Crass, D. C.
Fall Semester 1995 - Academy for Lifelong Learning, University of South Carolina-Aiken. Introduction to Archaeology.
Sassaman, K. E.
Fall Quarter 1994 - Part-time Instructor, Department of History and Anthropology, Augusta College. ANT 101 - Introduction to Anthropology.

Winter Quarter 1995 - Part-time Instructor, Department of History and Anthropology, Augusta College. ANT 101 - Introduction to Anthropology.

Spring Quarter 1995 - Part-time Instructor, Department of History and Anthropology, Augusta College. ANT 303 - Archaeological Method and Theory

M.A. thesis committees: Kristin Wilson; Scott Sutton, Department of Anthropology, University of South Carolina, Columbia.

GRANTS
Crass, D. C.
Archaeological Research Trust Grant for faunal analysis from 38AK615, 1995.

Penner, B.
Swiss-American Historical Society Research Grant, 1995

Sassaman, K. E.
Research and Productive Scholarship Grant, University of South Carolina, Excavations at 38ED5, 1995-96.

Survey and Planning Grant, Georgia Department of Natural Resources. Archaic Period Archaeology of the Georgia Coastal Plain and Coastal Zone (with D. T. Elliott).

AWARDS
Sassaman, K. E.
C. B. Moore Award for Excellence in Southeastern Studies by a Young Scholar. Lower Mississippi Survey, Peabody Museum, Harvard University, 1994
PUBLIC SERVICE ACTIVITIES

September 1994 (Addendum)

Browder, T. A.
Guided tour on the SRS for Scott Davis.

October 1994

Browder, T. A.

Crass, D. C., T. R. Forehand, and B. R. Penner
Volunteer excavations at the Bartley Site (38AK615), Beech Island, SC.

Tour of excavations of Bartley site (38AK615). SOAR students from Minnie B. Kennedy Middle School, Aiken, SC.

Inkrot, M. M.
Children’s display and activity at the Archaeological Society of South Carolina’s Fall Field Day, Santee State Park, Santee, SC.

Discovering Archaeology. Presentation to 6th graders at Schofield Middle School, Aiken, SC.

Discovering Archaeology. Presentations to 4th-5th graders at Redcliffe Elementary School, Jackson, SC.

Discovering Archaeology. Presentation to 6th-8th graders at Rosemary Middle School, Andrews, SC.

Lewis, G. S., and K. E. Sasaman
Volunteer excavations at the Tinker Creek site (38AK224), Augusta Archaeological Society, Augusta, GA.

Sassaman, K. E.
Artifact Identification, Archaeology Field Day, Archaeological Society of South Carolina, Santee State Park, SC.

Wingard, G. L.
Display at Harvest Happenings Festival, Allendale, SC.

November 1994

Browder, T. A.
Guided tour on the SRS for the Joe Leigh family.

Crass, D. C.
Advisory Meeting, Beech Island Historical Society, S. C. Department of Parks, Recreation, and Tourism, and local legislators.
Crass, D. C., B. R. Penner, and T. R. Forehand
Volunteer excavations at the Bartley Site (38AK615), Beech Island, SC.

Forehand, T. R., and M. M. Inkrot
The History of New Windsor Township and Archaeological Excavations of the Bartley Site (38AK615). Presentation to 7th-8th graders at Ridge Spring-Monetta Middle School, Ridge Spring, SC.

Discovering Archaeology. Presentation to 4th-5th graders at East Aiken Elementary School, Aiken, SC.

Archaeology as a Career. Presentation to 8th graders at Merriwether Middle School, North Augusta, SC.

Inkrot, M. M., and K.E. Sassaman
Native American Month Prehistoric Displays. DOE Headquarters Building and USDA Forest Service, Savannah River Site.

Lewis, G. S., and K. E. Sassaman
Volunteer excavations at the Tinker Creek site (38AK224), Augusta Archaeological Society, Augusta, GA.

