
C o d 12- a05?&-- 7
An Object Oriented Software Bus

Abstract

F. McGirt
Physics Division, Los Alamos National Laboratory, MS-M7 15., Los Alamos, NM 87545

and

,;?ti,.
J.F. Wilkerson 10 ~~~~

Department of Physics, University of Washington, Box 351560, Seattle, WA 98 195-1560

The current techniques of Object Oriented Software
Development (OOSD) provide a methodology to develop a
set of data acquisition and analysis software tools according
to a common specification, in a manner that is analogous to
the way computer hardware has been developed since the
advent of bus structures for minicomputers and
microcomputers.

This approach, here called the Object Oriented Software
Bus (OSB), allows one to write .independent Object
Oriented’ Programming (OOP) based software objects that
correspond directly to hardware objects, data acquisition
tasks, and data analysis tools. Software objects have been
written for numerous CAMAC, GPIB, and VME based
hardware modules. These software objects can then be
utilized in acquisition task objects to meet a specific
experiment‘s requirements. This OSB model has been used
successfully in numerous small laboratory-scale data
acquisition systems and in several large projects as well. A
sample of those projects include a neutron beta-decay
coincident experiment, an adaptive processing and fuzzy
logic support system, and a remote counting system for the
Sudbury Neutrino Observatory neutral-current detectors. We
will review the general ideas of the OSB method and present
some specific examples.

I. INTRODUCTION AND BACKGROUND

For years many individuals in a variety of fields have
searched for the ultimate tool that would aid in the
development, implementation, and maintenance of large
programming tasks. The current techniques of Object
Oriented Software Development may provide such a tool by
supporting a way to develop software according to a
common specification, similar to the way hardware has been
developed since the advent of bus structures for
minicomputers and microcomputers. This new approach is
called the Object Oriented Software Bus (OSB).

A. Scientific Computing

The decade of the 1960s was a blossoming period in
scientific computing in that for the first time large
mainframe-type computers ‘were available and were being
applied to the solution of problems that were previously felt
to be too complicated or too time-consuming for pure
human solution. During this time many specialized
numerical methods and techniques were developed that were
especially suited for use in large-scale computerized
numerical experiments. Examples of these were the Monte
Carlo method which predicted particle transport through
various media and the Sn method which was widely used for
calculating neutron flux in nuclear reactors. Indeed each
field of science and engineering developed their own rather
extensive set of computerized techniques especially suited
to their own interests.

Nearly all of these scientific programs were written in
procedure based languages such as FORTRAN. The focus
tended to be on processing and algorithms. Actions to data
were accomplished by passing the data from one subroutine
to another. Needless to say these efforts resulted in the
development of some very large computer programs which
soon were found to be very unwieldy and almost impossible
to be understood by orle person. Hordes of programmers and
scientists were then organized into project teams in efforts
to keep such programs running and also to add new required
features.

In the period of the 1970s and the early 1980s
controversy raged among the computer scientists and
programmers about how best to manage both the large
software development tasks (the actual coding techniques)
and the large number of programmers that were then felt to
be needed to accomplish the required work. The problem, of
course, was how to break up a large programming task into
smaller pieces each of a size that could be handled by one or
a few programmers, and then when each piece was complete
to have it fi t with the other pieces to successfully
accomplish the intended task. What evolved was “jigsaw
puzzle” programming at its best. Not only would the
programmers responsible for a particular piece of the puzzle
have to ensure that their piece performed its intended task
correctly, but they would also have to make sure it

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government Neither the United States Government nor any agency thereof, nor
any of their employees, make any warran@, express or implied, or assumes any legal liabiii-
ty or respoilsib+@ for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disdosed, or represents that ib use wouid not infringe privately
owned rights. Reference herein to any specific commercial product, p m c s , or service by
trade name, trademark, manufactum, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

Portions of this document may be illegible
in electronic image products. hugs are
produced from the best available original
document.

interfaced with all its adjoining pieces exactly. The
communication difficulties among the human project
members alone made the construction of successful
programming interfaces difficult. Numerous techniques such
as “structured programming”, “modular programming”,
“structured analysis”, etc. were invented as were new
programming languages such as Pascal, C, Modula, etc., in
an attempt to improve the life of the hapless programmer.
Some of these new methods helped a great deal, but none
offered a solution to all of the problems.

B. Data Acquisition and Control Computing

Analogous to the evolution in scientific computing, in
the 1960s scientists and engineers began to realize that
computers also would be very useful both in controlling
critical parts of laboratory experiments and in recording the
data from those experiments. No longer would the
experimenter have to sit with the experiment for long hours
tweaking control parameters and filling up page after page
of laboratory notebooks - the computer would perform such
tasks in a much more reliable fashion. However the
mainframe computers of the day such as the IBM 7094 with
their bulky peripheral equipment were in most cases much
larger and more expensive than the actual experiment to be
controlled.

