
PARALLEL MATRIX TRANSPOSE ALGORITHMS ON 
DISTRIBUTED MEMORY CONCURRENT COMPUTERS* 

Jaeyoung Choi 

Department of Computer Science 
University of Tennessee 

107 Ayres Hall 
Knoxville, TN 37996-1301 

Jack Dongarra 

Mathematical Sciences Section 
Engineering Physics and Mathematics Division 

Oak Ridge National Laboratory 
Oak Ridge, TN 37831-6367 

AND 
Department of Computer Science 

University of Tennessee 
107 Ayres Hall 

Knoxville, TN 37996- 1301 

I 

D. W. Walker 

Mathematical Sciences Section 
Engineering Physics and Mathematics Division 

Oak Ridge National Laboratory 
Oak Ridge, TN 37831-6367 

* This work was supported in part by DARPA and ARO under contract number DAAL03-91-C- 
0047, and in part by the Applied Mathematical Sciences Research Program, Office of Energy 
Research, U.S. Department of Energy under contract DE-AC05-840R21400 with the Martin 
Marietta Energy Systems, Inc. 

T 



Parallel Matrix Transpose Algorithms 
on Distributed- Memory Concurrent Computers 

Jaeyoung Choi’ , Jack J. DongarrL ’ *, David W. Walker2 

‘Mathematical Sciences Section 
Oak Ridge National Laboratory 

P.O. Box 2008, Bldg. 6012 
Oak Ridge, TN 37831-6367 

Department of Computer Science 
University of Tennessee at Knoxville 

107 Ayres Hall 
Knoxville, TN 37996-1301 

Abstract 

This paper describes parallel matrix transpose algo- 
rithms on distributed memory concurrent processors. 
W e  assume that the matrix is distributed over a P x Q 
processor template with a block scattered data distri- 
bution. P,  Q, and the block size can be arbitrary, so 
the algorithms have wide applicability. The algorithms 
make use of non-blocking, point-to-point communica- 
tion between processors. The use of nonblocking com- 
munication allows a processor to  overlap the messages 
that it sends t o  different processors, thereby avoiding 
unnecessa y synchronization. Combined with the ma- 
tr ix  multiplication routine, C = A . B, the aigorithms 
are used to  compute parallel multiplications of trans- 
posed matrices, C = AT .BT, an the PUMMA package 
[5]. Details of the parallel implementation of the al- 
gorithms aTe given, and resd t s  arc presented for  runs 
on the Intel Touchstone Delta computer. 

1 Introduction 

Matrix transposition is a fundamental matrix oper- 
ation of linear algebra and arises in many scientific and 
engineering applications. On a uniprocessor, an algo- 
rithm involving a transposed matrix may not actually 
require the matrix data to be transposed in physical 
memory. Instead, it may be accessed simply by ex- 
changing the row and column indices. However, in a 
distributed-memory multiprocessor environment, we 
cannot simply interchange the global row and column 
indices. Instead, the data must be physically moved 
from one processor to another. 

Transposition of a matrix is a redistribution of 
its elements. Many researchers have considered the 

problem for different architectures. In 1972, Eklundh 
[7] considered the problem of directly accessing rows 
or columns of a matrix when its size is larger than 
the available high-speed storage. O’Leary [lo] imple- 
mented an algorithm for transposing an iV x N matrix 
on a one-dimensional systolic array. Azari, Bojanczyk 
and Lee [l] developed an algorithm for transposing 
an M x N matrix on an N x N mesh-connected ar- 
ray processor, and Johnsson and Ho [9] presented an 
algorithm for a Boolean n-cube, or hypercube. 

Current advanced architecture computers possess 
hierarchical memories in which accesses to data in the 
upper levels of the memory hierarchy (registers, cache, 
and/or local memory) are faster than those in lower 
levels (shared or off-processor memory). To exploit 
the power of such machines, block-partitioned algo- 
rithms are preferred for dense linear algebra compu- 
tations, in which operations axe performed on subma- 
trices, rather than individual matrix elements. In dis- 
tributing matrix data over processors we therefore as- 
sume a block scattered decomposition [4,6]. The block 
scattered decomposition can reproduce the most com- 
mon data distributions used in dense linear algebra, 
as described briefly in the next section. 

