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with a Coupled Finite .Element/Boundary Element 

Scheme Using an Iterative Solver 

J. Richard Koteras 
Engineering and Manufacturing Mechanics Department 
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Abstract 

The prediction of stresses and displacements around tunnels buried deep with- 
in the earth is an important class of geomechanics problems. The material be- 
havior immediately surrounding the tunnel is typically nonlinear. The 
surrounding mass, even if it is nonlinear, can usually be characterized by a sim- 
ple linear elastic model. The finite element method is best suited for modeling 
nonlinear materials of limited volume, while the boundary element method is 
well suited for modeling large volumes of linear elastic material. A computa- 
tional scheme that couples the finite element and boundary element methods 
would seem particularly useful for geomechanics problems. A variety of cou- 
pling schemes have been proposed, but they rely on direct solution methods. 
Direct solution techniques have large storage requirements that become cum- 
bersome for large-scale three-dimensional problems. An alternative to direct 
solution methods is iterative solution techniques. A scheme has been devel- 
oped for coupling the finite element and boundary element methods that uses 
an iterative solution method. This report shows that this coupling scheme is 
valid for problems where nonlinear material behavior occurs in the finite ele- 
ment region. 
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Solution of Problems with Material 
Nonlinearities with a Coupled Finite 
Element/Boundary Element Scheme 

Using an Iterative Solver 

Introduction 
An important class of geomechanics problems involves tunnels buried deep within the 
earth. The material behavior immediately surrounding the tunnel is typically nonlinear and 
can exhibit behavior such as plastic deformation, slip on joint planes, or creep. The 
surrounding mass can also be nonlinear, but its overall effect can usually be captured by 
using a simple linear elastic material model. When these problems are studied with 
computer models, it is desirable to have a model that captures the nonlinear effects in the 
material adjacent to the tunnels and to model a large volume of surrounding material. 

The finite element method is well suited for modeling regions with rapidly varying 
properties and nonlinear material behavior. It is an expensive computational tool when 
trying to model large volumes. The boundary element method, on the other hand, offers a 
means to model large volumes of material efficiently because only the boundary of the 
volume needs to be discretized. If material properties vary significantly over a portion of 
the domain or if the material behaves nonlinearly, then use of the boundary element 
approach becomes cumbersome relative to the finite element method. The boundary 
element model is best suited, therefore, for large regions of linear elastic material or large 
regions whose overall influence can be captured by a linear elastic material behavior. 

A computational scheme that couples the finite element and boundary element methods 
would seem well suited for geomechanics problems. A variety of coupling schemes have 
been proposed, but they rely on direct solution methods'-'. Direct solution techniques have 
large storage requirements and become cumbersome for large-scale problems. An 
alternative to direct solution methods is iterative solution techniques. Iterative solution 
methods eliminate the problem of large storage requirements and can be more efficient 
solvers for large three-dimensional problems than direct solutions techniques. A scheme 
has been developed for coupling the finite element and boundary element methods that uses 
an iterative solution technique. The use of an iterative solution technique means that the 
coupling scheme can be applied to large-scale models such as those that would be 
encountered in three-dimensional geomechanics problems. It has been shown that the 
coupling scheme is valid for purely elastic problemsg. This report presents results from 
problems showing that the coupling scheme is also valid when nonlinear material behavior 
occurs in the finite element portion of the model. 
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The main purpose of this report is, therefore, to establish the validity and accuracy of a 
coupled finite element/boundary element using an iterative solution technique for a class 
of problems where there is nonlinear material behavior in the finite element region. The 
iterative solution technique uses a Newton scheme to set up a system of linear equations for 
a load step. The system of equations is solved by using a conjugate gradient method for 
nonsymmetric operators since the coupling scheme leads to nonsymmetric matrices. This 
scheme has been implemented in the JAC2D1’ finite element code. A more detailed 
discussion of this solution approach is given in following sections of the report. For the 
initial work involving only elastic materials, it was not necessary to use an incremental 
loading approach. A solution scheme based solely on the conjugate gradient method for 
nonsymmetric operators was sufficient for solving this class of problems. The extension 
of the coupled finite element/boundary element method to problems involving nonlinear 
material behavior required a different solution strategy. 

. 

The problems in this report are two-dimensional problems only. In the concluding remarks, 
comments will be made about the extension of this work to three dimensions and efficiency 
considerations for such an implementation. 

This report presents a number of problems where a region with nonlinear material behavior 
is surrounded by a linear elastic region. Two different nonlinear material models are used, 
an elastic-plastic model and a jointed rock model. 

Elastic-Plastic Problems 
The f i s t  nonlinear material model used in the coupled scheme is an elastic-plastic material 
model. This material model is used in conjunction with the problem of a pressurized 
cylindrical cavity in an infinite medium. The accuracy of numerical results for this problem 
can be assessed by studying results for an analytic solution for the elastic-plastic state of a 
thick-walled tube. The first part of this report presents key results from the analytic 
solution. Results are then presented from numerical studies of a pressurized cylindrical 
cavity in an infinite region for cases where the pressure becomes large enough to generate 
plastic deformation in the area around the cavity. 

Elastic-Plastic State of a Thick-Walled Tu be 

The geometry for the thick-walled tube is shown in Figure 1. The tube has an inner radius, 
a, and an outer radius, b. The internal pressure is p .  The problem of determining analytic 
expressions for the displacements and stresses for the tube in an elastic-perfectly plastic 
state is discussed in Reference 1 1. It is not possible to obtain an exact analytic solution for 
this problem. As Reference 11 points out, however, “it is possible to obtain a simple 
approximate solution if we introduce a number of simplifications, which are justified by the 
results of numerical integration.” The full details of the derivation of an approximate 
solution will not be presented as the derivation is quite lengthy. Only key results from the 
solution in Reference 11 are presented. The accuracy of the solution in Reference 11 will 
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Figure 1. Cylindrical Tube Under Pressure 

be discussed in later sections when numerical results are presented for the problem of a 
pressurized tube. The analytic solution for this problem is presented in terms of a 
cylindrical coordinate system, rez .  The origin of the cylindrical coordinate system 
coincides with the center of the cavity, and the z axis runs the length of the cylindrical 
cavity. The solution is for the plane strain case. 

