THE EFFECT OF THERMAL AGING ON THE THERMAL CONDUCTIVITY OF PLASMA SPRAYED AND EB-PVD THERMAL BARRIER COATINGS

Ralph B. Dinwiddie, Stephen C. Beecher and Wallace D. Porter
High Temperature Materials Laboratory
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6064

Ben A. Nagaraj
G.E. Aircraft Engines
Mail Drop H85
Cincinnati, OH 45215

ABSTRACT
Thermal barrier coatings (TBCs) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBCs is of primary importance. Electron beam-physical vapor deposition (EB-PVD) and air plasma spraying (APS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The density of the APS coatings was controlled by varying the spray parameters. The low density APS yttria-partially stabilized zirconia (yttria-PSZ) coatings yielded a thermal conductivity that is lower than both the high density APS coatings and the EB-PVD coatings. The thermal aging of both fully and partially stabilized zirconia are compared. The thermal conductivity of the coatings permanently increases upon exposure to high temperatures. These increases are attributed to microstructural changes within the coatings. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the EB-PVD coatings are less susceptible to thermal aging effects, results suggest that they typically have a higher thermal conductivity than APS coatings before thermal aging. The increases in thermal conductivity due to thermal aging for plasma sprayed partially stabilized zirconia have been found to be less than for plasma sprayed fully stabilized zirconia coatings.

NOMENCLATURE
APS = atmospheric plasma spray
\( \alpha = \) thermal diffusivity, \( \text{cm}^2/\text{s} \)
\( \text{Cp} = \) specific heat, J/kg K
EB-PVD = electron beam-physical vapor deposition
FSZ = fully stabilized zirconia
HTML = High Temperature Materials Laboratory
K = thermal conductivity after heat treatment, W/m K
\( K_0 = \) as-fabricated thermal conductivity, W/m K
L-M = Larson-Miller parameter as given in Eq. 2 below
ORNL = Oak Ridge National Laboratory
PSZ = partially stabilized zirconia
\( \rho = \) bulk density, g/cm\(^3\)
T = absolute temperature, Kelvin
TBC = thermal barrier coating

INTRODUCTION
The drive for increased gas turbine engine thrust and fuel efficiency has resulted in a continuous increase in hot section temperatures. Several generations of superalloys and cooling schemes have been developed over the past 20 years to make these increases in turbine inlet temperatures possible. However, the limits of stress rupture, surface protection, and melting point make these improvements increasingly difficult. Thermal barrier coatings (TBCs) can be used to increase lives of hot section components. Alternatively, TBCs can be used to increase the engine efficiency by increasing the operating temperatures or by reducing the amount of cooling air to maintain the same alloy temperatures. Current turbine airfoil cooling technology can reduce the average metal temperature by 111-167°C (200-300°F) with a 250 micrometer (10 mil) thick TBC (Meier, and Gupta, 1992). Using the same thickness of TBC, the temperature difference across the TBC can be increased or decreased by varying the amount of cooling air passing through the internal passages of airfoils. For the same cooling design of the airfoil, the temperature difference across the TBC
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
is directly proportional to the thermal conductivity of the TBC (all other parameters being equal).

TBCs have been used extensively since the mid 1970s for life extension of combustor and afterburner components. Plasma sprayed zirconia with approximately 7 weight % yttria for partial stabilization of the tetragonal phase was determined to be the most successful approach for these applications. The combination of very low thermal conductivity, high melting point, chemical inertness (Wortman, B.A.Nagaraj, 1989), and a relatively high coefficient of thermal expansion has made zirconia an ideal material for a TBC.

Two types of thermal barrier coatings have been developed for aircraft engine use: plasma spray and EB-PVD. Numerous versions of plasma spray TBCs have been used successfully on a wide range of components. The initial applications were in the combustor and afterburner where atmospheric plasma spray (APS) bond coats of NiCrAlY with a porous 7% yttria-PSZ top coat were successful. In the late 1980s, plasma spray TBCs were introduced to stationary nozzle components in the turbine. Here, higher temperatures forced the use of low pressure plasma spray MCrAlY bond coats for improved oxidation protection and longer life. Also in the late 1980s, EB-PVD TBCs were developed to the point where production of both turbine blades and vanes was practical.

