Stability of Strange Quark Stars with Nuclear Crusts against Radial Oscillations*

Ch. Kettner, F. Weber† M. K. Weigel

Institute for Theoretical Physics
Ludwig-Maximilians University of Munich
Theresienstrasse 37/III, W-80333 Munich, F. R. Germany

and

N. K. Glendenning

Nuclear Science Division
Lawrence Berkeley Laboratory, MS: 70A-3307
University of California
Berkeley, California 94720, U.S.A.

December 5, 1994

Presented at the International Symposium on Strangeness and Quark Matter September 1–5, 1994, Crete, Greece To be published by World Scientific

*This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy under Contract DE-AC03-76SF00098.
†Also at Nuclear Science Division, Lawrence Berkeley Laboratory, MS: 70A-3307, University of California, Berkeley, California 94720, U.S.A.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
STABILITY OF STRANGE QUARK STARS WITH NUCLEAR CRUSTS AGAINST RADIAL OSCILLATIONS

CHRISTIANE KETTNER, FRIDOLIN WEBER, MANFRED K. WEIGEL
Institute for Theoretical Physics, University of Munich
Theresienstr. 37/III, 80333 Munich, Germany

and

NORMAN K. GLENDENNING
Nuclear Science Division, Lawrence Berkeley Laboratory, MS:70A-3307
Berkeley, CA 94720, U.S.A.

ABSTRACT

This paper investigates the stability of the complete sequence of strange-matter stars with nuclear crusts against radial pulsations (acoustical modes). It is found that a broad class of white dwarf-like strange stars is stable against such pulsations. The same holds for the much denser strange stars, which are the strange counterparts of neutron stars. All stars possessing still higher central densities (e.g., charm stars) turn out to be unstable.

1. Introduction

Elsewhere in this volume¹, the properties of the complete sequence of strange-matter stars with nuclear crusts are reviewed. It consists of massive strange stars, which constitute the strange counterparts of neutron stars, and strange white dwarfs, whose bulk properties are similar to those of ordinary white dwarfs. Here we investigate the stability of the complete sequence against radial pulsations (acoustical modes). (For more details, see Refs. ²,³,⁴)

2. Mass-Radius Relationship

For later purpose, we show in Fig. 1 the mass-radius relationship of the complete sequence of non-rotating strange-matter stars whose inner crust density is equal to neutron drip⁵,⁶. The central density along this curve decreases monotonically from ‘E’, which corresponds to the minimum-mass star of the charm-quark star sequence to ‘A’ where the strange core has shrunk to zero. Stars located between ‘A’ and ‘C’ (the lightest star of the sequence) are referred to as strange dwarfs⁷. ‘B’ refers to the maximum-mass strange dwarf.

3. Stability Analysis

The oscillatory motion of a star in its nth normal mode (n = 0 is the fundamental
mode) is expressed in terms of an amplitude $u_n(r)$ given by $^5,^6$

$$\delta r(r, t) = e^{\nu} u_n(r) e^{i\omega_n t} / r^2 ,$$

(1)

where $\delta r(r, t)$ denotes small (Lagrangian) displacements. The underlying metric is of the form

$$ds^2 = e^{2\nu(r)} dt^2 - e^{2\lambda(r)} dr^2 - r^2 \left(d\theta^2 + \sin^2 \theta \, d\phi^2 \right) .$$

(2)

The quantity $\omega_n^2(t)$ is the star’s oscillation frequency, which is given as the solution of the following (Sturm-Liouville type) eigenequation,

$$\frac{d}{dr} \left(\Pi(r) \frac{d u_n(r)}{dr} \right) + \left(Q(r) + \omega_n^2 W(r) \right) u_n(r) = 0 .$$

(3)

Stable (unstable) radial oscillations are associated with $\omega_n^2 > 0 \ (\omega_n^2 < 0)$. The functions $\Pi(r)$, $Q(r)$, and $W(r)$ are expressed in terms of the equilibrium configurations of the star, and are given by

$$\Pi = e^{(\lambda + 3\nu) r^{-2}} \Gamma P ,$$

(4)

$$Q = -4 e^{(\lambda + 3\nu) r^{-3}} \frac{dP}{dr} - 8\pi e^{3(\lambda + \nu) r^{-2}} P (\epsilon + P)$$

$$+ e^{(\lambda + 3\nu) r^{-2}} (\epsilon + P)^{-1} \left(\frac{dP}{dr} \right)^2 ,$$

(5)

$$W = e^{(3\lambda + \nu) r^{-2}} (\epsilon + P) .$$

(6)
Figure 2: Oscillation frequencies, \(\omega_n^2 \), of the lowest four \((n = 0, 1, 2, \text{ and } 3) \) normal radial modes of strange stars as a function of central star density. The quantity \(\Phi \) is defined by \(\Phi \equiv \text{sign}(a) \log [1 + \text{abs}(a)] \), where \(a \equiv (\omega_n/\text{sec}^{-1})^2 \). Stars with \(\Phi < 0 \) are unstable against oscillations. The dotted curve shows qualitatively the behavior of mass as a function of density. ‘D’ and ‘E’ refer to the same stars as in Fig. 1.

