FABRICATION AND PROPERTIES OF SILVER-SHEATHED BSCCO CONDUCTORS*

U. Balachandran, A. N. Iyer, and R. Jammy
Energy Technology Division
Argonne National Laboratory
Argonne, IL 60439

P. Haldar
Intermagnetics General Corporation
Latham, NY 12110

October 1995

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.


*Work at Argonne National Laboratory and part of the work at Intermagnetics General Corporation is supported by the U.S. Department of Energy (DOE), Energy Efficiency and Renewable Energy, as part of a DOE program to develop electric power technology, under Contract W-31-109-Eng-38.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Fabrication and Properties of Silver and Silver-Sheathed BSCCO Conductors

U. Balachandran, A. N. Iyer, R. Jammy, and P. Haldar

1Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439
2Intermagnetics General Corporation, Latham, NY 12110

ABSTRACT

Significant progress has been made in the development of silver-sheathed BSCCO conductors for potential electric power and high-field magnet applications. High critical current density ($J_c$) has been achieved in mono- and multifilament conductors fabricated by the powder-in-tube technique; $J_c$ up to 12,000 A/cm² has been observed at 77 K, in an 1,260-m-long multifilament conductor. A high-$T_c$ magnet generated a self-field of ≈ 3.2 T at 4.2 K. A 0.25 KVA high-$T_c$ transformer has been developed with the use of a racetrack-wound solenoid. Strain tolerance of the conductors was evaluated by in-situ tensile and bending tests. Tensile testing indicated that multifilament conductors have better strain tolerance than monofilament conductors and are able to retain 90% of their initial current ($I_c$) at a strain of ±1%. Effect of superconducting/Ag ratio on bending characteristics of the conductors was also evaluated; preliminary results indicate that the irreversible strain limit of the monofilament conductor increases with decreasing superconductor/Ag ratio.

KEYWORDS: Powder-in-tube (PIT) technique, multifilament conductor, high-$T_c$ magnets, high-$T_c$ transformer, strain tolerance

INTRODUCTION

Significant effort has been made over the past few years in the development of superconducting wires and tapes, through use of the powder-in-tube technique for possible electric power and high-field magnet applications. Several research groups have demonstrated high critical current density ($J_c$) in short-length Ag-clad BSCCO tapes fabricated by the powder-in-tube (PIT) technique [1-7]. The tapes were fabricated in a series of uniaxial pressing and heat treatment schedules. Because this technique cannot be adopted for fabricating high-quality long-length conductors a modified processing technique was required. Using a more practical approach such as rolling, Intermagnetics General Corporation of Latham, NY, in collaboration with Argonne National Laboratory, has fabricated mono- and multifilament BSCCO conductors in lengths of up to several hundred meters [4,8-9]. These conductors have been cowound into prototype pancake- and racetrack-shaped coils. While the former has been used in fabricating high-$T_c$ superconducting magnets, the latter was used in a 0.25 KVA transformer. During fabrication and service, the tapes are subjected to axial and tensile stresses that could have detrimental effects on transport properties. Currently, research is underway to improve the mechanical properties of the tapes by alternative sheath materials such as AgMgNi, AgMg, Ag-10 at.% Cu, or AgAl, and by developing multifilament conductors [10-13]. Details of the magnet and transformer, along with the mechanical properties of the conductors, will be discussed in the present paper.
Partially reacted precursor powder for the PIT process was prepared by a solid-state reaction of high-purity oxides and carbonates of Bi, Pb, Sr, Ca, and Cu. The powder was then packed into Ag tubes, swaged, drawn through a series of dies, and then rolled to a thickness of ~0.1 mm. Multifilament conductors containing 37 and 61 filaments were fabricated by stacking monofilar wires in a larger Ag tube and then drawing and rolling them to final size.

Short lengths of tapes were cut and heat treated at ~850°C in air with intermittent uniaxial pressing. After each thermomechanical step, the tapes were characterized by X-ray diffraction (XRD), scanning electron microscopy, and critical current measurements. Transport properties of the resulting tapes were measured by the four-point probe technique, with a 1 µV/cm criterion. Long-length mono- and multifilament conductors were fabricated by implementing a carefully designed two-step rolling and heat-treatment schedule. Figure 1 shows winding of the long-length conductor onto a spool. These conductors were cowound in parallel to form pancake coils and racetrack-shaped solenoids. High-Tc magnets were fabricated by stacking together and connecting in series a set of pancake coils. The magnets were characterized at various temperatures and applied magnetic fields.

A high-Tc transformer, with an iron core and capable of operating at liquid nitrogen temperature, was developed by using the racetrack-shaped solenoid. Axial strain tolerance of mono- and multifilament conductors containing 61 filaments was evaluated by subjecting the tapes to an in-situ tensile test. \(I_c\) retention as a function of applied strain was measured at 77 K and in applied fields of 0 and 0.5 T. In-situ bend characteristics of the conductors were determined with a custom-designed test fixture. The tape was fixed between two movable arms mounted on a lead screw. The tapes were bent in a bath of liquid nitrogen by moving the arms toward each other by a crankshaft mechanism. Correlation between the number of turns of the crankshaft and radius of curvature to which the tapes were bent was preestablished at ambient temperature. Bend strain \(\varepsilon\) was determined from the relation

\[
\varepsilon = \frac{t}{2R}
\]

where \(t\) is the total thickness of the tape and \(R\) is the radius of curvature. The irreversible strain limit, \(\varepsilon_{irr}\), is defined as that strain beyond which the decrease in the critical current is irreversible. Bend testing was conducted on both mono- and multifilament conductors containing 61 filaments at 77 K and zero applied field. Additionally, the effect of superconductor/Ag ratio (also known as superconductor fill factor) on the bend characteristics of monofilament conductor was also studied. Monofilament conductors with 23, 30, and 38% fill factor were used.