In this paper, the parallel matrix transpose algo- 
rithms are presented based on the block scattered de- 
composition. The algorithms are implemented on the 
Intel Touchstone Delta computer. The communica- 
tion schemes of the algorithms are determined by the 
greatest common divisor (GCD) of the number of rows 
and columns ( P  and Q) of the processor template. If 
P and Q are relatively prime, the matrix transpose 
algorithm involves complete exchange communication. 
This is called all-to-all personalized communication, 
in which each of Np = P - Q processors is required to 
send distinct subblocks to each of the remaining Np - 1 



processors, and receive distinct subblocks from each of 
them. Bokhari and Berryman [2] have developed bi- 
nary exchange and quadrant exchange algorithms on 
a circuit switched mesh, where P and Q are powers 
of 2. The complete exchange communication in Gur 
transpose algorithms arises for any processor configu- 
ration, and is not limited to the case where P and Q 
are powers of 2. We implemented the complicated two- 
dimensional complete exchange communication prob- 
lem by generalizing the one-dimensional complete ex- 
change communication based on direct point-to-point 
communication. Details are discussed in Section 3.1. 

We have presented the Parallel Universal Matrix 
Multiplication Algorithms (PUMMA) in [5] for per- 
forming C * a op(A)  . op(B) + ,f3 C ,  where op(X)  = 
X or XT, based on the block scattered decompo- 
sition. One of the cases in the PUMMA package, 
C + @AT . BT + PC, is implemented in two steps 
(T + cr B . A; C -e TT + ,L? C ) .  The second step in- 
volves parallel matrix transposition. The performance 
of this algorithm for evaluating C = AT BT is com- 
pared with the algorithm for evaluating C = A ' B 
on the Intel Delta machine in Section 4. 

2 Design Issues 

The way in which an algorithm's data are dis- 
tributed over the processors of a concurrent computer 
has a major impact on the load balance and communi- 
cation characteristics of the concurrent algorithm, and 
hence largely determines its performance and scalabil- 
ity. The block scattered decomposition provides a sim- 
ple, yet general-purpose way of distributing a block- 
partitioned matrix on distributed memory concurrent 
computers. In the block scattered decomposition, de- 
scribed in detail in [4,6], an M x N matrix is parti- 
tioned into blocks of size T x s, and blocks separated 
by a fixed stride in the column and row directions are 
assigned to the same processor. If the stride in the 
column and row directions is P and Q blocks respec- 
tively, then we require that P . Q equal the number of 
processors, N p .  Thus, it is useful to imagine the pro- 
cessors arranged as a P x Q mesh, or template. The 
processor at position ( p ,  q )  (0 5 p < P ,  0 5 q < Q) in 
the template is assigned the blocks indexed by, 

( p + i - P ,  q + j - Q ) ,  (1) 
where i = 0, .  . . , [(Ma - p - l)/PJ, j = 0, .  . . , [(Na - 
p - 1)/QJ, and Mb x Nb is the size in blocks of the 
matrix (Ma = [ M / T ~ ,  Nb = [ N / s ] ) .  

Blocks are scattered in this way so that good load 
balance can be maintained in parallel algorithms, such 

0 1 2 3 4 5  0 1 2 . ? A f i  
0 0 
1 1 
2 2 
3 3 
4 4 
5 5 

(a) block distribution over template (b) LCM block distribution 
Figure 1: A matrix with 6 x 6 blocks is distributed over 
a 2 x 3 processor template. (a) Each shaded and un- 
shaded area represents different templates. The num- 
bered squares represent blocks of elements, and the 
number indicates at which location in the processor 
template the block is stored - all blocks labeled with 
the same number are stored in the same processor. 
The slanted numbers, on the left and on the top of 
the matrix, represent indices of row block and column 
block, respectively. (b) The matrix has 1 x 1 LCM 
blocks. Blocks belong to the same processor if the rel- 
ative locations of blocks are the same in each square 
LCM block. The definition of the LCM block is de- 
fined in the text. 

as LU factorization [3,6]. The nonscattered decompo- 
sition (or pure block distribution) is just a special case 
of the scattered decomposition in which the block size 
is given by T = [ M / P ]  and s = [N/Ql. A purely 
scattered decomposition (or two-dimensional wrapped 
distribution) is another special case in which the block 
size is given by r = s = 1. 