When the tube is completely elastic, the radial and tangential stresses,or and q, , are given 
by the well know Lame' solution 

where 

p' = pa2 / (b2 -a2) .  (EQ 3) 

The axial stress component, (3, , for the general case (compressible material) is given by 

where v is Poisson's ratio. For the incompressible case (v = 0.5 ), the axial stress is 

- -  
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The radial displacement u, for the general case (compressible material) is given by 

[( 1 + v ) b 2 / r  + ( 1  - v - 2v2)r]pa2 
E(b2-a2)  

u, = 9 (EQ 6)  

where E is the modulus of elasticity. For the incompressible case, the radial displacement 
is given by 

u, = 3pa2b2/[2Er(b2  - a2)] .  (EQ 7) 

When p becomes large enough to yield the material, an interface between the plastic and 
elastic zones is a circle with radius c. The location of the interface is a function of the 
geometry of the tube, the internal pressure, p, and the yield stress in shear, z, . The radius 
c for the plastic zone is given by 

p/ (2z , )  = (1 - c 2 / b 2 ) / 2  + ln(c/a) .  

The radial and tangential stresses in the plastic zone (a  S r I c) are given by 

B, = - p  + 2z,ln(r/a) 

and 

Be = - p + 2 ~ , [ 1  + l n ( r / a ) ] .  

The radial displacement in the plastic zone is given by 

u, = (z,c2)/(Er). 

(EQ 8) 

(EQ 9) 

(EQ 10) 

(EQ 11) 

The radial and tangential stresses in the elastic zone (c < r < b )  are given by Equations (1) 
and (2) if 4’ is substituted for p’ ,  where 4’ is defined as 

4’ = -qc2/(b2 - c2). (EQ 12) 

In Equation (1 2), 4 is the radial stress on the interface line r = c . 
A special case of the above problem that is of interest in the study of a circular cavity in an 
infinite medium (the problem to be studied with the coupled finite element/boundary 
element technique) is the case where b D a and b >> c . If b >> a and b >> c, then Equation 
(8) can be rewritten as 

p/ (2z , )  = 1 / 2  + l n (c /a ) .  (EQ 13) 

4 



Equation (13) can be rewritten as 

p = 2Ts[1/2+ln(c/a)] (EQ 14) 

so that p is simply a function of c. Equation (13) can be used to solve directly for c. The 
value for c is given by 

c = aexp[p/(2zs) - 1/21. (EQ 15) 

Once a value for c is determined by using Equation (15), it is possible to easily calculate 
’ the value for the radial displacement at the inner boundary (r = a )  by using Equation (1 1). 
At the inner boundary, 

(EQ 16) 

after yielding has occurred at the inner boundary. Equations (15) and (16) are particularly 
useful in the study of the problem of a pressurized cylindrical cavity in an infinite medium 
with numerical techniques. In subsequent sections, the preceding analytic solutions for the 
elastic-plastic behavior of apressurized tube (pressurized cavity for the case of b at -) will 
be referred to as the analytic solution. 

Now that the results for an analytic solution of the pressurized tube problem have been 
presented, various numerical results for this problem will be examined. The f i s t  problem 
to be discussed is that of a pressurized tube modeled solely with finite elements. 

Pressurized Tube: Finite Element Model 

A numerical solution for a pressurized tube problem has been calculated using a finite 
element model. The geometry for the problem is the same as that shown for the problem 
in Figure 1. The value for a for this problem is 10 m, and the value for b is 200 m. With 
these particular values for the inner and outer radii, the geometry can be used to 
approximate a cylindrical cavity in an infinite medium. The material for the tube has an 
elastic modulus, E, of 15,200 MPa, a Poisson’s ratio, v ,  of 0.35, and plastic hardening 
modulus of 15.2 MPa. Since the plastic modulus is 0.1% of the elastic modulus, the 
material in the tube approximates an elastic-perfectly plastic material. The tensile yield 
stress, oy , for the material is 5.0 MPa. The tensile yield stress is related to the shear yield 
stress in the previous section by 

(Ty = &TS. (EQ 17) 

Only a quarter of the geometry is used in the finite element model (Figure 2). The proper 
boundary conditions are applied so that the quarter geometry model simulates a cylindrical 
tube problem. Edges of the quarter model lie on the radial lines at 8 = 0 radians and 
8 = n/2 radians. Along these two radial lines, U, is constrained to be zero and u,. is 
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- b = 200m 

U, = o,e  = n /2  

w r  I 
u, = o,e = o 

Figure 2. 
Problem Modeled with Finite Elements 

Geometry and Boundary Conditions for Cylindrical Tube 

unconstrained. The outer surface at b = 200 m is unconstrained, and a pressure is applied 
to the inner surface at a = 10 m. The finite element model consists solely of quadrilateral 
elements. There are 1464 elements in the mesh, and the mesh is graded so that the mesh is 
finer at the inner radius than at the outer radius. Plane strain conditions specify behavior 
in the direction of the z axis. 

The pressure on the inner surface is increased linearly from 0 to 10 MPa. The finite element 
problem has been solved with code JAC2D". The radial displacement, u, , at r = 10 and 
8 = 0 as a function of pressure is presented as a dashed line in Figure 3. Yielding occurs 
on the inner surface when p = 5/$ MPa, which is approximately 2.8868 MPa. In Figure 
3, the radial displacement as a function of pressure begins to vary from a simple linear 
relation at 2.9 MPa, which is the expected result since nonlinear behavior sets in after yield 
occurs. 

A comparison can be made between the finite element results and the analytic solution 
presented in previous sections. The calculated value for u,., at r = 10 and 0 = 0 as a 
function of pressure is presented in Figure 3 as a solid line. To obtain this line, Equation 
(7) for the limiting case of b approaching = is used to calculate u, at r = a up to the point 

where yield occurs (p = 5/& MPa). Once yield occurs, the value for u, is calculated by 
using Equations (15) and (16). 

Figure 3 shows good agreement between the finite element calculations and the analytic 
results. Up to a certain point (approximately 6.4 MPa), the radial displacement at the inner 
surface predicted by the finite element calculations is less than the analytic results. At 
greater pressures, the radial displacement predicted by the finite element calculations is 
greater than the analytic results. At 10.0 MPa, the finite element results predict a radial 
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Pressure (MPa) 

Figure 3. Comparison of Finite Element and Analytic Results (b = 200 m) 

displacement of 0.0375 m at the inner surface, and the analytic results predict a radial 
displacement of 0.0335 m. The two methods vary by approximately 12% at 10.0 MPa. 
There are several reasons why the finite element and analytic solutions vary. First, the 
material in the finite element calculations has a Poisson’s ratio of 0.35 while the material 
in the analytic solution is incompressible (v = 0.5). This difference in Poisson’s ratio 
probably accounts for a significant amount of the differences in the two solutions. Second, 
the material in the finite element mesh is elastic-plastic; the material in the analytic solution 
is elastic-perfectly plastic. The parameters in the finite element model are chosen so that 
the material closely approximates an elastic-perfectly plastic material, which means that 
the elastic-plastic nature of the material in the finite element model is probably not a 
significant source of the differences in the two solutions. Finally, the finite element mesh 
models a finite region while the equations for the analytic solution are for an infinite region. 
At 10.0 MPa, the elastic-plastic interface is at r = 34.2825 m, which is 17.14% of the 
outside radius of the finite element model. This is a significant percentage of the outside 
radius of the finite element mesh. The approximation to an infinite region in the finite 
element mesh becomes less and less accurate as the elastic-plastic interface moves outward 
from the inner radius. It accounts for some of the increasing difference in the two solutions 
past 6.4 m a .  