Sassaman, K. E.
10,000 Years of Native American Identity and Interaction. Presentation for Native American Awareness Month, Department of Energy, Savannah River Site.

10,000 Years of Native American Identity and Interaction. Presentation for Native American Awareness Month, Savannah River Forest Station, Savannah River Site.

10,000 Years of Native American Identity and Interaction. Presentation for Native American Awareness Month, U.S. Forest Station, Regional Office, Columbia, SC.

Wingard, G. L.
Display at the Savannah River Site Boy Scout Jamboree.

December 1994

Forehand, T. R., B. R. Penner, and M. M. Inkrot
Tour of excavations at the Meyer Farm; 38AK615 to 4th-5th grade students from Redcliffe Elementary School, Jackson, SC.

Inkrot, M. M., and K. E. Sassaman

Lewis, G. S., and K. E. Sassaman
Volunteer excavations at the Tinker Creek site (38AK224), Augusta Archaeological Society, Augusta, GA.
January 1995

Crass, D. C., B. R. Penner, and T. R. Forehand
Volunteer excavations at the Bartley Site (38AK615), Beech Island, SC.

Inkrot, M.M.
Discovering Archaeology. Presentation to 4th-6th Girl Scouts, North Augusta, SC.

Lewis, G. S., and K. E. Sassaman
Volunteer excavations at the Tinker Creek site (38AK224), Augusta
Archaeological Society, Augusta, GA.

Sassaman, K. E.
In the Shadow of Stallings Island. Presentation to Savannah Chapter of the Society for Georgia Archaeology, Savannah.

February 1995

Cabak, M.A.
Lecture on African American Archaeology for the Aiken County Department of Agriculture.

Crass, D. C., B. R. Penner, and T. R. Forehand
Volunteer excavations at the Bartley Site (38AK615), Beech Island, SC.

Tour of excavations of Bartley site (38AK615) to 2nd graders from Westmont Elementary School, Augusta, GA.

Inkrot, M.M.
Discovering Archaeology. Presentation to 2nd graders at Westmont Elementary School, Augusta, GA.

Enrichment Program. Aiken Elementary School, Aiken, SC.

Savannah River Prehistory. An archaeological display for the Savannah River Ecology Lab Conference Center at the Savannah River Site.

Inkrot, M.M., and D. Boyd
Presentation on terrestrial and underwater archaeology to 5th graders at Millbrook Elementary, Aiken, SC.

Lewis, G. S., and K. E. Sassaman
Volunteer excavations at the Tinker Creek site (38AK224), Augusta
Archaeological Society, Augusta, GA.

March 1995

Crass, D. C., B. R. Penner, and T. R. Forehand
Volunteer excavations at the Bartley Site (38AK615), Beech Island, SC.
Graves, P., and M.M. Inkrot
Archaeological Program on the *Environment and You with Pam Graves*. Part of a South Carolina Educational Television program to local schools.

Inkrot, M. M.
Discovering Archaeology. Presentation to 9th graders at Aiken High School, Aiken, SC.

Discovering Archaeology. Presentation to 7th graders at Aiken Prepatory School, Aiken, SC.

Finding Organic Artifacts. Presentation to 4th and 5th graders as part of the Natural Resources/Environmental Education Program

Discovering Archaeology. Presentation to 4th graders at Jefferson Elementary, Bath, SC.

Discovering Archaeology. Presentation to 8th graders at Our Lady of Peace Elementary School, North Augusta, SC.

Discovering Archaeology. Presentation to 4th and 5th graders at Jefferson Elementary, Bath, SC.

Display and children's activity for students from Houghton Elementary, Augusta, GA. Program at Tanglewood Girl Scout Camp, Evans, GA.

Lewis, G. S., and K. E. Sassaman
Volunteer excavations at the Tinker Creek site (38AK224), Augusta Archaeological Society, Augusta, GA.

April 1995

Crass, D. C., B. R. Penner, and T. R. Forehand
Volunteer excavations at the Bartley Site (38AK615), Beech Island, SC.