If P and Q are relatively prime, the matrix trans- 
pose algorithm involves a two-dimensional complete 
exchange communication, where each of Np proces- 
sors is required to send distinct subblocks to each of 
the remaining Np - 1 processors, and receive distinct 
subblocks from each of them. We implemented the 
complicated two-dimensional complete exchange algo- 
rithm by generalizing the one-dimensional complete 
exchange algorithm. 

3 Matrix Transpose Algorithms 

We assume that a matrix is distributed over a two- 
dimensional processor mesh, or template, so that in 
general each processor has several blocks of the matrix 
as shown in Figure 1 (a), where a matrix with 6 x 6 
blocks is distributed over a 2 x 3 template. Denot- 
ing the least common multiple of P and Q by LCM,  
we refer to a square of LCM x LCM blocks as an 
LCM block. Thus, the matrix may be viewed as a 
1 x 1 array of LCM blocks, as shown in Figure 1 (b). 



0 1 2 3 4 5  

0 

1 
0 
1 
2 transpohe 2 
3 3 

4 

5 

4 
5 

A 

(a) manix trampose from matrix point-of-view 

0 

2 

4 

1 

3 

5 

0 3 1 4 2 5  

~ 

A 
AT 

(b) matrix kmqose from processm point-of-view 

Figure 2: An example of matrix transpose for a block 
scattered decomposition, when P = 2, Q = 3, and 

= Nh = 6. 

The concept of the LCM block was introduced in [5], 
and is very useful for implementing algorithms that 
use a block scattered data distribution. Blocks belong 
to the same processor if their relative locations are 
the same in each square LCM block. An algorithm 
may be developed for the first LCM block, and then 
it can be directly applied to the other LCM blocks, 
which all have the same structure and the same data 
distribution as the first LCM block. That is, when 
an operation is executed on a block of the first LCM 
block, the same operation can be done simultaneously 
on other blocks, which have the same relative location 
in each LCM block. 

We now describe parallel matrix transpose algo- 
rithms. A matrix A, distributed over a P x Q pro- 
cessor template, has Ma x Nb blocks and each block 
consists of r x s elements, where r and s are arbitrary. 
Figure 2 (a) shows an example of a matrix transpose 
on a 2 x 3 template. If A is transposed, the trans- 
posed matrix AT is distributed over the same P x Q 
template, and it has Nh x Ma blocks and each block 
has s x r elements. The elements of each block remain 
in the same block, but may be in a different proces- 
sor, and each block is itself transposed. Figure 2 (b) 
shows the same example from the processor point-of- 
view. If P and Q are relatively prime, as shown in 
the figure, blocks in the first processor PO are scat- 
tered to all processors. As shown in Figure 3, which 
is the same example on a 3 x 3 square template, the 
blocks in each processor are not dispersed, but they 

0 1 2 3 4 5  

0 

1 
0 
1 
2 transpose 2 

3 3 
4 
5 

4 

5 A 
AT 

0 3 1 4 2 5  

(a) matrix transpose from manix point-of-view 

0 

3 

1 

4 

2 

5 A 

0 3 1 4 2 5  

transpose 

AT 
(b) matrix transpose from pmcesscx pointsf-view 

Figure 3: An example of matrix transpose for a block 
scattered decomposition, when P = 3, Q = 3, and 
Mb = Nh = 6. 

are moved as one entity to a different processor. As 
shown in Figure 3, which is the same example on a 3 x 3 
square template, the blocks in each processor are not 
dispersed, but they are moved as one entity to a dif- 
ferent processor. Parallel matrix transpose algorithms 
for the block scattered data distribution have several 
communication patterns determined by the greatest 
common divisor (GCD) of P and Q. 

3.1 P and Q : relatively prime 

We start with the simple case where P and Q are 
relatively prime, i. e. GCD = 1. In this case blocks 
in Po are scattered to all processors after being lo- 
cally transposed as shown in Figure 2 (b). This case 
involves the two-dimensional complete exchange com- 
munication. That is, every processor needs to com- 
municates with every other processor. The complete 
exchange problem is implemented by direct communi- 
cation between sender and receiver. 