In order to quantify the effects of the approximation of an infinite region with a mesh with 
a finite outer radius, a finite element model with an outer radius greater than 200 m was 
used. The problem shown in Figure 2 was modeled with a value of b = 400 m rather than 
b = 200 m. The material properties and loading are kept the same and plane strain 
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conditions are again specified. The number of elements is increased to 21 12. The mesh is 
graded so that it is fiier at the inner radius than the outer radius. The radial displacement 
at the cavity surface from the analysis with b = 400 m is shown in Figure 4 as a dotted line. 
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.- 
2 0.01 

I 

Finite element results 
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-- - 1 

0.00 
0.0 5.0 10.0 

Pressure (MPa) 

Comparison of Analytic and Finite Element Results (b = 400 m) Figure 4. 

They are compared with radial displacement results from the analytic solution. The finite 
element results for the case of b = 400 m agree slightly better with the analytic results than 
the finite element results for the case of b = 200 m. At 10.0 MPa, the finite element mesh 
with b = 400 m predicts a radial displacement at the cavity surface of 0.0367 m, which is 
slightly smaller than the value predicted by the finite element calculations with b = 200 m. 
The percentage difference between the finite element results (b = 400 m) and the analytic 
results is 9.6%. The doubling in value of b leads to only a small adjustment in the 
difference between the finite element and analytic results. The original mesh does provide 
a fairly accurate basis of comparison. 

On the whole, the finite element and analytic problems produce good agreement. The 
analytic solution and finite element problem just presented will prove useful for 
verification of numerical results in the following sections. In subsequent sections, the finite 
element models with b = 200 m and b = 400 m consisting only of elastic-plastic material 
will be referred to as the single material problem since the cavity is surrounded by only one 
type of material. The following sections discuss the solution of the cylindrical cavity 
problem where the cavity is surrounded by an elastic-plastic material which is in turn 
surrounded by an elastic material. 
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Solution of Nonlinear Cylindrical Cavity Problems Using a 
Coupled Finite Element/Boundary Element Technique 

f 

This section discusses the solution of cylindrical cavity problems with nonlinear behavior 
by using a coupled finite elementboundary element technique. The cavity is surrounded 
by a concentric ring of elastic-plastic material, which in turn is surrounded by elastic 
material. Since the concentric ring of material around the cavity is a nonlinear material, it 
can easily be modeled with finite elements. The surrounding infinite medium of elastic 
material is best suited for modeling with boundary elements. This particular problem is 
well suited for investigation of the use of a coupling technique for problems involving 
nonlinear material behavior. The coupling technique chosen for solution of the problem is 
the one described in Reference 9. The finite element method and boundary element method 
are coupled by enforcing displacement compatibility and force equilibrium at the nodes 
where the finite element and boundary element regions coincide. The resulting set of 
equations, which is nonsymmetric, is solved by using a conjugate gradient scheme for 
nonsymmetric operators (the Bi-CGSTAB method12). Conjugate gradient schemes have 
the advantage that it is not necessary to construct the full stiffness matrix. This eliminates 
the problem of large storage requirements for large-scale finite element models. They are 
also an efficient solution scheme for large-scale three-dimensional problems. 

All of the problems solved in Reference 9 involve completely elastic material. The 
problems discussed in this memo examine the coupling scheme when used with problems 
exhibiting nonlinear material behavior. The results in the following sections will show that 
the coupling scheme is valid for problems involving nonlinear material behavior. For this 
class of problems, however, the Bi-CGSTAB method alone is not sufficient as a solution 
technique for the resulting set of equations. It becomes necessary to use a solution 
approach based on a Newton scheme13. Newton's method is used to set up a linear system 
of nonsymmetric equations that are solved with the Bi-CGSTAB method. The reasons for 
using this approach are discussed in the following sections. 

Because the problems involve nonlinear material, the load must be applied incrementally. 
A Newton scheme as outlined in Reference 13 is used to obtain a solution in an incremental 
manner. For this process, we define the residual R as the difference between the external 
and internal forces for a system. Let AF,, represent the increment in the external load for 
the current load step, and Fexf be the total external load after the load increment AFexf is 
applied. If the value of the internal forces at the beginning of the load step is Finf (o) , and 
the tangent stiffness matrix at the beginning of the load step is we can estimate a 
displacement increment Aul corresponding to the current external load increment with the 
relation 
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where K?to) is the inverse of the tangent stiffness. If uo is the displacement at the 

beginning of the load increment, then the total displacement after Auo is u1 = uo + Auo . 
The set of internal forces, F i , f ( l )  , corresponding to the displacements u1 is, in general, 
not equal to Fexf for nonlinear problems. The calculation in Equation (18) is repeated in 
the general form 

until some measure of the difference Fexf - Fi,f(i)  is smaller than a prescribed tolerance. 
If this difference is small enough after n iterations, then the displacement, u,, 

corresponding to Fexl is given by 

It 

U, = uo + Aui. 
i =  1 

(EQ 20) 

The Newton scheme establishes a set of equations of the form 

for each iteration within a load step. In the coupled scheme, the system of equations given 
by Equation (21) is solved using the Bi-CGSTAB method. The tangent stiffness matrix in 
Equation (21) is nonsymmetric, and the Bi-CGSTAB method is capable of solving such a 
system of equations through an iterative process. In order to obtain a solution for a 
displacement increment, Aui , with the Bi-CGSTAB method, a series of orthogonal basis 

vectors is constructed12. Implicit in this iterative process is a constant tangent stiffness. 
During the iterative process within the Bi-CGSTAB method, the value for KT(i )  remains 
constant. 

The Bi-CGSTAB solver differs from the conjugate gradient technique in JAC2D in that the 
tangent stiffness for the conjugate gradient technique in JAC2D can vary during the 
computation of a displacement The version of the conjugate gradient 
method in JAC2D is limited, however, to problems where the tangent stiffness matrix is 
very nearly symmetric, which makes it impractical for the coupled scheme. In JAC2D, the 
value for KT(o)  in the system of equations 

varies with each iteration for the conjugate gradient technique. It is possible to obtain the 
solution for a displacement increment corresponding to an entire load increment AFexl by 
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a single application of the conjugate gradient solution technique in JAC2D. For the 
coupled scheme, it is necessary to break the load increment into a set of linear equations as 
described by Equation (21). Each set of equations is solved by the Bi-CGSTAB method. 

