Elastic Wave Radiation from a Line Source of Finite Length

PDF Version Also Available for Download.

Description

Straightforward algebraic expressions describing the elastic wavefield produced by a line source of finite length are derived in circular cylindrical coordinates. The surrounding elastic medium is assumed to be both homogeneous and isotropic, anc[ the source stress distribution is considered axisymmetic. The time- and space-domain formulae are accurate at all distances and directions from the source; no fa-field or long-wavelength assumptions are adopted for the derivation. The mathematics yield a unified treatment of three different types of sources: an axial torque, an axial force, and a radial pressure. The torque source radiates only azirnuthally polarized shear waves, whereas force and ... continued below

Creation Information

Aldridge, D.F. November 4, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 45 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Laboratories, Albuquerque, NM, and Livermore, CA
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Straightforward algebraic expressions describing the elastic wavefield produced by a line source of finite length are derived in circular cylindrical coordinates. The surrounding elastic medium is assumed to be both homogeneous and isotropic, anc[ the source stress distribution is considered axisymmetic. The time- and space-domain formulae are accurate at all distances and directions from the source; no fa-field or long-wavelength assumptions are adopted for the derivation. The mathematics yield a unified treatment of three different types of sources: an axial torque, an axial force, and a radial pressure. The torque source radiates only azirnuthally polarized shear waves, whereas force and pressure sources generate simultaneous compressional and shear radiation polarized in planes containing the line source. The formulae reduce to more familiar expressions in the two limiting cases where the length of the line source approaches zero and infinity. Far-field approximations to the exact equations indicate that waves radiated parallel to the line source axI.s are attenuated relative to those radiated normal to the axis. The attenuation is more severe for higher I?equencies and for lower wavespeeds. Hence, shear waves are affected more than compressional waves. This fi-equency- and directiondependent attenuation is characterized by an extremely simple mathematical formula, and is readily apparent in example synthetic seismograms.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE00002087
  • Report No.: SAND98-2474
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/2087 | External Link
  • Office of Scientific & Technical Information Report Number: 2087
  • Archival Resource Key: ark:/67531/metadc667390

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 4, 1998

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Dec. 7, 2016, 11 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 45

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Aldridge, D.F. Elastic Wave Radiation from a Line Source of Finite Length, report, November 4, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc667390/: accessed December 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.