RESULTS AND DISCUSSION

High \(I_c\) values in short samples have been achieved by a combination of uniaxial pressing and heat treatments. \(I_c\) values above 40 A were typically attained at 77 K, with the highest being 51 A, in short samples subjected to three or four cycles of uniaxial pressing and heat treatment. For fabricating long length conductors, however, a more practical approach such as rolling has been adopted. Table 1 summarizes the transport current properties, at 77 K, of both short and long mono- and multifilament conductors. At 77 K, core \(J_c\) values of \(\approx 1.2 \times 10^4\) A/cm² have been achieved in a 114-m-long monofilar conductor.

Figure 2 shows \(I_c\) along the length of a 1,260-m-long multifilament conductor containing 37 filaments. The \(I_c\) was 18 A, corresponding to a \(J_c\) of \(\approx 1.2 \times 10^4\) A/cm². These results indicate that considerable progress has been made in the development of Ag-clad BSCCO superconductors by the PIT technique. Pancake coils and racetrack shaped solenoids were fabricated from long Ag-clad BSCCO conductors. High-Tc magnets were fabricated by stacking the pancake coils and
Fig. 1. Winding of long-length conductors onto a mandrel.

Table 1. Summary of transport current properties of short and long mono- and multifilament Ag-clad BSCCO conductors.

<table>
<thead>
<tr>
<th>Conductor</th>
<th>Length (m)</th>
<th>( I_c ) (A)</th>
<th>Core ( J_c ) (A/cm(^2))</th>
<th>Overall ( J_c ) (A/cm(^2))</th>
<th>Fill Factor (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Monofilament</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Pressed</td>
<td>0.03</td>
<td>51</td>
<td>45,000</td>
<td>9,000</td>
<td>20</td>
</tr>
<tr>
<td>Short Rolled</td>
<td>0.03</td>
<td>51</td>
<td>29,000</td>
<td>7,800</td>
<td>27</td>
</tr>
<tr>
<td>Long Length</td>
<td>70</td>
<td>23</td>
<td>15,000</td>
<td>3,500</td>
<td>24</td>
</tr>
<tr>
<td>Long Length</td>
<td>114</td>
<td>20</td>
<td>12,000</td>
<td>3,200</td>
<td>27</td>
</tr>
<tr>
<td><strong>Multifilament</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Length</td>
<td>20</td>
<td>42</td>
<td>21,000</td>
<td>6,800</td>
<td>32</td>
</tr>
<tr>
<td>Long Length</td>
<td>90</td>
<td>35</td>
<td>17,500</td>
<td>5,600</td>
<td>32</td>
</tr>
<tr>
<td>Long Length</td>
<td>850</td>
<td>16</td>
<td>10,500</td>
<td>2,500</td>
<td>24</td>
</tr>
<tr>
<td>Long Length</td>
<td>1,260</td>
<td>18</td>
<td>12,000</td>
<td>3,500</td>
<td>30</td>
</tr>
</tbody>
</table>
connecting them in series. A test magnet (Fig. 3) fabricated by stacking 20 pancake coils generated a self-field of ~3.2 T at 4.2 K and zero applied field. Total length of the conductor in the magnet was 2400 m. The outer and inner winding diameters of the coil were 0.203 and 0.04 m, respectively. Ampere turns at 4.2 K were >250,000. Another test magnet fabricated with eight double-pancake coils, with each coil containing three 16-m lengths of BSCCO conductors cowound together, generated a field of 1 T at 4.2 K and 0.6 T at 27 K, in a background field of 20 T. Total length of the conductor in the magnet was 770 m. The racetrack-wound solenoid was used in developing a 0.25 KVA high-Tc superconducting transformer (Figure 4) with an iron core and capable of operating at liquid nitrogen temperatures. The primary end of the transformer had about 85 m of high-Tc conductor and the secondary had 31 m. Turns in the primary and secondary winding were 140 and 40, respectively.

In-situ tensile testing indicates that multifilament conductors (61 filaments) conductors to have better strain tolerance than the monofilament conductors, retaining more than 90% of their initial Ic at ≥ 1% strain. While εirr for the multifilament conductor was ≈ 1%, that for the monofilament conductor was =0.2%. Preliminary results on the bend characteristics of the conductors indicate that the drop in Ic is more profound in monofilament conductors than in multifilament conductors (61 filaments) as bend radius decreases. Figure 5 shows the effect of fill factor on the bend characteristics of monofilament conductors. The plot shows that εirr for the monofilament conductor increases as the superconductor fill factor decreases. These results are encouraging because they show that further improvement in mechanical properties can be achieved without compromising transport current properties.

SUMMARY

High quality mono- and multifilament conductors up to several hundred meters in length have been successfully fabricated by the PIT technique. These conductors have been used to develop high-Tc superconducting magnets and transformers. A high-Tc magnet containing 20 pancake coils generated a self-field of ~3.2 T at 4.2 K. Strain tolerance of the conductors indicate that multifilament conductors have better strain tolerance than do monofilament conductors. The irreversible strain limit of the monofilament conductor increases with decreasing superconductor fill factor.
Fig. 3. Test magnet that generated a field of \(~3.2\) T at 4.2 K and zero applied field.

Fig. 4. Photograph of 0.25 KVA high-\(T_c\) superconducting transformer shown with its iron core.
ACKNOWLEDGMENTS

Work at Argonne National Laboratory and part of the work at Intermagnetics General Corporation is supported by the U.S. Department of Energy (DOE), Energy Efficiency and Renewable Energy, as part of a DOE program to develop electric power technology, under Contract W-31-109-Eng-38.

REFERENCES