Several attempts were made to solve problems involving nonlinear material behavior by 
solving the resulting system of equations using only the Bi-CGSTAB method for each load 
increment. The Bi-CGSTAB method would not converge to a solution for load steps at the 
onset of nonlinear material behavior. When the Newton solver was used to break the load 
increment into a sequence of linear equations, however, it was possible to obtain solutions 
for load steps after the onset of nonlinear material behavior. 

Three cylindrical cavity problems involving nonlinear material behavior have been solved 
by using the coupled scheme with a Newton solver. The only difference among the 
problems is the radius at which the interface between the elastic-plastic material and elastic 
material occurs. The choice for the boundary of the interface between the elastic and elastic 
materials is arbitrary. Three different values for the interface radius were used to provide 
a reasonable check of the numerical techniques used for solving the problems. 

For the first problem, the inner radius for the cavity, a, is at 10.0 m and, the radius defining 
the interface between the elastic-plastic and elastic materials, ri, is at 16 m. The geometry 
for this particular problem is shown in Figure 5. The properties for the elastic-plastic 

elastic material 

elastic-pla 
material 

elastic material 

stic 

material 
interface 

Figure 5. Geometry for Cylindrical Cavity Problem for Two Materials 

material are the same as the ones used for the single material problem in the preceding 
section. The elastic-plastic material surrounding the cavity has an elastic modulus of 
15,200 MPa and a Poisson’s ration of 0.35. The plastic modulus for this inner material is 
15.2 MPa, and the tensile yield stress is 5.0 MPa. The elastic material surrounding the 
elastic-plastic material has an elastic modulus of 15,200 MPa and a Poisson’s ratio of 0.35. 
The pressure inside the cavity is increased linearly from 0.0 MPa to 10.0 MPa. 



The mesh for the solution of this problem with the coupled scheme is shown in Figure 6. 
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Figure 6. Mesh for Coupled Problem with Material Interface at r = 16 m 

The interior elastic-plastic material is modeled with finite elements. The elastic material is 
modeled by a boundary element contour that corresponds to the outer surface of the finite 
element mesh at r = 16 m. A boundary element coincides with each element edge defining 
the outer surface of the finite element mesh. The boundary element nodes correspond to 
the finite element nodes. No use is made of symmetry in the problem. The current version 
of the coupled scheme is still experimental code, and it has not been enhanced to exploit 
symmetry in problems. (The coupling scheme does allow for the implementation of 
schemes that exploit symmetry in problems.) 

-- 

The radial displacement, up at the cavity wall (r = 10, 8 = 0)  is plotted as a function of 
pressure in Figure 7 for the coupled problem. These results from the coupled problem can 
be verified by use of a finite element model with elastic-plastic material response in the 
region 10m < r < 16m and elastic response in the region 16m < r < 200m. The large outer 
radius approximates the infinite extent of the region. The finite element results are also 
plotted in Figure 7 as a dashed line. As can be seen in Figure 7, the coupled finite element/ 
boundary element results agree quite well with the finite element results. 

The coupled results in Figure 7 are not carried out fully to 10.0 MPa. It was difficult to 
achieve convergence for the coupled problem past 8.4 MPa. This particular problem is 
actually somewhat difficult to solve by use of conjugate gradient techniques: The elastic- 
plastic material becomes quite soft after yield, and conjugate gradient techniques can have 
difficulty converging to solutions for problems with soft materials. A solution was 
obtzined for the model involving only finite elements up to pressure 10.0 MPa. This 
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Figure 7. 
Cylindrical Cavity Problem with Material Interface at 16 m 
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problem was solved using the standard conjugate gradient technique in JAC2D. There is 
more experience with the use of the standard solution method in JAC2D than the solution 
method for the coupled scheme. Rather than refine the load increments for the coupled 
problem so that it ran to 10.0 MPa, the problem was run only to a point where significant 
nonlinear behavior occurred so as to establish accuracy for the coupled scheme. 
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It should be noted that the final solution for the coupled problem obtained by use of the Bi- 
CGSTAB method was substantially past the point where the plastic zone reached the 
material interface. At 8.2 MPa, the coupled problem produced a radial displacement of 
0.01409 m at the cavity surface, and the finite element model produced a radial 
displacement of 0.01423 m at the cavity surface. The coupled solution and finite element 
solution differ by only 0.93%. 

10.0 

The coupled results can also be verified by comparison with the problem of a cylindrical 
cavity surrounded by an elastic-plastic material only. The coupled results should agree 
with the results for the problem with elastic-plastic material only up to the point where the 
interface between the plastic zone and elastic zone is less than the material interface in the 
coupled problem. After this, the results for the coupled problem and the single material 
problem should begin to diverge. It is possible to use the analytic solution for the 
pressurized cylindrical cavity to estimate the pressure at which the interface between the 
plastic zone and elastic zone, c, will reach the material interface at rp Equation (14) gives 
the pressure in the cavity for a given value of c. When c = ri, the interface between the 
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plastic zone and elastic zone reaches the material interface. The pressure at which the 
interface between the plastic zone and elastic zone reaches the material interface (c = ri) is 
p = 5.6 MPa. 

Figure 8 shows the radial displacement, u,, at the cavity wall (r = 10, 8 = 0 )  for the 
coupled problem. Also shown in Figure 8 are the results from the finite element model (b 
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m with Results from Cavity in Elastic-Plastic Medium Only 

Comparison of Coupled Results with Material Interface at 16 

= 200 m) for the single material problem. These are the same finite element results that are 
shown in Figure 3. The two material (coupled) problem results shown in Figure 8 begin to 
diverge from the single material results at 5.6 MPa, the pressure predicted by the analytic 
problem. (A vertical dashed line has been drawn in Figure 8 to mark 5.6 MPa.) Although 
the analytic problem varies slightly from the problem defined for the numerical study, it 
predicts the point of divergence fairly close in Figure 8. 

It is important to note that both of the verification procedures just discussed involve some 
approximate comparisons. The analytic problem is slightly different from the two 
numerical models. The finite element model with the large outer radius only approximates 
an infinite region. The differences among the problems used for comparison are slight, 
however, and do not contribute to substantial differences in behavior. The problems are 
similar enough so that one can conclude that the coupled scheme is producing accurate 
results. 
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For the second problem to study the coupled scheme with problems involving nonlinear 
material behavior, the preceding problem is modified so that the interface between the 
elastic-plastic material and elastic material is at r = 27 m. This is the only change made for 
this second problem. All other geometry and material parameters used for the fist coupled 
problem remain the same. 