Figure 4 shows the pseudocode 
from the processor point-of-view, where P(p,  q )  rep- 
resents PMOD(~,P),MOD(~,Q) in the processor template. 
Processor P(p ,q )  (0 5 p < P and 0 5 q < Q) starts 
to transpose blocks whose transposed blocks belong to 
itself. Then it deals with blocks whose transposition 
are in processors in the same column of the template 
( P ( p - i ,  q ) ,  0 5 i < P) .  The processor sends blocks to 
its top neighbor, P ( p -  1,  q) ,  and receives blocks from 
its bottom neighbor, P ( p  + 1, q) .  Before sending the 
blocks, it is necessary to copy the blocks to be sent 



DO J O , & -  1 
DO I = 0 ,  P - 1 

[ Copy all blocks of A required by 
P ( p  + I, Q - J )  to T I ]  
[ Send T1 to P ( p  + I ,  q - J )  ] 
[ Receive T2 from P ( p  - I ,  q + J )  3 
[ Copy T2 to C ] 

END DO 
END DO 

Figure 4: A parallel matrix transpose algorithm from 
the processor point-of-view, when P and Q are rela- 
tively prime. P(P,  Q) represents PMOD(~,P),MOD(~,Q). 
Processor Pp,q (0 5 p < P and 0 5 q < Q )  communi- 
cates with P(p + I, q - J) to send, and P(p - I ,  q + J )  
to receive based on point-to-point communication. 

into a contiguous message buffer. Next it sends blocks 
to the next top processor, P ( p  - 2, q ) ,  and receives 
blocks from the next bottom processor, P ( p  + 2 , q ) .  

After it completes its operations with the processors 
in the same column, it sends blocks to the processors 
to the left in the template ( P ( p  - i, q - 1), 0 5 i < P ) ,  
and receives blocks from the processors to the right 
(P(p+ i, q + 1)). All operations are completed in P x 
Q = LCM steps. 

We interpret the algorithm from the matrix point- 
of-view. In the first LCM block, the above algorithm 
performs the operation by transposing one (wrapped) 
diagonal blocks at one step. The first step of the algo- 
rithm in Figure 4 requires no explicit communication. 
It corresponds to an in-place transpose of the diagonal 
blocks of A (A( i ,  i ) )  (See Fig. 5(a)). Then every P di- 
agonal blocks of A (A(i,j) ,  MOD(j - i, P )  = 0 )  (See 
Fig. 5(b)) are transposed in the first outer loop (J = 0) 
of Figure 4. In the next outer loop (J = l), the next 
P diagonal blocks (A(i, j ) ,  MOD(j - i, P )  = 1 )  are 
transposed. In Figures 5 (c) and (d), PO (P(0,O)) 
sends blocks to P2 (P(O,2)), and receives from PI 
(P(O, l ) ) ,  where PO, PI and P2 are in the same row. 
Then PO sends blocks to 4 ( P ( l , 2 ) ) ,  and receives 
from P4 (P(1 ,  1)), and so on. The pseudocode for the 
algorithm from the matrix point-of-view is shown in 
Figure 6 .  Processors need to determine a diagonal 
block of A (A( i ,  j ) ,  MOD(j - i, L C M )  = K )  which 
they start to transpose in the outer J loop in order to 
communicate with other processors in the same row 
of the template. The three lines before the inner DO- 

Figure 5: Snapshots of matrix transposition when 
P = 2, Q = 3 and Ma = lvb = 6. The small slanted 
number in the upper left corner in each block repre- 
sents processor identification number. One wrapped 
block diagonal is transposed in each step. The darkly 
shaded area represents blocks to be shifted, and lightly 
shaded area stands for their transpositions. 

loop compute the value of K .  

3.2 P and Q : not relatively prime 

In the previous section, we have investigated the 
case when P and Q are relatively prime, which involves 
complete exchange communication. In this section we 
consider the case of GCD > 1. The former algorithm 
is a special case (GCD = 1 )  of this algorithm. 