Inkrot, M. M.
Discovering Archaeology. Presentation to 3rd graders at Riverside Elementary School, Augusta, GA.

Discovering Archaeology. Presentation to 3rd graders at Jefferson Elementary, Bath, SC.

Discovering Archaeology. Presentation to students at Camp Long, Aiken, SC.

Display at the South Carolina Wildlife "Get Hooked on Fishing, Not on Drugs" Fish Rodeo. Barnwell, SC.

Inkrot, M. M., and G.L. Wingard
Display and student activity at Science Partners Involved in Community Education Day, Allendale, SC.
Lewis, G. S., and K. E. Sassaman
Volunteer excavations at the Tinker Creek site (38AK224), Augusta Archaeological Society, Augusta, GA.

Wingard, G. L.
OSHA for Managers and Supervisors. Westinghouse/DOE sponsored class for OSHA training.

May 1995

Browder, T. A.
Display on the Community History Project at Heritage Day, Beech Island Historical Society, Beech Island, SC.

Crass, D. C., B. R. Penner, and T. R. Forehand
Volunteer excavations at the Bartley Site (38AK615), Beech Island, SC.

Display of artifacts from the Bartley Site (38AK615) and Fort Moore, Beech Island Heritage Day, Beech Island, SC.

Inkrot, M. M.
Display at the South Carolina Wildlife Get Hooked on Fishing, Not on Drugs Fish Rodeo. Graniteville, SC.

Display on SRARP Outreach at the awards presentation for Westinghouse-Savannah River Company's Excellence in Education Mini-Grant Program. Augusta, GA.

Enrichment Program. Aiken Elementary School, Aiken, SC.

Discovering Archaeology. Presentation to 5th grade SOAR students at Jefferson Elementary, Bath, SC.

Lewis, G. S., and K. E. Sassaman
Volunteer excavations at the Tinker Creek site (38AK224), Augusta Archaeological Society, Augusta, GA.

Sassaman, K. E.
Middle and Late Archaic Prehistory of the Southeast. Presentation to field crew of Smith's Lake Creek excavations, Albert C. Goodyear, Project Director.

June 1995

Browder, T. A.
Guided tour on the SRS for the Augusta Genealogical Society.

Forehand, T. R.
Presentation of artifacts from the Bartley Site (38AK615) to members of the Augusta Genealogical Society, Savannah River Archaeological Research Program Laboratory, Savannah River Site.

Inkrot, M. M.
Children's Program at Aiken County Library, Aiken, SC.
More Digging for Data. A week-long morning day camp for fourteen 7th and 8th grade CSRA students on historic archaeology.

July 1995

Digging for Data. A week-long morning day camp for twelve 4th through 6th grade CSRA students on prehistoric archaeology.

August 1995

Sassaman, K. E.

Prehistory of the Central Savannah River Valley. Presentation to history class of the University of South Carolina, Aiken, Jim Farmer, Professor.

Shell-Midden Archaeology in the Savannah River Valley. Presentation to the Orangeburg Chapter of the Kiwanis Club.

Wingard, G. L.

Introduction to Industrial Hygiene. Three day class sponsored by DOE and presented by Medical University of South Carolina.

September 1995

Inkrot, M. M.

Discovering Archaeology. Presentation to 5th and 8th graders at Our Lady of Peace Elementary School, N. Augusta, SC.

Discovering Archaeology. Presentation to 6th graders at Merriwether Middle School, N. Augusta, SC.

Discovering Archaeology. Presentation to 163 11th graders at South Aiken High School, Aiken, SC.

Why Do Archaeologists Think That? A display at Aiken County Library for South Carolina Archaeology Week 1995.

Lewis, G. S., and K. E. Sassaman

Volunteer excavations at the Tinker Creek site (38AK224), Augusta Archaeological Society, Augusta, GA.

Sassaman, K. E.

Prehistory of Edgefield County. Presentation to Continuing Education class of the University of South Carolina, Aiken, Jim Farmer, Professor.