The mesh used to model this second problem for the coupled scheme is shown in Figure 9. 
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X 

Figure 9. Mesh for Coupled Problem with Material Interface at r = 27 m 

The interior elastic-plastic material is modeled with finite elements. The elastic material is 
modeled by a boundary element contour that corresponds to the outer surface of the finite 
element mesh at r = 27 m. A boundary element coincides with each element edge defining 
the outermost surface of the finite element mesh. The boundary element nodes correspond 
to the f i i t e  element nodes. As in the previous case, no use is made of symmetry. 

The radial displacement, u,, at the cavity wall (r = 10, 6 = 0)  is plotted as a function of 
pressure in Figure 10 for the coupled problem. The results from this coupled problem can 
also be verified by use of a fiiite element model with a large outer radius to approximate 
an infinite medium. The same finite element model of a thick-walled tube used for 
verification of the previous problem is also used for verification of this coupled problem. 
The finite element mesh used to verify the current problem has a material interface 
embedded in the finite element mesh between the elastic-plastic and elastic material at r = 
27 m. The finite results are plotted in Figure 10 as a dashed line. As can be seen in Figure 
10, the coupled results agree quite well with the finite element results. At 10.0 MPa, the 
coupled problem predicts a radial displacement at the cavity surface of 0.03333 m and the 
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Figure 10. Comparison of Coupled and Finite Element Model Results 
for Cylindrical Cavity. Problem with Material Interface at 27 m 

finite element model predicts a radial displacement at the cavity surface of 0.03405 m. The 
predictions for the radial displacement agree to within 2.16%. 

This second coupled problem can also be verified by comparison with the problem of a 
cylindrical cavity surrounded by an elastic-plastic material only. As before, the analytic 
solution for a pressurized tube is used to calculate the pressure at which the radius of the 
plastic zone will coincide with the material interface. By using Equation (14), it can be 
determined that the radius of the plastic zone is approximately equal to the material 
interface radius of r = 27 m when the pressure in the cavity is 8.6 MPa. At this pressure, 
the results from the coupled problem with a material interface at r = 27 m should begin to 
diverge from the results from the problem where the cavity is surrounded by elastic-plastic 
material only. A plot of results for the coupled problem and the single material problem (b 
= 200 w) is shown in Figure 1 1. The results from the two problems do diverge at the correct 
pressure. A vertical dashed line in Figure 11 marks the 8.6 MPa point. 

As a final check, a problem with the material interface at r = 40 m has been run using the 
coupled scheme. As in the previous cases, the annulus surrounding the cavity and up to a 
radius of 40 m is elastic-plastic, and the surrounding medium is elastic. The properties of 
the two materials are the same as in the previous two problems. The cavity is again 
pressurized to a maximum value of 10 MPa. According to the analytic solution; when the 
cavity pressure reaches 10 MPa, the interface between the plastic zone and elastic zone will 
be at 34.28 m. Since the material interface in the model is greater than 34.28 m, the 
interface between the plastic and elastic zones will not reach the material interface for this 
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Figure 11. Comparison of Coupled Results with Material Interface at 27 
m with Results from Cavity in Elastic-Plastic Medium Only 

particular problem. As a result, the coupled model with a boundary element contour at r = 
40 m should agree with the single material problem up to 10.0 MPa. 

Figure 12 shows results for this particular problem. The model for the coupled problem is 
similar to the ones shown in Figures 6 and 9. A finite element mesh is used to model the 
annulus of elastic-plastic material. There is a boundary element contour at r = 40 m. The 
radial displacement u,. at the cavity surface as predicted by the coupled scheme is plotted 
as a solid line in Figure 12. The radial displacement at the cavity surface for the single 
material model (b = 400 m) is plotted as a dashed line in Figure 12. As can be seen from 
the graphical output, the coupled solution and single material solution (finite elements 
only) agree quite well. The coupled approach predicts a radial displacement of the cavity 
surface of 0.03639 m at 10.0 MPa, and the single material solution (b = 400 m) predicts a 
radial displacement of the cavity surface of 0.03667 m. The two solution methods agree to 
within 0.76%. 

For this last verification problem, the single material model used a value of b = 400 m 
rather than the b = 200 m used in the previous check problem with a material interface at 
27 m. Since this last verification problem has a larger value for the material interface (40 
m) than the previous problem, it was assumed that the larger value for b would be necessary 
for more reliable results. 
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Figure 12. Comparison of Coupled and Finite Element Model Results 
for Cylindrical Cavity Problem with Material Interface at 40 m 

Jointed Rock Problems 

The second nonlinear material model used for coupled problems is a jointed rock model"- 
'*. Results are presented from problems with two different geometric configurations in 
order to assess the accuracy of the coupled scheme. Both of these problems model a 
pressurized circular cavity surrounded by an annulus of jointed rock material. The annulus 
is surrounded by an infinite medium of elastic material. The radius at which the interface 
between the two materials occurs is different for the two problems. 

Pressurized Circular Cavity: Material Interface at 16 m 

The general geometry for two problems is shown in Figure 13. The radius for the cavity is 
denoted by a ,  and the radius for the material interface is denoted by r i .  For the first 
problem, ri is set to 16 m. 

The jointed rock material surrounding the cavity has orthogonal joint sets. The joints in a 
given set are assumed to be regularly spaced and parallel. The orientation for the joint sets 
for both problems is shown in Figure 13. One set of joint planes is parallel to thex axis, 
and the other set of joint planes is parallel to the y axis. The joint planes are characterized 
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jointed 

Figure 13. Geometry for Cylindrical Cavity Problem 

by their unit normal vectors. The joint set parallel to they axis is associated with the normal 
vector n~ , which is parallel to the x axis. The joint set parallel to the x axis is associated 
with the normal vector , which is parallel to the y axis. Properties of the joint set with the 
normal n~ have a subscript of m, and properties of the joint set with normal n have a 
subscript of n. 

A number of parameters are required to describe the properties for the jointed rock material. 
(A full description of these parameters is given in Reference 16.) The material between the 
joint planes is assumed to be linear elastic, and is characterized by an elastic modulus, E ,  
and a Poisson7s ratio, v . The spacing for the joint set with normal n~ is 6,, and the spacing 
for the joint set with normal is 6,. Displacements normal to a joint plane k, where k can 
be m or n, in the direction normal to a joint plane is governed by the relation 

(EQ 23) 

where onorrnal, k is the stress normal to the joint plane and uk is the measure of the joint 
opening (or closure). As the joint opens, the maximum stress across the joint plane 
asymptotically approaches an upper limit, A, .  As the joint closes, the joint closure 
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asymptotically approaches a maximum closure value, Umax,k. For joint set m, the 
maximum tensile stress that can be carried by the joints is denoted by A,, and the 

maximum joint closure is denoted by U,,,, , . The analogous quantities for joint set n are 
A, and U,,, n .  Slip across a joint plane k is governed by a slip displacement, uslip, k ,  

versus shear stress behavior, G ~ ~ ~ ~ ~ ,  k ,  that is bilinear with a transition from elastic to 
inelastic behavior governed by a Mohr-Coulomb failure criterion. The relation between the 
slip and shear stress across a joint plane k is 

- Oshear, k 

G k  
' s l i p ,  k - 

for elastic behavior and 

- Oshrar, k 

Gk' 
' s l i p ,  I: - 

(EQ 24) 

(EQ 25) 

for inelastic behavior. The joint shear stiffness is Gk in the elastic range and Gk' in the 
inelastic range. A scalar slip function is defined by 

In Equation (26), p k  is the coefficient of friction for the joint plane, and co, is the joint 
plane cohesion. The joint slip behavior is elastic if F I 0 and inelastic if F > 0. For joint 
set m, the elastic shear stiffness is G ,  , the inelastic shear stiffness is G,', the coefficient 
of friction is pnt , and the joint cohesion is Co, ,. The analogous quantities for joint set n 

are G, ,  Gn', P,, and q),. 