The quantities \(\epsilon \) and \(P \) in Eqs. (4)-(6) denote energy density and pressure of the star. The pressure gradient, \(dP/dr \), is obtained from the Oppenheimer-Volkoff equations. The symbol \(\Gamma \) denotes the varying adiabatic index at constant entropy, given by \(\Gamma = [(\epsilon + P)/P]dP/d\epsilon \). Finally, the boundary conditions for Eq. (3) are \(u_n \sim r^3 \) at star’s origin \((r = 0) \), and \(du_n/dr = 0 \) at star’s surface \((r = R) \).

The four lowest-lying eigenfrequencies of massive strange stars and strange dwarfs (inner crust density equal to neutron drip) are shown in Fig. 2. A qualitative comparison with the mass-central density relationship (dashed curve)\(^3\) shows that these equilibrium configurations possess a characteristic mode of vibration of zero frequency \((\omega_0^2 = 0) \) when and only when \(dM/d\epsilon = 0 \), that is, only when the star’s mass attains an extremum, as one expects from the theorem in Ref. \(^7\).

An enlargement of the low-density portion of Fig. 2 is shown in Fig. 3. It reveals that, in the direction of increasing central densities, the lowest-lying eigenmode passes through zero at the heaviest strange dwarf, ‘B’, becomes zero again for the lightest strange dwarf, ‘C’, and turns positive at the higher densities again. Since \(\omega_0^2 < 0 \) corresponds to unstable radial oscillations, it follows from Figs. 2 and 4 that no quark-matter star can exist stably that is either denser than ‘B’ or more compact than the densest strange star, ‘D’. Specifically this rules out the possible existence of the even denser charm stars, which are located beyond ‘E’.

So far our discussion was restricted to eigenfrequencies of strange dwarfs with inner crust density equal to neutron drip (the maximum possible value). Figure 4 shows the behavior of the eigenfrequencies of such stars for \(\epsilon_{\text{crust}} < \epsilon_{\text{drip}} \). One sees
Figure 3: Enlargement of the low-density portion of Fig. 2. The dotted curve shows qualitatively the dependence of mass on density; 'C' and 'B' denote maximum- and minimum-mass strange dwarfs. The integers denote the first four eigenmodes. The labels 'A', 'B', and 'C' refer to the same stars as in Fig. 1.

Figure 4: Oscillation frequencies of the fundamental mode of oscillation, ω_0^2, versus central star density. The inner crust densities are $\epsilon_{\text{crust}} = 10^9$ g/cm3 (curve a), 10^{10} (b), 10^{11} (c), and 4.3×10^{11} (d) 3.
that strange dwarfs of sequences with $\epsilon_{\text{crust}} \leq 10^9 \text{ g/cm}^3$ down to the termination point are all stable against radial oscillations, which is due to the fact that such sequences terminate before they reach the maximum-mass strange dwarf peak where ω^2 would become negative (sequences ‘b’ to ‘d’).

4. Summary

Hydrostatic equilibrium sequences of strange matter stars with nuclear crusts extend from white-dwarf-like strange stars (strange dwarfs) to dense strange stars with properties similar to those of ordinary neutron stars. We find that most stars along such sequences are stable against radial oscillations and thus could exist stably in the universe if Bodmer’s and Witten’s strange matter hypothesis is true. The only exceptions are stars that are either denser than strange stars (i.e. charm stars) or strange dwarfs with central densities that place them into the mass-radius region of unstable white dwarfs.

5. Acknowledgement

This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy under Contract DE-AC03-76SF00098.

6. References

ABSTRACT

This paper investigates the stability of the complete sequence of strange-matter stars with nuclear crusts against radial pulsations (acoustical modes). It is found that a broad class of white dwarf-like strange stars is stable against such pulsations. The same holds for the much denser strange stars, which are the strange counterparts of neutron stars. All stars possessing still higher central densities (e.g., charm stars) turn out to be unstable.

1. Introduction

Elsewhere in this volume¹, the properties of the complete sequence of strange-matter stars with nuclear crusts are reviewed. It consists of massive strange stars, which constitute the strange counterparts of neutron stars, and strange white dwarfs, whose bulk properties are similar to those of ordinary white dwarfs. Here we investigate the stability of the complete sequence against radial pulsations (acoustical modes). (For more details, see Refs. ², ³, ⁴)

2. Mass-Radius Relationship

For later purpose, we show in Fig. 1 the mass-radius relationship of the complete sequence of non-rotating strange-matter stars whose inner crust density is equal to neutron drip¹, ², ³. The central density along this curve decreases monotonically from ‘E’, which corresponds to the minimum-mass star of the charm-quark star sequence to ‘A’ where the strange core has shrunk to zero. Stars located between ‘A’ and ‘C’ (the lightest star of the sequence) are referred to as strange dwarfs³. ‘B’ refers to the maximum-mass strange dwarf.