In the plasma spray coating process (see Fig. 1), molten or semi-molten particles deposit as splats. In the EB-PVD coating process (see Fig. 2), gaseous molecules of yttria and zirconia deposit directly on the substrate (opposite of sublimation). The EB-PVD coatings typically have a columnar microstructure, with continuous vertical porosity between the columns, as shown in Fig. 3. In addition, EB-PVD TBCs also have micropores within the columns corresponding to each rotation of the specimen (or part) over the pool. Figure 4 shows a typical plasma sprayed coating which has more horizontal porosity along splat lines. The amount and morphology of the porosity influences the thermal insulation provided by the TBC (Eaton et al., 1994).
Generally, the greater the amount of porosity in the TBC, the lower its thermal conductivity (Taylor, 1992). The level of porosity can be controlled by plasma spray process parameters. Typical parameters affecting the porosity are the powder particle size and the spray distance. The smaller the particle size, and the shorter the spray distance, the denser the microstructure. Early work had shown that the thermal conductivity of a typical EB-PVD TBC is somewhat greater than that of plasma sprayed TBCs (Nagaraj, 1988). This was attributed to the greater horizontal porosity in the plasma sprayed coatings. Within the plasma sprayed TBCs, a denser coating (typically used on thicker coatings for shroud or combustor applications) has a higher thermal conductivity than a porous coating (typically used on thinner coatings for airfoil applications). Using the measured thermal conductivity, the temperature reduction was estimated to be 38-66°C (100-150°F) for a 127 micrometer (5 mil.) thick EB-PVD TBC on the stage 1 high pressure turbine blade of a high by-pass engine. The measured temperature reduction (using the standard gamma prime volume percent in the alloy) in a factory engine test was in rough agreement with the calculated value.

**EXPERIMENTAL TECHNIQUE**

Determining thermal conductivity from diffusivity data is preferred over direct steady-state thermal conductivity measurements at high temperatures. This is particularly true for low conductivity materials and when only small volumes of material are available. Such is the case with thermal barrier coatings. Thermal conductivity values were calculated from the relationship \( k = \alpha \rho C_p \), where \( k \) is the thermal conductivity, \( \alpha \) is the thermal diffusivity, \( \rho \) is the bulk density, and \( C_p \) is the specific heat at constant pressure. Specific heat measurements were made by Differential Scanning Calorimeter (DSC).

Thermal diffusivity measurements were made at room temperature in air using the xenon flash diffusivity system located at the High Temperature Materials Laboratory (HTML) at Oak Ridge National Laboratory (ORNL). High temperature measurements were made in vacuum (<10⁻⁵ Torr) using the laser flash thermal diffusivity system also located at the HTML at ORNL (see Fig. 5). The laser is a 50 Joule, neodymium/glass laser with a wavelength of 1.06 μm and a pulse width of 0.6 ms. The laser is operated at a low power to limit the temperature rise of the rear surface of the test specimen to less than 3°C. Both the room temperature and high temperature systems use an InSb infrared detector to monitor the relative temperature rise of the rear surface of the test specimen. The detector output is recorded as a function of time by an analog-to-digital converter and computer. The data for free standing coatings are analyzed using the Koski (1981) parameter estimation algorithm, Clark and Taylor (1975) heat loss corrections and the Heckman (1973) finite pulse width correction. The free standing EB-PVD specimens are very fragile since they are typically 127-203 micrometers (5-8 mil.) thick. Thus, most of the EB-PVD specimens are measured on a 500 micrometer (20 mil.) thick nickel foil using the 2-layer data analysis techniques of Lee and Taylor (1974).
RESULTS AND DISCUSSION

The specific heats of PVD and plasma sprayed TBCs were found (see Fig. 6) to be in excellent agreement with calculated values obtained by taking the mass weighted average of literature values for ZrO$_2$ (Coughlin and King, 1950) and Y$_2$O$_3$ (Pankratz et al., 1962). The curve in Fig. 6 was generated from a non-linear least squares fit of the Equation

$$\frac{1}{C_p} = \frac{A_1 T}{T^{A_2} + A_3} + \frac{A_4}{T^{A_4}}$$  \hspace{1cm} (1)

$T$ is the absolute temperature in Kelvin, $C_p$ is the specific heat in units of J/Kg K, and $A_1$, $A_2$, $A_3$, and $A_4$ are fitting parameters. These values are: $A_1$=0.00345, $A_2$=-0.1088, $A_3$=2727.03, and $A_4$=2.7832.