The effects of a joint plane in a set are averaged over the distance separating the planes in 
that set. With this approach, the effects of the joint planes can be incorporated into a 
continuum model, which is the technique used for the jointed rock model in these studies. 

For the first problem, the elastic modulus of the matrix material, E ,  is 30.4~10 3 MPa and 

Poisson's ratio, v , is 0.24. For joint set m, the maximum closure, Urnax, , , is - 3 ~ 1 O - ~  m, 
the maximum joint tensile stress, A,, is 2.0 MPa, the elastic joint shear stiffness, G ,  , is 

1 ~ 1 0 ~  MPa/m, the inelastic joint shear stiffness, G,', is 10.0 MPa/m, the friction 

coefficient, p, , is 0.54, and the joint cohesion, Co, ,, is 0.1 MPa. The analogous 
properties for joint set n have the same values. The spacing for joint set rn, 6,, is 1 .O m, 
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and the spacing for joint set n, 6,, is 0.1 m. The elastic material surrounding the jointed 
3 rock material has an elastic modulus of 152x10 MPa and a Poisson’s ratio of 0.24. These 

values are based on values used in some studies done for the Yucca Mountain Project 19,20 . 

The cavity is pressurized to a value of 1.0 MPa, and there are no initial stresses in the 
jointed rock annulus or in the elastic material. The final internal pressure of 1.0 MPa 
represents a significant pressurization of the cavity. Both the finite element and coupled 
solutions required substantial computer .time because of the highly nonlinear behavior of 
the jointed rock model. The computer time required to obtain solutions for a 1.0 MPa 
pressure is large. No attempts were made to obtain solutions greater than 1.0 MPa. 

The problem has been modeled by using a finite element model only. The finite element 
mesh has an outer radius, b, of 200 m. This value is large in comparison to the cavity radius 
and the material interface radius so that the model reasonably approximates the case of a 
infinite elastic medium surrounding the jointed rock model annulus. Only a quarter of the 
geometry is used for the finite element model (Figure 14). Edges of the model lie along the 

t y  b = 2 0 0 m  

u, = 0 

Figure 14. Geometry and Boundary Conditions for Finite Element Mod- 
el for Circular Cavity Problems (Not to Scale) 

positive x and y axes. The edge of the model along the x axis is constrained so that uy = 0 ,  

and the edge of the model along they axis is constrained so that u, = 0. The outer surface 
‘.at b = 200 m is unconstrained, and the surface of the cavity is subjected to pressure, p .  The 
finite element model consists solely of quadrilateral elements. There are 1464 elements in 
the mesh, and the mesh is graded so that the mesh is finer at the inner radius than at the 
outer radius. Plane strain conditions specify the behavior normal to the xy plane. 

. 
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The problem has also been modeled by using a combined finite element and boundary 
element mesh. The mesh for this model is shown in Figure 15. The interior annulus of 
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Figure 15. Mesh for Coupled Problem with Material Interface at 16 m 

jointed rock material is modeled with finite elements. The elastic material is modeled by a 
boundary element contour that corresponds to the outer surface of the finite element mesh 
at ri = 16 m. A boundary element coincides with each element edge defining the outer 
surface of the finite element mesh. The boundary element nodes correspond to the finite 
element nodes. No use is made of symmetry in the problem, because the code being used 
for solution of the coupled problems is still experimental and has not been enhanced to 
exploit symmetry in problems. 

Results for the model consisting only of finite elements are compared to the coupled results 
as a means of checking the validity of the coupled results. There is no exact analytic 
solution for this problem (or even an analytic solution that approximates the problem well) 
because of the complexity of the jointed rock model and the biaxial nature of the problem. 
Comparisons of the coupled results with finite element results are the primary means of 
validation of the coupled results. The finite element results are obtained with the code 
JAC2D. 

Figure 16 compares the displacement in the x direction, u,, for the point on the cavity 
surface lying on the x axis as a function of pressure at the cavity surface for the finite 
element and coupled models. The graphs for the finite element and coupled results follow 
each other closely, and they cross over each other at several points. From approximately 
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Figure 16. Comparison of Coupled and Finite Element Displacement Re- 
sults at Points on the Cavity Surface (Material Interface at 16 m) 

0.3 MPa to 0.5 MPa, the displacements for the coupled results are less than the 
displacements for the finite element results. From approximately 0.5 MPa to 0.9 MPa, the 
displacements for the coupled results are greater than the displacements for the finite 
element results. The point at approximately 0.9 MPa marks another crossover point. This 
behavior is probably due to the different solution schemes used to obtain the finite element 
results and coupled results. As indicated earlier, JAC2D uses a conjugate gradient 
technique where the tangent stiffness varies over each iteration within a load increment. 
For each iteration within a load increment, the conjugate gradient routine calls the material 
routines and generates a new tangent stiffness matrix. The solver used for the coupled 
problems operates in a different manner. The coupled approach uses a Newton scheme to 
calculate a series of displacement increments corresponding to a load step. For each 
iteration in the Newton scheme, a system of linear equations is set up that is solved by the 
Bi-CGSTAB method. With the Newton scheme in the coupled approach, the tangent 
stiffness is constant for each Newton iteration within a load step. The Bi-CGSTAB method 
does not call material routines each time it iterates. It uses the tangent stiffness matrix 
calculated at the beginning of the Newton increment throughout the iterative process. The 
results from the jointed rock model are highly path dependent since both the joint normal 
behavior and slip behavior are nonlinear. The differences in the results for the finite 
element and coupled methods undoubtedly reflect some path dependent effects introduced 
by differences in the solution techniques. The differences are quite small however. At 1.0 

MPa, the coupled model predicts a value of 9 . 8 2 9 8 ~ 1 0 ~  m for u, at the point on the cavity 
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surface on the x axis. The finite element model predicts a value of 9.9141 x104 m, which 
is a difference of 0.8%. 