Figure 7 shows an example of transposing a 12 x 
12 matrix on a 4 x 6 template from the processor 
point-of-view. Each processor has its own 3 x 2 
(= L C M / P  x LCMIQ) array of blocks. The pro- 
cessors can transpose the matrix with 6 (= L C M / P .  



DO J = 0 , Q -  1 
I< = J 
WHILE (MOD(K, P )  # 0) 

DO K = MOD(K + Q, LCM) END DO 

[ Copy every ( K  : Na : LCM)-th wrapped 
diagonal blocks in Pp,q to T1 ] 
[ Move T1 from Pp,q to P(p  + I, q - J )  ] 
[ Copy the received T1 to C ] 
K = MOD(K + Q ,  L C M )  

D O I = O , P - 1  

END DO 
END DO 

Figure 6: A parallel matrix transpose algorithm from 
the matrix point-of-view, when P and Q are rela- 
tively prime. One diagonal block is transposed at one 
step. The ‘While’ statement should be executed until 
MOD(K,P) becomes 0. (start : limit : intv) repre- 
sentsvalues of 2, where 2 = start+intv+y, y = 0 , 1 , .  . ., 
and 2 can’t exceed limit. 

LCM/Q = LCM/GCD) communications steps. A 
processor P(p,  q )  starts to communicate with P(@, @), 
where f i  and @ are computed from p and 4 (details 
are explained later of this section). Once P(@,@) is 
determined, it communicates with other processors, 
whose vertical and horizontal intervals are GCD from 
P(@,@). The two loops of the algorithm in Figure 4 
are changed from Q and P to LCMIP and LCMIQ. 
The pseudocode of the algorithm is shown in Figure 8. 

Figure 9 shows two snapshots of the same exam- 
ple, from the matrix point-of-view, to transpose the 
zeroth and the first diagonal blocks of A (A(i,j) ,  
MOD(j - i ,  LCM)  = 0 and 1, respectively.) The pro- 

0 6 1 7 2 8 3 9 4 1 0 5  11 0 6 1 7  .? 8 3 9 4 10 5 1 1  
0 0 
4 4 
8 8 
1 1 
5 5 
9 9 
2 
6 6 
10 10 
3 3 
7 7 
11 11 

- 

Figure 7: A matrix transpose example on a 4 x 6 tem- 
plate. 

PARDO K = 1, GCD 
g = MOD(p - p ,  GCD) 
jj = MOD(p + 9, P);  @ = MOD(q - 9 ,  &) 
D O J = O , L C M / P - l  

DO I = 0,  LCM/’Q - 1 
[ Copy all blocks of A to T1 
required by P(~+I~GcD. .+J~GcD)  I 
[ Send T1 to P( ,+I~GCD,F-J~GCD)  I 
[ Receive T 2  fl’om P(fl--lxGCD,~+JxGCD)] 
[ Copy T 2  to C 3 

END DO 

END PARDO 
END DO 

Figure 8: A modified matrix transpose algorithm 
from the processor point-of-view. Operations of GCD 
groups of processors are overlapped. 

(a) LCM Blcok 

Figure 9: A snapshot of matrix transposition for trans- 
posing the first wrapped block diagonals, when P = 4, 
C) = 6 and n/ra = Nb = 12. In this example, transpos- 
ing of even numbered wrapped block diagonals can be 
overlapped with that of odd numbered. 

A A= 

Figure 10: Matrix transposition when P = Q = 
GCD = 3. Processors transpose 3 (= GCD) diag- 
onal blocks at one step, so that the transposition is 
done in one step. 