Fig. 6. Specific Heat of Yttria-PSZ.

Both high and low density yttria-PSZ coatings were manufactured using the APS deposition technique. The density of a coating can be controlled by varying the spray parameters such as spray distance, powder size, dwell time, etc. The thermal conductivity of these APS coatings were measured as a function of temperature and compared to the thermal conductivity of yttria-PSZ coatings made by the EB-PVD technique. The results are shown in Fig. 7. The thermal conductivity of 97% dense yttria-PSZ is shown for comparison (Mirkovich, 1976). The thermal conductivity of the EB-PVD coating is significantly higher than the APS coatings. This difference is not due solely to differences in density since the density of the EB-PVD specimen (5.1 g/cm$^3$) is comparable to that of the high density APS specimen (5.3 g/cm$^3$). The density of fully dense yttria-PSZ is 6.05 g/cm$^3$ (Brandt, et al., 1986). The fact that the high density APS coating has a lower thermal conductivity than the EB-PVD coating is primarily due to the morphology of the porosity. The porosity at the splat boundaries is oriented with its major axis perpendicular to the heat flow and thus is a much better barrier to the heat flow than spherical pores. Conversely, the porosity in the EB-PVD coating is oriented with its major axis parallel to the heat flow and thus has relatively little effect on the heat flow. Comparing the APS coatings we see that decreasing the density from 5.3 g/cm$^3$ down to 4.7 g/cm$^3$ has a significant effect on lowering the thermal conductivity. This difference is largest at room temperature, but is still approximately 25% at 1000°C.

Fig. 7. The Effect of Deposition Technique on the Thermal Conductivity of Yttria-PSZ.

Five low density yttria-PSZ coatings were manufactured to study the effect of high temperature heat treatments on the room temperature thermal conductivity. One specimen remained untreated as a control while the other four specimens were isothermally heat treated for 1000 hours each at temperatures in the range 871°C to 1371°C (1600°F to 2500°F). The thermal conductivity was determined for each specimen at 20°C in air. The results are shown in Fig. 8. The 5% difference between the normalized thermal conductivity of the specimen heat treated at 871°C and the untreated specimen is within the experimental error of the measurement. However, there is a large increase in the thermal conductivity of the specimen heat treated at 1038°C (1900°F). The thermal conductivity continues to increase as the heat treatment temperature increases.
This irreversible increase in the thermal conductivity of plasma sprayed structures has been previously reported for yttria fully stabilized zirconia (Wilkes and Lagedrost, 1973, and Eaton et al., 1994), yttria-PSZ (Taylor, 1992), as well as zirconia stabilized with other oxides, such as CaO (Wilkes and Lagedrost, 1973, and Brandt, 1981), and CeO₂ (Brandon and Taylor, 1989). This effect has also been reported for plasma sprayed Al₂O₃, yttria-stabilized HfO₂, and Mo (Wilkes and Lagedrost, 1973). The increase in thermal conductivity is due to sintering of the splat structure of the coating. As the coating begins to sinter, necking is observed between the splats, enhancing the heat flow from splat to splat. Finally, the morphology of the porosity changes from plate-like at the splat boundaries to chains of small spherical pores within a continuous structure (Eaton et al., 1994). During this sintering process the overall bulk density of the coating changes very little. However, the morphology changes in the porosity have a significant effect in increasing the heat flow within the coating and hence its thermal conductivity.