Figure 16 also shows a comparison of the displacement in the y direction, uy , for the point 
on the cavity surface lying on the y axis as a function of pressure at the cavity surface for 
the f ~ t e  element and coupled models. The finite element and coupled results show good 
agreement. The graphs for uy have several cross.over points, which is similar behavior 

displayed by the graphs for u, shown in Figure 16. The variations between the coupled 

and finite element results for uy are also due undoubtedly to the path dependent effects 
introduced by differences in the solution techniques. At 1.0 MPa, the coupled model 

predicts a value of 1 .6161~10-~ m for u,, at the point on the cavity surface on the y axis. 

The finite element model predicts a value of 1.6650~10-~ m, which is a difference of 2.9%. 

The curves for u, and uy in Figure 16 are dissimilar, which is to be expected. The joint 
spacing for the two joint sets is different, and this introduces directional effects. The 
geometry is symmetric about both the x and y axes, but the material properties are not. 

Figure 17 shows a comparison of the normal stress in the x direction, oXX, for the element 
at the cavity surface and adjacent to the x axis for the coupled and finite element models. 
The values for the normal stress are calculated at the centroid of the element, which means 
that the location for the stress shown in Figure 17 is close to the surface of the cavity, but 
not on the surface of the cavity. Because of the location of the stress shown in Figure 17, 
one would expect it to roughly approximate the applied pressure at the cavity surface. 
These graphs in Figure 17 show these expected results. The stress in the graphs at any point 
is close to the value of the applied pressure. The nonlinear behavior of the jointed rock 
model introduces a slight perturbation in the stress results in the applied pressure range of 
approximately 0.3 to 0.4 MPa. This perturbation is probably due to the influence of slip 
displacements on the joint planes. The slip displacements transition from an elastic to 
inelastic response. As to how this occurs in this problem is a complex process since there 
is a symmetric geometry and preferential material directions. The transition in slip 
behavior is probably reflected in the normal stresses as the perturbation seen in Figure 17. 
Both the coupled and finite element results show this perturbation. The coupled and finite 
element results show close agreement over the entire applied pressure range from 0 to 1.0 
MPa. At a pressure of 1.0 MPa, the value for oxX for the cavity surface element adjacent 
to the x axis is -0.9399 MPa for the coupled model. The value for finite element model is 
-0.9339 MPa, which is a difference of 0.6%. 

.. 
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Figure 17. Comparison of Coupled and Finite Element Stress Results for 
an Element on the Cavity Surface (Material Interface at 16 m) 

Pressurized Circular Cavity: Material Interface at 27 m 

For the second problem used to study the coupled method for problems involving jointed 
rock material, the first problem is modified so that the interface between the jointed rock 
and elastic material is at ri = 27 m. This is the only change made. All other geometry 
and material parameters used for the first problem remain the same. The cavity is 
pressurized to a maximum value of 0.5 MPa. The previous problem indicated that most of 
the significant nonlinear behavior near the cavity wall occurred below 0.5 MPa. Past 0.5 
MPa, the displacements near the cavity wall showed almost a linear increase with the 
increase in pressure. For this larger problem, it was decided to take the solution only up to 
a point that included the most significant nonlinear behavior plus the transition to the 
uniform (linear) behavior at 0.5 MPa. 

The mesh used to model this second problem for the coupled scheme is shown in Figure 
18. The interior jointed rock material is modeled with finite elements. The elastic material 
is modeled by a boundary element contour that corresponds to the outer surface of the finite 
element mesh at ri = 27 m. A boundary element coincides with each element edge 
defining the outermost surface of the finite element mesh. The boundary element nodes 
correspond to the finite element nodes. As in the previous coupled model, no use is made 
of symmetry. 
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Figure 18. Mesh for Coupled Problem with Material Interface at 27 m 

Results from a finite element model are also used to check the validity of the results from 
the second coupled problem. The finite element model uses the geometry and boundary 
conditions shown in Figure 14. There is an interface between the jointed rock material and 
elastic material in the finite element model at ri = 27 m. 

Figure 19 compares the displacement in the x direction, u,, for the point on the cavity 
surface lying on the x axis as a function of pressure at the cavity surface for the finite 
element and coupled models. The graphs for the finite element model and coupled results 
follow each other closely. They cross over each other several times, which is similar to the 
behavior exhibited in the previous problem. At 0.5 MPa, the coupled model predicts a 

value of 4 . 7 0 3 7 ~ 1 0 ~  m for u, at the point on the x axis on the cavity surface. The f i t e  

element model predicts a value of 4 . 9 1 3 0 ~ 1 0 ~  m, which is a difference of 4.2%. Figure 
19 also compares the displacement in the y direction, uy , for the point on the cavity lying 
on they axis as a function of pressure at the cavity surface for the finite element and coupled 
models. The graphs of uy for the two different models are very close. At 0.5 MPa, the 

coupled model predicts a value of 1.2485~10-~ m for uy at the point on the y axis on the 
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Figure 19. Comparison of Coupled and Finite Element Displacements at 
Points on the Cavity Surface (Material Interface at 27m) 

cavity surface. The finite element model predicts a value of 1 .2527~10-~ m, which is a 
difference of 0.3%. 

Figure 20 shows a comparison of the normal stress in the x direction, G , ~  , for the element 
at the cavity surface and adjacent to the x axis for the coupled and finite element models. 
The value of oXx for this element is close to the value of the applied pressure at any point. 
(See the discussion for the previous problem.) The nonlinear behavior of the jointed rock 
model introduces a noticeable perturbation in the stress results in the applied pressure range 
of 0.3 MPa to 0.4 MPa. This perturbation, like the one for the previous problem, is 
probably due to the influence of slip displacements on the joint planes. Both the coupled 
and finite element results show this perturbation. The coupled and finite element results 
show close agreement over the entire applied pressure range of 0 to 0.5 MPa. At a pressure 
of 0.5 MPa, the value for oXx for the cavity surface element adjacent to thex axis is -0.4506 

MPa. The value for the finite element model is -0.4488 MPa, which is a difference of 
0.4%. 