PARDO K = 1, GCD 
g = MOD(q - p, GCD) 
p" = MOD(p + g ,  P ) ;  i =  MOD(q - 9 ,  Q) 
D O J = O , L C M / P - l  

K = J  
WHILE (MOD(K - 9 ,  P )  # 0 )  

DO K = MOD(K + Q ,  LCM) END DO 

[ Copy every ( K  : Nb : LCM)-th diagonal 
blocks in P(p ,  q )  to T1 ] 
[ Move T1 from P(p ,q )  to 

[ Copy the received T1 to C ] 
K = MOD(K + Q, L C M )  

DO I = 0, LCM/Q - 1 

P @ + I x G C D , q ' - J x G C D ) ]  

END DO 

END PARDO 
END DO 

Figure 11: A modified matrix transpose algorithm 
from matrix point-of-view. GCD diagonal blocks are 
transposed simultaneously. 

cessors which have the blocks to send out are shaded at 
the bottom. In the example, only P.Q / GCD proces- 
sors are involved in block communication in each step. 
Processors are split into GCD groups of processors, 
and a processor P(p, q )  belongs to a group g if it has 
the same value of g = MOD(q - p, GCD). Processors 
in a group g send and receive their blocks to other pro- 
cessors in another group g' = MOD(GCD - g, GCD). 
The operations of each group can be overlapped. 

The problem is interpreted from the matrix point- 
of-view. In general, for transposing the k-th diagonal 
block of A (A(i,j) ,  MOD(j - i ,  L C M )  = k), a group 
of processors g k  = MOD(L,GCD) send the blocks to 
another group g i  = MOD(GCD - gk,GCD). Since 
the operations are overlapped over different groups of 
processors, processors transpose GCD diagonal blocks 
simultaneously. So, the matrix can be transposed with 
LCMIGCD steps. For the extreme case of P = Q = 
GCD = 3 as shown in Figure 10, processors transpose 
3 (= GCD) diagonal blocks at one step. That is, 
the transposition is done in one step. A processor 
P(p,  q )  exchanges data with processor P ( q , p ) .  The 
pseudocode of the algorithm from the matrix point- 
of-view is shown in Figure 11. The code includes the 
case of GCD = 1. 

96 processors 64 processors 48 processors 
P x  Q Time P x  Q Time P x Q Time 
6 x 16 0.404 4 x 16 0.596 4 x 12 0.652 
8 x 12 0.330 8 x 8 0.572 6 x 8 0.546 

1 2 x  8 0.307 16 x 4 0.475 8 x 6 0.527 
1 6 x 6  0.381 1 2 x  4 0.547 

Table 1: Dependence of performance on template con- 
figuration for fixed number of processors ( M  = N = 
2400, Unit:second). 

4 Results 

In this section we present performance results of 
the parallel matrix transpose algorithms on the Intel 
Touchstone Delta computer. The performance of the 
transpose algorithms cannot be represented in float- 
ing point operations per second (flops), since there is 
no multiplications or additions in the transpose al- 
gorithms. The algorithms are combined with a ma- 
trix multiplication routine in the PU?,ZMA to com- 
pute C = aAT -BT + p  C in two steps (T -i= cr B .A;  
C TT + P C ) .  We assume that cr = 1 and /3 = 0 
in our test. The performance of AT + BT is compared 
with that of A .  B. 

Matrix elements are generated uniformly on the 
interval [-1,1] in double precision. Conversions be- 
tween measured runtimes and performance in gi- 
gaflops (Gflops) are made assuming an operation 
count of 2MNL for the multiplication of a 144 x L by 
a L x N matrix. In our test examples, all processors 
have the same number of blocks so there is no load im- 
balance. The algorithms were implemented with force 
type communication [SI. 

First, we considered how, for a fixed number of pro- 
cessors Np = P x Q ,  performance depends on the 
configuration of the processor template. Some typi- 
cal results are presented in Table 1 for a fixed number 
of processors. In the test, the block size is fixed at 
5 x 5 elements. It may be seen that the template con- 
figuration does have some effect on performance. The 
performance difference is between 19 and 24 %. For 
rectangular templates with different aspect ratios, the 
algorithm prefers those with small Q to those with 
small P.  On the Delta, communication speed along 
vertical links seems faster than along horizontal links. 