Fortunatkly, Digital Equipment Corporation (DEC) in the
mid 1960s began to market their PDP line of small
computers which soon became known as “minicomputers”.
These devices such as the PDP-6, ‘the PDP-8, and later the
PDP-11 began to appear in -major accelerator and nuclear
reactor laboratories across the US and Europe. As these
minicomputers were quite affordable by small academic
institutions, computer control of even undergraduate-level
laboratory physics experiments became commonplace.

Along with the development of thk minicomputer came a
second new industry. Many new companies were formed
whose sole purposes were to supply accessory hardware for
the minicomputers such as new input-output devices. But
how was this possible? The hardware architecture of each of
the mainframe computers of the day were all different so
that it was almost impossible for a company other than the
manufacturer of the mainframe computer to even supply a
printer for another mainframe. The answer was, the hardware
bus which the minicomputer used to interface to its
peripheral equipment.

II. HARDWARE BUSES

A. The Computer Bus

The concept of buses was not new when minicomputers
came along since buses had been used for years to link
components in the electrical power industry; what was new
was the concept by DEC in the design of the minicomputer
to more clearly separate the function of the computer’s

‘

central processing unit (the component that executed the
logical and arithmetic functions of the computer) from the
peripheral functions of input-output such as keyboard
terminals, paper tape devices, and printers. A second but
equally important new concept by DEC was to extensively
(for that time) document and publish the specifications of
the hardware peripheral interface. These specifications
included not only the electrical signal levels and states, the
timing requirements, etc., but also instructions and hints on
how one could easily build hardware devices to perform
other specialized functions not supplied by DEC. Soon this
hardware interface to the minicomputer and its associated
specification documentation became known as a “computer
bus”.

Unlike the situation with the mainframe computer
community with its “out-of-control” hardware and software
development environment, the minicomputer developers
were able to more easily break up large tasks into small ones
and to give these smaller tasks to many people with a better
assurance of the separate pieces fitting together in the end
since there was a common specification for development -
the computer bus. Now for the first time one could purchase
a minicomputer from one company, a printer from a second
company, and even memory for the mini from a third
company. Indeed these individual manufacturers of
minicomputer components thrived and greatly improved the
capabilities of the end user computer system.

B: The Interface Bus

As the sales of minicomputer peripherals increased, the
manufacturers of these peripherals began to recognize the
potential market for many other interface components.
Among the market possibilities were the scientific and
military R&D communities and their desire to build and use
more and more complicated experiments and acquisition
systems. What was lacking from the manufacturers
viewpoint was any clear specification of a common interface
to all of the many different experiments or systems - it
would be very nice to be able to build a single digital input-
output interface or a single analog-to-digital converter
interface that would be useful for hundreds of different
applications rather than to have to build hundreds of
different interfaces each tailored to a single application. A
solution to this problem appeared in the form of the
interface bus or a definition similar to the computer bus
which allowed the computer to also interface to the “real
world” rather than just to its own peripherals. One of the
first of these was the specification of the Computer Assisted
Manufacturing And Control (CAMAC) interface bus which
has since seen widespread use in physics and military
applications. The Hewlett-Packard company invented an
interface bus known as the Hewlett-Packard Interface Bus
(HPIB) which evolved into the industry-standard interface
bus used for computer interfacing to test instruments such as
voltmeters and frequency counters. It is now known as the
General Purpose Interface Bus (GPIB). The trend today is to

form consortiums with industry, academic, and other
interested representatives and then to develop new interface
bus structures that attempt to meet the needs of all the
consortium members. The current VME and VXI interface
buses were both developed by such processes.

m. OBJECT ORIENTED SOFTWARFi
DEVELOPMENT

As discussed above the evolution of the computer
mainframe industry and the minicomputer/microcomputer
industry has proceeded along different lines with respect to
hardware development. The minicomputer/microcomputer
industry has made available from the beginning cross-
manufacturer standards or bus definitions which have
enabled many companies to produce competitive products
of similar function to the benefit of all concerned.
Unfortunately, the scientific and engineering communities'
software development process has not kept pace with the
evolution of hardware standards and in fact the software
process is still argued by many to be "an art" which can
never have sound engineering principles applied to its
development. However, the recent widespread availability
of languages that support Object Oriented Programming
methods and the concurrent maturation of Object Oriented
Software Development (OOSD) has made that argument
much less tajid.

m. OBJECT ORIENTED PROGRAMMING

Similar to other software methods, the OOSD process
can be grouped into three related areas: analysis, design, and
implementation. However, OOSD is distinguished by the
reliance on the concept of "objects" and by the use of Object
Oriented Programming languages to implement these
objects in code. One of the chief advantages of an object
approach is that it allows one to manage the complexity of
large intricate programs with software objects that
correspond to natural real world objects. However, there are
also other benefits.

A. Encapsulation

The basic difference between conventional programming
techniques and Object Oriented Programming techniques is
the way in which the data and the actions on that data are
treated. In conventional programming the data and all
actions on that data are treated as two separate entities. One
dkfines the required data structures, arrays, data common
blocks, etc., and even perhaps the data flow throughout the
program; then one separately defines the actions (or
functions) to be performed on the data. Obviously for each
new data structure defined, new functions must be defined
to performed the required actions on that data.

