Alignment and Stability of Future Machines

V.D. Shiltsev

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

June 1996

Presented the European Particle Accelerator Conference,
Barcelona, Spain, June 10-14, 1996
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Alignment and Stability of Future Machines

Abstract

We overview future designs for high-energy particle accelerators and leading edge laboratories in the US and Europe.

I. INTRODUCTION

The design of future accelerators and colliders challenges the limits of our understanding of particle physics.

II. MACHINES' TOLERANCES

Table 1: Stabilities of Machines

<table>
<thead>
<tr>
<th>Machine</th>
<th>Stability (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEPP3</td>
<td>0.01</td>
</tr>
<tr>
<td>HERA</td>
<td>0.03</td>
</tr>
<tr>
<td>SSC</td>
<td>0.1</td>
</tr>
<tr>
<td>CERN</td>
<td>0.5</td>
</tr>
<tr>
<td>KEK</td>
<td>1.0</td>
</tr>
<tr>
<td>NLNM</td>
<td>2.0</td>
</tr>
<tr>
<td>UNK</td>
<td>5.0</td>
</tr>
<tr>
<td>TESLA</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Figure 1: Spectra at Different Sites
dispersive and wakefield effects, the beam emittance grows. The second effect is beam-beam separation at the interaction point where the bunches have nanometer-scale sizes.

Table 2: Stability of Linear Colliders

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TESLA</th>
<th>NLC</th>
<th>2-TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy/beam, TeV</td>
<td>0.25</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>f_{rev}, GHz</td>
<td>1.3</td>
<td>11.4</td>
<td>11-30</td>
</tr>
<tr>
<td>Tot. Length L, km</td>
<td>32</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Rep. rate f_{0}, Hz</td>
<td>10</td>
<td>180</td>
<td>300</td>
</tr>
<tr>
<td>Linac jitter (\sigma_q), nm</td>
<td>100</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>FFS jitter, nm</td>
<td>50</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>FD jitter, nm</td>
<td>10</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>Measured jitter, nm</td>
<td>5-80</td>
<td>1-3</td>
<td>0.2-4</td>
</tr>
<tr>
<td>Alignment of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quads, cav., (\mu \mathrm{m})</td>
<td>500</td>
<td>100</td>
<td>\sim 50</td>
</tr>
<tr>
<td>BPM align., (\mu \mathrm{m})</td>
<td>100</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>BPM resol., (\mu \mathrm{m})</td>
<td>10</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>FF BPM resol., (\mu \mathrm{m})</td>
<td>1</td>
<td>1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

If disturbances (e.g., quadrupole vibrations) are slow then the beam can be used in a feedback loop to keep the bunches colliding using steering magnets. This technique is routinely used at the SLC (SLAC) where it was found that at frequencies above \(f_{rev}/20 \) (\(f_{rev} \) is the linac repetition rate) the feedback does not work effectively. This fast motion (called jitter) has the tightest tolerances — see Table 2. If the motions of \(N_q \) linac quadrupoles are uncorrelated, then the rms beam centroid vibration \(\sigma_y \) relates to quadrupole vibration as \(\sigma_y \sim 2N_q \sigma_q^2 \). As long as beam dimensions are tiny and number of quadrupoles is large, then due to the dilution some 10-20% emittance increase can be caused by 9 nm jitter in NLC and about 4 nm in 2-TeV machine. Very dangerous are movements of quadrupoles of the final focus system (FFS) and especially of the final doublet (FD), which lead to immediate beam-beam separation — tolerances are about or less than the measured ground vibrations for all three LC projects! The tolerances on initial alignment for neighbor quadrupoles, accelerating structures and BPMs are not very tight, while the resolution of BPMs is challenging, because it limits the precision of beam-based alignment which is the only way to keep high luminosity of LCs (about \(6 \cdot 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1} \) for TESLA and NLC, and \(\sim 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1} \) for 2-TeV machine).

The last group of machines is hadron colliders like LHC (CERN), SSC (terminated) and so-called Megatron [3] — see their parameters and tolerances in Table 3. There are two major effects which limit the performance of HCs. The first is the transverse emittance growth due to fast (turn-to-turn) dipole angular kicks \(\delta \theta \) produced by bending field fluctuations in dipole magnets \(\Delta B/B \) or by fast motion of quadrupoles \(\sigma_q \) which has a rate of \([4] \frac{d\varepsilon}{dt} = (1/2)\gamma N_q f_{rev}^2 \mathcal{F} \sigma_y \mathcal{F} (\Delta \nu f_{0}) \). \(\mathcal{F} \) is the focusing length, \(\mathcal{F} \) is mean-beta-function. The requirement of \(\frac{d\varepsilon}{dt} < \varepsilon_{N} / \tau_{L} \), where \(\tau_{L} \) is the luminosity lifetime, sets a limit on the turn-by-turn jitter amplitude which looks extremely tough — of the order of the atomic size! Comparison with results of measurements (see next section) shows that for all these HCs the effect may have severe consequences.