Figures 12 and 13 show the performance of the rou- 
tines on 15 x 16 (GCD = 1, i.e., P and Q are rela- 
tively prime), and 16 x 16 ( P  = Q = GCD = 16) 
templates, respectively. In all cases the block size is 



6.0 - 

3.0 - 
2.0 - 
1.0 - 
0.0 I I I I I 1 L 

0 1200 2400 3600 100 m 7m 
Matrix Size, M 

Figure 12: Performance comparison of A . B and 
AT . BT on 15 x 16 template. ( P  = 15,Q = 16, 
and GCD = 1). C + AT . BT is implemented in two 
steps, T + B . A, and then C + TT. 

t 1.0 - 
0.0 

' 
I 

I I I I I 
0 1600 3200 4800 6400 8ooo 

Matrix size, M 

Figure 13: Performance comparison of A . B and AT . 
BT on 16 x 16 template. ( P  = Q = GCD = 16). 

fixed at 5 x 5 elements. The solid and the dashed lines 
show the performance of AT . BT and A . B, respec- 
tively. The difference of the two lines shows the loss 
of performance due to matrix transposition. 

The transposed multiplication routine shows good 
performance relative to matrix multiplication. The 
loss of performance due to the matrix transpose rou- 
tine is about 2 or 3 %. The transpose routine has 
excellent performance if P and Q are relatively prime. 
In other cases (GCD 2 2), network congestion may 
degrade the performance of the routine. 

Table 2 shows how the block size affects the perfor- 
mance of the algorithms. It includes three cases of the 
block size, two extreme cases - the smallest and largest 

P x Q Matrix Size Block Size Time 
1 x 1 1.280 

1 2 x  16 4800 x4800 5 x 5 0.893 
100 x 100 0.882 
1 x 1 1.484 

1 4 x  16 5600 x 5600 5 x 5 1.193 
50 x 50 1.161 
1 x 1 1.740 

15 x 16 6000x 6000 5 x 5 1.437 
25 x 25 1.426 
1 x 1 1.967 

16 x 16 6400x 6400 5 x 5 1.967 
400 x 400 1.967 

Table 2: Dependence of performance on block size. 

P x Q Matrix Size A . B (%) AT . BT (%) 
1 x 1 500 x 500 36.70(100.0) 35.04(100.0) 

12 x 16 6720 x 6720 32.09 (87.4) 31.64 (90.3) 
14 x 16 6720 x 6720 32.52 (88.6) 32.11 (91.6) 
15 x 16 7200 x 7200 32.78 (89.3) 32.43 (92.6) 
16 x 16 8000 x 8000 31.22 (85.1) 30.38 (86.7) 

Table 3: Performance per node in Mflops. Block 
size is fixed to 5 x 5 elements. 1 x 1 template gives 
performance of assembly-coded matrix multiplication. 
Numbers in parentheses represent efficiency compared 
with the performance on 1 processor. 

possible block sizes - and 5 x 5 block of elements. if 
P = Q, processors directly copy all blocks at once, so 
block size does not affect the performance. For the 
case of the smallest block size (1 x 1 element) when 
P # &, processors make a copy element by element, 
so it takes a little more time to make a copy. The 
routines with the smallest block sizes are slower than 
those with the largest possible block sizes by between 
15% and 31%. This difference is negligible, compared 
with the total elapsed time of the matrix multiplica- 
tion. 

Performance per node is shown in Table 3. The 1 x 1 
template gives the performance of the assembly-coded 
level 3 BLAS matrix multiplication routine for the two 
cases A .  B and AT - BT. Processors have about 85% 
efficiency for A.B, and 87% for AT.BT if P = Q = 16. 
The routines perform better on templates for which 
P # Q. Processors achieve about 89%, and 93% of 
efficiency for each case if P and Q are relatively prime. 



* 

5 Conclusions and Remarks 

We have presented parallel matrix transpose algo- 
rithms based on the block scattered decomposition. 
The algorithms have good performmce for arbitrary 
processor configurations on the Intel Delta computer. 

If P and Q are relatively prime, the transpose rou- 
tine involves complete exchange communication on a 
twedimensional template. We have approached this 
complicated problem with a direct point-to-point com- 
munication scheme (see Section 2). When P and Q are 
not relatively prime (GCD > l), the processors’ op- 
erations are overlapped over different groups, so that 
only LCMIGCD communications are required. 

In our Fortran implementation, we assume that the 
first dimension of the matrix may be different from 
the number of rows of the matrix in a processor. Even 
when P = Q, the processor needs to copy blocks of A 
to a communication buffer before sending, and copy 
the received buffer to blocks of C after receiving. 