3. Stability Analysis

The oscillatory motion of a star in its nth normal mode ($n = 0$ is the fundamental
Figure 1: Mass versus radius of strange-star configurations with nuclear crust (cf. 1,3). The labels are explained in the text.

mode) is expressed in terms of an amplitude $u_n(r)$ given by 5,6

$$\delta r(r,t) = e^{\nu} u_n(r) e^{i \omega_n t} / r^2 ,$$

(1)

where $\delta r(r,t)$ denotes small (Lagrangian) displacements. The underlying metric is of the form

$$ds^2 = e^{2\nu(r)} dt^2 - e^{2\lambda(r)} dr^2 - r^2 \left(d\theta^2 + \sin^2 \theta \, d\phi^2 \right).$$

(2)

The quantity $\omega_n^2(t)$ is the star's oscillation frequency, which is given as the solution of the following (Sturm-Liouville type) eigenequation,

$$\frac{d}{dr} \left(\Pi(r) \frac{du_n(r)}{dr} \right) + \left(Q(r) + \omega_n^2 W(r) \right) u_n(r) = 0 .$$

(3)

Stable (unstable) radial oscillations are associated with $\omega_n^2 > 0$ ($\omega_n^2 < 0$). The functions $\Pi(r)$, $Q(r)$, and $W(r)$ are expressed in terms of the equilibrium configurations of the star, and are given by

$$\Pi = e^{(\lambda+3\nu)} r^{-2} \Gamma P ,$$

(4)

$$Q = -4 e^{(\lambda+3\nu)} r^{-3} \frac{dP}{dr} - 8 \pi e^{3(\lambda+\nu)} r^{-2} P (\epsilon + P)$$

$$+ e^{(\lambda+3\nu)} r^{-2} (\epsilon + P)^{-1} \left(\frac{dP}{dr} \right)^2 ,$$

(5)

$$W = e^{(3\lambda+\nu)} r^{-2} (\epsilon + P) .$$

(6)
The quantities ε and P in Eqs. (4)-(6) denote energy density and pressure of the star. The pressure gradient, dP/dr, is obtained from the Oppenheimer-Volkoff equations. The symbol Γ denotes the varying adiabatic index at constant entropy, given by $\Gamma = [(\varepsilon + P)/P]dP/d\varepsilon$. Finally, the boundary conditions for Eq. (3) are $u_n \sim r^3$ at star’s origin ($r = 0$), and $du_n/dr = 0$ at star’s surface ($r = R$).

The four lowest-lying eigenfrequencies of massive strange stars and strange dwarfs (inner crust density equal to neutron drip) are shown in Fig. 2. A qualitative comparison with the mass-central density relationship (dashed curve) shows that these equilibrium configurations possess a characteristic mode of vibration of zero frequency ($\omega_n^2 = 0$) when and only when $dM/d\varepsilon_c = 0$, that is, only when the star’s mass attains an extremum, as one expects from the theorem in Ref. 7.

An enlargement of the low-density portion of Fig. 2 is shown in Fig. 3. It reveals that, in the direction of increasing central densities, the lowest-lying eigenmode passes through zero at the heaviest strange dwarf, ‘B’, becomes zero again for the lightest strange dwarf, ‘C’, and turns positive at the higher densities again. Since $\omega_0^2 < 0$ corresponds to unstable radial oscillations, it follows from Figs. 2 and 4 that no quark-matter star can exist stably that is either denser than ‘B’ or more compact than the densest strange star, ‘D’. Specifically this rules out the possible existence of the even denser charm stars, which are located beyond ‘E’.

So far our discussion was restricted to eigenfrequencies of strange dwarfs with inner crust density equal to neutron drip (the maximum possible value). Figure 4 shows the behavior of the eigenfrequencies of such stars for $\varepsilon_{\text{crust}} < \varepsilon_{\text{drip}}$. One sees
Figure 3: Enlargement of the low-density portion of Fig. 2. The dotted curve shows qualitatively the dependence of mass on density; ‘C’ and ‘B’ denote maximum- and minimum-mass strange dwarfs. The integers denote the first four eigenmodes. The labels ‘A’, ‘B’, and ‘C’ refer to the same stars as in Fig. 1.

Figure 4: Oscillation frequencies of the fundamental mode of oscillation, ω_1^2, versus central star density. The inner crust densities are $\epsilon_{\text{crust}} = 10^9$ g/cm3 (curve a), 10^{10} (b), 10^{11} (c), and 4.3×10^{11} (d).
that strange dwarfs of sequences with $\epsilon_{\text{crust}} \leq 10^9 \text{g/cm}^3$ down to the termination point are all stable against radial oscillations, which is due to the fact that such sequences terminate before they reach the maximum-mass strange dwarf peak where ω_0^2 would become negative (sequences 'b' to 'd').

4. Summary

Hydrostatic equilibrium sequences of strange matter stars with nuclear crusts extend from white-dwarf-like strange stars (strange dwarfs) to dense strange stars with properties similar to those of ordinary neutron stars. We find that most stars along such sequences are stable against radial oscillations and thus could exist stably in the universe if Bodmer's and Witten's strange matter hypothesis is true. The only exceptions are stars that are either denser than strange stars (i.e. charm stars) or strange dwarfs with central densities that place them into the mass-radius region of unstable white dwarfs.

5. Acknowledgement

This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy under Contract DE-AC03-76SF00098.

6. References