Another figure in Table 3 is for quad-to-quad alignment tolerances in order to keep the COD within 5 nm, and the estimated time after which cumulative drifts due to ground diffusion (see discussion on “the ATL law” in next section) will cause the distortions [5]. One can see that the SSC and the Megatron should be re-aligned very often — another solution, to have strong and numerous correctors.
3 MEASUREMENTS

Vast spectrum of stability related problems was under study: natural and cultural ground vibrations, tunnel drifts, resonant amplification due to supports, thermal deformations, influence of Earth tides, impact of nearby trains and over-passing planes, barometric pressure effects, floor drifts due to floods, ground water and precipitation, vibrations due to turbulence of cooling water and liquid Helium flow, earthquakes, sources of magnetic and electric fields ripple, seasonal effects, mechanical stabilization, etc., and of course beam orbit motion and its stabilization. We discuss here some of the results.

As most of disturbances are noises, then statistical spectral analysis defines the power spectral density \(S_x(f) \) (PSD) of noise process \(x(t) \) at frequency \(f \geq 0 \) as:

\[
S_x(f) = \lim_{T \to \infty} \frac{2}{T} \left| \int_0^T x(t) e^{-i2\pi ft} \, dt \right|^2. \quad (1)
\]

The dimension of the PSD is power in unit frequency band, e.g. \(m^2/Hz \) for the PSD of displacement. PSD relates to the rms value of signal \(\sigma_{rms}(f_1, f_2) \) in the frequency band from \(f_1 \) to \(f_2 \) as \(\sigma_{rms}^2(f_1, f_2) = \int_{f_1}^{f_2} S_x(f) \, df \), e.g. below we note integrated rms amplitude that corresponds to \(f_2 = \infty \). The spectrum of coherence \(C(f) \) of two signals \(x(t), y(t) \) is defined as:

\[
C(f) = \frac{\langle X(f)Y^*(f) \rangle}{\sqrt{\langle X(f)X^*(f) \rangle \langle Y(f)Y^*(f) \rangle}}, \quad (2)
\]

here \(\langle .. \rangle \) means averaging over different measurements and \(X(f), Y(f) \) are Fourier transformations of \(x, y \). The coherence does not exceed 1.0 and is equal to 0 for completely uncorrelated signals.

3.1 High frequencies

A lot of ground motion measurements at accelerators have been made during the last decade. Fig.1 compares the value of \(S_x(f)(2\pi f)^2 \) for the so-called “New Low Noise Model” [6] – a minimum of geophysical observations worldwide – and data from accelerator facilities of HERA [7], UNK [8], VEPP-3 [9], KEK [10], SSC [11], CERN [12], APS [13], and SLAC [14]. These PSDs of velocity say us that: 1) accelerators are essentially “noisy” places; 2) ground vibrations above 1 Hz are strongly determined by cultural noises (see numerous peaks in Fig.1); 3) even among accelerator sites the difference is very large, that gives a hint for future accelerator builders. As the value of the amplitude above the given frequency is important for accelerators, then Fig.2 presents the integrated RMS vibrations amplitude for tunnels of HERA (DESY) [15], TT2A (CERN) [12] and SLAC Linac [14], which differ from each other within an order of magnitude above 1 Hz. Dotted line represents a “rule of thumb” of \(RMS[m] = 20/f[Hz] \) which corresponds to \(S_x(f)[m^2/Hz] = 2 \times 10^{-16}/f^3 \). Below 1 Hz the amplitudes are about 0.3-1 \(\mu \)m due to remarkable phenomena of “7-second hum” waves produced by oceans – see a broad peak around 0.14 Hz in Fig.1 – with wavelength of about \(\lambda \simeq 30 \) km. The “hum” produces negligible effect on accelerators, because \(\lambda \) is much bigger than typical betatron wavelength.

Thorough investigations of spatial characteristics of the fast ground motion have shown that above 1-4 Hz the correlation significantly drops at dozens of meters of distance between points. Fig.3 shows the spectrum of coherence between vibrations of two quadrupoles distanced by 60m at the APS (ANL) [13]. The coherence falls with increasing distance \(L \) between observation points, and sometimes a 2-D random wave model of \(C(f) = |j_s(2\pi f L/v)| \) with \(v = 200-500 \) km/s fits well to the experimental data [14].

There are very few measurements at frequencies of several hundreds of Hz up to several kHz – a region of concern for the emittance growth in HCs. Measurements of the LEP beam motion [16] were found to be in satisfactory agreement with the estimates made from measured ground motion spectra [12]. Turbulent flow of liquid Helium – cooling media in superconducting magnets – can produce vibrations of the magnets as a whole or their vacuum chambers with “frozen” magnetic field. Fig.4 demonstrates the PSD of the SSC dipole cold mass vibrations with (line 1) and without (curve 2) LHe flow of 45 g/s [11]. The induced noise takes place at 700-1500 Hz and its rms amplitude is about 0.2
nm — twice the SSC tolerance.

3.2 Low frequencies

Long term drifts (e.g., thermal, due to quads motion, etc.) influence beam trajectory in accelerators only if they are uncorrelated from magnet to magnet.