The parallel matrix transpose algorithms have been 
combined with matrix multiplication routines. The 
integrated routines comprise a general-purpose ma- 
trix multiplication package, called PUMMA [5], for 
MIMD message-passing computers. The package has 
good performance for a wide range of decomposition 
parameters, that is, its performance depends weakly 
on processor configuration and block size. 

The PUMMA package is currently available only for 
double precision real data, but will be implemented in 
the near future for other data types, i.e., single preci- 
sion real and complex, and double precision complex. 
To obtain a copy of the software and a description of 
how to use it, send the message “send pumma from 
misc” to netlibQorn1. gov. 

Acknowledgments 

The authors would like to thank Eduardo 
D’Azevedo at ORNL for his helpful suggestions to im- 
prove the quality of the paper. This research was per- 
formed in part using the Intel Touchstone Delta Sys- 
tem operated by the California Institute of Technology 
on behalf of the Concurrent Supercomputing Consor- 
tium. Access to this facility was provided through the 
Center for Research on Parallel Computing. 

References 

[l] N. G. Azari, A. W. Bojanczyk, and S.-Y. Lee, Syn- 
chronous and Asynchronous Algorithms for Matrix 
Transposition on MCAP, SPIE Vol. 975, Advanced 

Algorithms and Architecture for Signal Processing 
111, pp.277-288, 1988. 

[a] S. H. Bokhari and H. Berryman, Complete Ex- 
ch,ange on a Circuit Switched Mesh, Proceedings 
of the 1992 Scalable High Performance Comput- 
ing Conference, IEEE Press, pp.300-306, 1992. 

[3] J. Choi, J. J .  Dongarra, R. Pozo, and D. W. 
Walker, ScaLAPACK: A Scalable Linear Alge- 
bra Library for Distributed Memory Concurrent 
Computers, Proceedings of Fourth Symposium 
on the Frontiers of Massively Parallel Computa- 
tion (McLean, Virginia), IEEE Computer Society 
Press, Los Alamitos, California, October 19-21, 
pp.120-127, 1992. 

[4] J. Choi, J. J. Dongarra, and D. W. Walker, 
The Design of Scalable Soflware Libraries for  Dis- 
tributed Memory Concurrent Computers, Proceed- 
ings of Environment and Tools for Parallel Scien- 
tific Computing Workshop, (Saint Hilaire du Tou- 
vet, France), Elsevier Science Publishers, Septem- 
ber 7-8, pp.3-15, 1992. 

[5] J. Choi, J. J. Dongarra, and D. W. Walker, 
PUMMA : Parallel Universal Matrix Multiplica- 
tion Algorithms on Distributed Memory Concur- 
rent Computers, Technical Report TM-12252, Oak 
Ridge National Laboratory, Mathematical Sci- 
ences Section, August, 1993. 

[6] J. J.  Dongarra, R. van de Geijn, and D. Walker, 
A look at  Scalable Linear Algebra Libraries, Pro- 
ceedings of the 1992 Scalable High Performance 
Computing Conference, IEEE Press, pp.372-379: 
1992. 

[7] J. 0. Eklundh, A Fast Computer Method for Ma- 
trzz Transposing, IEEE Transactions on Comput- 
ers, Volume 21, pp.801-803, 1972. 

[8] Intel Corporation, Touchstone Delta Fortran Calls 
Reference Manual, April, 1991. 

191 S. L. Johnsson and C.-T. Ho, Algorithms f o r  
Matrix Transposition on Boolean iV-cube Config- 
ured Ensemble Architecture, SIAM J .  Matrix Anal. 
Appl, Volume 9, No 3, pp.419-454, July, 1988. 

[lo] D. P. O’Leary, Systolic Arrays for Matrix Trans- 
pose and Other Reorderings, IEEE Transactions 
on Computers, Volume 36, pp.117-122, January, 
1987. 



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employes, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or use- 
fulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any spe- 
cific commercial product, process, or service by trade name, trademark, manufac- 
turer, or otherwise does not necessarily constitute or imply its endorsement, recom- 
mendktion. or favoring by the United States Government or any agency thereof. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof. 