For this second problem, the graph for u, on the x axis at the cavity surface as a function 
of the applied pressure at the cavity surface for the coupled model is not as smooth as the 
graph for the finite element model. Near a cavity pressure of 0.4 MPa, there are several 
small jumps in the curve for u, in the graph for the coupled model. This is more evident 
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Figure 20. Comparison of Coupled and Finite Element Stress Results for 
an Element on the Cavity Surface (Material Interface at 27 m) 

in Figure 21 where the curve for u, for the coupled model is drawn as a solid line. 
Increasing the number of load increments (reducing the magnitude of the load increment 
for a step) will not necessarily eliminate these perturbations. Increasing the number of load 
increments may shift the perturbations, but they will remain in the graph for u, somewhere 
near the applied pressure of 0.4 MPa, and the magnitude of the perturbations will be about 
the same. Some of the perturbations in the graph for u, near the applied pressure of 0.4 
MPa can be reduced by changing the scale factors used to convert the boundary element 
formulation from one involving nodal point tractions to one involving nodal point forces. 
As indicated in Reference 9, the boundary element portion of the coupled problem is 
formulated in terms of nodal point tractions. It is necessary to convert the nodal point 
tractions to nodal point forces when the boundary element model is coupled to the finite 
element model. Because all the elements in the boundary element contour have the same 
length, a single constant value converts the boundary element description of the problem 
from nodal point tractions to nodal point forces. For the second sample problem, the scale 
factor for this conversion is the arc length of the boundary element contour (27 x 2n m) 
divided by the number of elements on the boundary element contour (96). The scale factor 
is 0 .5625~.  If this number is decreased by a small amount, 1.596, to 0.5540625~, then the 
graph for u, for the point on thex axis on the cavity surface becomes slightly smoother and 
the agreement of the solution with the finite element results is still quite good. The graph 
for u, for the reduced scale factor calculations is shown in Figure 21. When the applied 
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Figure 21. Results for u, with Reduced Scale Calculations 

cavity pressure is 0.5 MPa, the value for u, for the reduced scale factor calculations is 

4 . 7 6 2 6 ~ 1 0 ~  m, which varies from the finite element solution by 3.1%. At a cavity 
pressure of 0.5 MPa, the value for uy at the point on the cavity surface on the y axis is 

1 .2548~10-~ m, which varies from the finite element results by 0.2%. The value for on 
for the cavity surface element adjacent to the x axis is -0.4509 MPa, which varies from the 
finite element results by 0.5%. The graphs for uy and o;, are not shown. Only the results 
at 0.5 MPa are given here to verify that the reduced scale calculations maintain good 
agreement with the finite element results for these two values, uy and ox,. 

In order to do the reduced scale calculations for the second problem (ri = 27 m), it was 
necessary to increase the number of load increments. For the calculations with a scale 
factor of 0.5625n:, 340 load increments were used. To run the problem with the reduced 
scale factor of 0.5540625n, it was necessary to increase the number of load increments. 
For the solution presented in this memo, a total of 440 load increments was used. 

For the first problem (ri  = 16 m), there is no incentive to try some scheme for improving 

the smoothness of the graphs for displacements. The graphs for u, and u,, shown in Figure 

29 



16 for the coupled calculations show a degree of smoothness comparable to the finite 
element calculations. Some experimentation was done with this problem, however, to 
study the effects of varying the scale factor. The scale factor based on the geometry of the 
problem that converts the nodal point tractions to nodal point forces is the arc length of the 
boundary element contour (16 x 2n m) divided by 96, the number of elements on the 
contour. The scale factor was increased by 
approximately 1.5% to d ( 2 . 9 5 )  . When the cavity pressure is 1.0 m a ,  the value for u, 

at the point on the cavity surface on the x axis is 9 . 6 9 2 9 ~ 1 0 ~  m, which varies from the 
finite element results by 2.2%. The value for u,, at the point on the cavity surface on the y 

axis is 1 .6053~10-~ m, which varies from the finite element results by 3.6%. Finally, the 
value for oXX for the cavity surface element adjacent to the x axis is -0.93914 MPa, which 
varies from the finite element results by 0.6%. The differences between the increased scale 
results and the finite element results is comparable to the differences between the results 
with a scale factor of n /3  and the finite element results. 

This gives a scale factor of n/3. 

Changing the scale affected not only the smoothness of the solution, but also the number 
of load increments required to obtain a solution. The increased scale results were obtained 
by using a total of 300 load increments. In order to obtain results using a scale factor of 
n /3 ,  it was necessary to increase the number of load increments. The results presented in 
this memo with a scale factor of n/3 are for 350 load increments. 

Conclusions 

This report summarizes preliminary work to extend the scheme for coupling finite element 
and boundary element methods presented in Reference 9 from problems involving only 
elastic materials to problems involving nonlinear materials. The original coupling studies 
with strictly elastic problems required only the Bi-CGSTAB method to solve the resulting 
set of nonsymmetric equations. When the transition was made to coupled models involving 
nonlinear materials, it became necessary to use the Bi-CGSTAB approach in conjunction 
with a Newton solution scheme. For problems with nonlinear material behavior, it is 
necessary to apply the load incrementally. The Newton scheme subdivides a load 
increment into a series of linear problems. For each Newton iteration, the Bi-CGSTAB is 
used to calculate the corresponding displacement increment. The total displacement 
increment corresponding to the load increment is the sum of the displacement increments 
for each Newton iteration. This solution approach appears to be reasonably robust and 
accurate for the coupled problems involving nonlinear material behavior. 

Since the coupled problems presented in this report involve nonlinear material behavior, it 
is difficult to find analytic solutions for comparison. A combination of finite element 
results and some limited analytic results have been used as a basis for verification. The 
results presented in this report indicate that the coupled scheme is producing accurate 

30 



results for problems involving elastic-plastic material behavior and jointed rock behavior. 
Some of the results show a high degree of accuracy. The results indicate that the coupled 
scheme should be quite accurate, in general, for problems where there is a nonlinear 
material region surrounded by a region that can be modeled reasonably well by elastic 
material behavior. 

No timing studies have been done so far. The implementation used for these studies is 
experimental and certain portions of the code have not been optimized, which would make 
it difficult to run meaningful timing experiments. The primary objective of these initial 
studies has been to establish the accuracy and robustness of the coupled scheme. The 
question of efficiency is important primarily in regard to three-dimensional problems. The 
coupled scheme proposed in this report does eliminate the problem of large storage 
requirements, which is highly desirable. For coupled three-dimensional problems, it is 
probably wise to consider a simple geometry for the finite element/boundary element 
interface as a means of achieving an efficient coupling scheme. For the problem of a finite 
element region capturing nonlinear material behavior that is completely surrounded by a 
boundary element region, we can consider such simple shapes for the boundary element 
region as a parallelepiped or a sphere. These two shapes allow us to exploit symmetry, and 
they may also lead to simplifications in the boundary element formulation that can simplify 
the boundary element calculations. Simple geometric shapes may also allow the storage of 
boundary element information in a very compact form. Under these conditions, the 
boundary element information would not have to be regenerated. The advantages of 
limiting the finite element/boundary element interface to a simple shape is an area that 
needs further investigation. 

In conclusion, the research presented in this report shows that an iterative solution scheme 
for coupled finite element/boundary element materials is a viable scheme for problems with 
nonlinear material behavior in the finite element region. 
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