Numerous data on uncorrelated slow ground motion support an idea of “space-time ground diffusion”. An empirical rule that describes the diffusion — so called “the ATL law” [8] — states the rms of relative displacement dX (in any direction) of two points located at a distance L grows with time interval T:

$$< dX^2 > = ATL T$$

where A is site dependent coefficient of the order of $10^{-5} \pm 1 \mu m^2/(s \cdot m)$. As long as the diffusion coefficient A is very small, the wandering presents only a tiny, but important contribution to the total ground motion. The PSD of ATL diffusion is equal to $S_{ATL}(f) = AL/(2\pi^2 f^3)$. The ground diffusion should cause corresponding COD diffusion in accelerators with rms value equal to [5]:

$$\langle \Delta x^2_{COD} \rangle = \frac{\beta ATC(\beta F + \beta D)}{8 F_0^2 \sin^2(\pi v)},$$ \hspace{1cm} (4)

where C is the accelerator circumference, F_0 is the local length of each quadrupole in FODO lattice, ν is the tune of the machine, β is the beta-function at the point of observation.

Fig.5 presents the PSD of the HERA—p vertical orbit (scaled for $\beta = 1$ m) which clearly demonstrates “diffusion-like” behavior of the COD at frequencies below 0.1 Hz — the dashed line is for $S_{COD}(f) = 8 \cdot 10^{-4}/f^3 [\mu m^2/Hz]$ which is in agreement with the ATL law with $A = 1.5 \cdot 10^{-5} \mu m^2/(s \cdot m)$. Peaks above 2 Hz are due to technological equipment. The squares at lower frequencies represent the Fourier spectra of proton orbit in 131 BPMs from different fills of the storage ring [17]. Solid line is for data from a low noise BPM [15]. The motion of quads was checked to be the only candidate that can explain these drifts. It was stressed in [17], that having completely different magnet lattice, the HERA electron ring orbit also performs diffusion with the constant of $A \approx (0.4 \pm 0.1) \cdot 10^{-5} \mu m^2/(s \cdot m)$, which is applicable up to 1-month-long time intervals.

Review of ground diffusion data (see V.Shiltsev in [19]) points that the diffusion coefficient A depends on tunnel depth and type of rock. The question of the limits of applicability of the ATL law is still open – available data cover T from minutes to dozen years, L from meters to dozens km.

4 CORRECTION

Depending on time scale of beam distortions, several ways of correction can be implemented at future accelerators. The first and the most known is mechanical alignment of elements. At large machines like LEP, which in recent years is realigned about once a year with about 150 μm rms dispersion with respect to a smooth goal curve (see M.Hublin, et. al, in [19]), it could take a significant time (about a month). The ESRF (Grenoble) is perhaps the most advanced aligning storage ring — a system of 288 hydrostatic levels (on each girder around 844-m circumference) together with sub-micron-step magnet movers automatically aligns the whole ring during 2 hours within 10μm error of vertical neighbor quads positioning (see D.Roux in [19]).

Another modern tool is a “beam-based alignment” that supposes an extensive use of BPM readings. In circular accelerators this method (also referred as “K-modulation”) is based on a fact that if the strength of a single quadrupole $K = G/l/Pc$ in the ring is changed on dK, the resulted difference in closed orbit is proportional to the original offset of
the beam in the quadrupole – see Fig.6. From the measured difference orbit the offset can be determined, yielding either the quad offset to eliminate or the offset between quadrupole axis and BPM adjacent to the quad for global correction. The method is widely used now at many accelerators, e.g., in HERA-e all of 148 quads were equipped with switches in order to vary the strength of magnets individually, that allows to align the ring within 0.05 mm error in less than 24 hours and, therefore, to increase maximum polarization (see M. Boge and R. Brinkmann in [19]).

In linear colliders three methods could be implemented depending on tolerances (detailed description can be found in [18]). In the simplest “1-to-1” correction, the correction kicks try to steer the beam to the centers of the BPM at the location of next focusing quadrupole. Thus, the BPMs alignment determines the trajectory. This method fits with the TESLA requirements. For LCS where emittance dilution due to dispersion or/wakefields is severe, more sophisticated algorithms named “Dispersion-Free (DF)” and “Wake-Free (WF)” corrections have been devised which look similar to K-modulation. They mimic change of the energy (or the charge) of the bunch by varying strengths of quads and attached correctors (all together in the DF, differentially for focusing and defocusing magnets in the WF) and use the BPM readings along the linac for extracting information about what dipole correction is necessary in each quad. Limitation of these methods is the BPM precision which could be in a micron range.

At the end, if no one of the beam-based methods works due to high frequency of vibrations, then mechanical stabilization with local feedback can be used. Experiments [20] show that 4-10 times reduction of 1-20 Hz vibrations is possible.

5 CONCLUSIONS

Certainly, sources of beam distortions other than considered above can be important and researchers worldwide thoroughly investigate them, as well as ways to eliminate their dangerous impacts. We see, that a lot of efforts to keep beam stability should be taken in Linear Colliders and in hadron super-colliders. Vast experimental and analytical studies have been done to the moment, resulting in reasonably optimistic look into the future.

6 REFERENCES