Figure 9 illustrates the effect of heat treatment time on the thermal conductivity of yttria-PSZ manufactured using the EB-PVD process. The coatings were deposited on nickel foil without a bondcoat. Specimens were isothermally heat treated, in an inert gas, at various times from 1 hour to 70 hours at 1038°C (1900°F). One specimen was left untreated as a control. The thermal conductivity was determined at 20°C using two-layer analysis as described by Lee and Taylor (1974). Since this type of analysis requires knowledge of the thickness, density, specific heat, and thermal diffusivity of the substrate as well as of the coating, the absolute accuracy is expected to be lower than in the case of free standing coatings used in the other measurements described in this paper. However, the relative changes in thermal conductivity are expected to be valid since only the thermal conductivity of the coating is changing between specimens. Figure 9 shows that the thermal conductivity increases with increasing heat treatment time. However, the rate of this change decreases with time. Nearly half of the total observed increase occurs in the first 7 hours (0.1 of the total heat treatment time). The thermal conductivity of the specimen heat treated for 70 hours is approximately 10% greater than the untreated specimen.

Fig. 8. The Effect of Heat Treatment Temperature on the Room Temperature Thermal Conductivity of APS Yttria-PSZ.

Fig. 9. The Effect of Heat Treatment Time at 1038°C on the Room Temperature Thermal Conductivity of EB-PVD Yttria-PSZ.
Fig. 10. The Fractional Increase in Room Temperature Thermal Conductivity of EB-PVD Deposited Yttria-PSZ as a Function of the Number of Cycles from 20°C to 1135°C.

There is a general increase in the normalized thermal conductivity with the number of cycles up to a maximum observed increase of about 23%.

We can use the Larson-Miller parameter approach described by Eaton et al. (1994) to compare the thermal conductivity data of coatings heat treated at different times and temperatures. The Larson-Miller parameter combines both the heat treatment time (seconds) and temperature (Kelvin) in such a way as to result in a linear relationship when plotted against the natural log of the normalized thermal conductivity. The Larson-Miller parameter, L-M, is calculated from Eq. 2:

$$LM = T[\ln(t) + 80]$$  

where T is the absolute temperature in Kelvin, and t is the time, in seconds, at temperature. The slope of the resulting lines represents the susceptibility of a coating to thermal aging effects. The greater the slope, the greater the increase in thermal conductivity for a given set of heat treatment parameters. Figure 11 shows the Larson-Miller plot for APS ytrria-PSZ and EB-PVD ytrria-PSZ. Previous results for APS ytrria-FSZ (porosity range 6.7 to 32%) are also shown for comparison (Eaton et al., 1994). This figure shows that the partially stabilized coatings are less susceptible to thermal aging compared to the fully stabilized coatings. The ytrria fully stabilized zirconia has a much lower thermal conductivity than partially stabilized zirconia (Brandt et al., 1986), but this conductivity increases faster than PSZ above 1000°C. The reason why FSZ APS coatings would behave differently from PSZ APS coatings is currently under study.

CONCLUSIONS

The effect of high temperature isothermal heat treatments on partially ytrria stabilized zirconia TBCs deposited by both APS and EB-PVD techniques have been studied. These results have been compared with previous results for fully ytrria stabilized zirconia. Low density APS ytrria-PSZ coatings have a lower thermal conductivity than high density APS ytrria-PSZ coatings. After thermal aging ($T > 1000 \, ^\circ C$), the thermal conductivity of APS coatings increased substantially. However, APS ytrria-FSZ exhibits larger increases in thermal conductivity due to thermal aging than APS ytrria-PSZ. EB-PVD PSZ coatings possess a higher thermal conductivity than APS coatings, before heat treatments. However, EB-PVD ytrria-PSZ coatings are less susceptible to the effects of thermal aging than either APS ytrria-PSZ or APS ytrria-FSZ. Generally, for ytrria stabilized zirconia, the lower the as-fabricated thermal conductivity, the more susceptible that coating is to increases in thermal conductivity due to thermal aging above 1000°C. If these coatings reach a temperature above 1000°C during operation, they will begin to lose some of their effectiveness as a thermal barrier.
ACKNOWLEDGMENTS

The authors wish to thank Chad S. Moore for making many of the thermal diffusivity measurements at HTML and Karren L. More, of ORNL, for the SEM micrographs. The authors wish to thank W. Nelson, A. Maricocchi, R. Zimmerman, and M. Schmidt (all of General Electric) for their help with the preparation and thermal exposure of the specimens. Research sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, as part of the High Temperature Materials Laboratory User and Fellowship Programs, under contract DE-AC05-96OR22464 managed by Lockheed Martin Energy Research Corporation.

REFERENCES