In Object Oriented Programming, both data and actions
on data are handled as one encapsulated entity. An object is
in fact defined to contain data and an associated set of

actions that operate on that data. Therefore when the data
are defined, the actions on that data are also defined. Instead
of a set of functions that act on the data there are a set of
objects interacting with each other.

B. Messages

Objects interact with each other by sending each other
messages. In order for say object A to make object B
perform an action on object A's data, then object B is sent a
message by the object A calling for the action to be
performed. For example, an object might be created that
represents a rectangle. Its data structure contains the location
of the four points of the rectangle. Its actions might include
drawing the rectangle, erasing the rectangle, and moving the
rectangle. To draw the rectangle on a terminal screen, a
draw message would be sent to the rectangle object. The
details of drawing the rectangle would be fully encapsulated
within the rectangle object.

C. Inheritance

Other than encapsulation, the other and more important
benefit of Object Oriented Programming is a property that
objects have of being able to inherit data and actions from
other objects. Every object is a member of a.class of objects.
A class definition describes the object's data structures and
the messages to which it may respond. In addition,
subclasses of objects may be defined which may be slightly .
different from their superclass but inherit all of the data
structures and actions of the superclass. For example, an
object that represents a square may be defined as a subclass
of the above rectangle class. The square object would inherit
the data structures and inherit and respond to the same
messages as the draw, erase, and move actions of its
rectangle object superclass, but would also have its own data
structures which could specify that it is a square rather than
a rectangle. It could also respond to additional messages
such as a block fill of the interior of the square. This
property of inheritance of objects is the primary reason for
the capability to reuse previously written (and debugged)
objects in more than one application.

V. EXAMPLES OF OBJECTS FOR PRACTICAL
APPLICATION

The use of OOPS techniques has improved the state of
software development for practical data acquisition and
control applications in three major areas: data analysis, user
interfaces, and hardware interfaces. .

A. Objects For Data Analysis

In supporting data analysis work one is able to create
different kinds of objects that represent different tasks to be
performed; each object is fully encapsulated with its data
structure that it must operate on; and these objects may be

reused over and over again in other data analysis programs.
If the data requirements for those programs are different,
subclasses of the existing objects may be written with only
the new differences being specified. If new or different
algorithms are required, existing objects may also be
subclassed with only the new differences being specified.
Examples of data analysis objects include a point plot
object, a histogram object, a FFT object, a Monte Carlo
object, etc. Companies are now also beginning to develop
and market data analysis libraries of objects which may
shortly replace some of the now popular conventional
numerical function libraries that require understanding of
the many function parameters in order to be used
successfully.

B. Objects For User Interfaces

The subject of user interfaces has always been a source
of heavy debate in software development circles as one
strives for the ultimate "user-friendly" operation. For data
acquisition and control applications the user interface can
also have an additional effect because of the sometimes
critical nature of the hardware or tasks being managed by
the software. One often spends major amounts of time and
code resources in the attempt to ensure that the user
interface is as robust as possible and that all interactions
between the user and the system are completely validated.
The recent increased use of Graphical User Interfaces (GUI)
has improved the situation for the user, but not for the
developer, since even slight modifications of the GUI
dialogs can have a potentially adverse effect on the expected
operation of the program.

This situation can now be vastly improved with the use
of OOPs techniques. As in the case of data analysis objects,
companies are marketing complete user interface object
libraries such as Symantec's Think Class Library and

I Metrowerks' Powerplant. These libraries contain objects for
virtually all items required for user interface dialogs -
buttons, text edit fields, file requests, popup menus, etc.
Since these items are implemented as fully encapsulated
objects they may be manipulated in exactly the same way as
the data analysis and hardware objects discussed above.
Therefore, one may now change user interfaces with little
effort knowing that these changes will have no adverse
effects on any other part of the program.

C Objects For Data Acquisition And Control

'

For data acquisition and control hardware interfaces, the
situation is even more improved. Hardware modules such as
bus controllers, bus interfaces, bus-resident processors, test
instruments, data monitors, etc., along with their associated
configuration data structures and required control tasks may
now be represented as true OOPs objects. An experimenter
may now choose from a set of CAMAC, W E , VXI, etc.,
hardware modules with each one of these modules
accompanied by its own fully encapsulated support software

-including data structures. In addition to being able to use
off-the-shelf hardware components in a standard hardware
bus environment, one is now able to also include off-the-
shelf software support in object format for each hardware
component. This software is developed and debugged once
and may be reused in many applications. .

VI. AN OBJECT-ORIENTED SOFIWARE BUS

The.result of the successful use of Object Oriented
Programming techniques in both data analysis and data
acquisition applications encourages one to envision the
future development of an industry standard object oriented
software bus environment very similar to the standard
hardware bus environments that evolved along with the
minicomputer and microcomputer development processes. If
this occurs, then software development will perhaps truly
become an engineering activity as it properly should be.
Indeed the hardest task for most software developers may
well be to unlearn much of what is known about traditional
programming practices.

A specific example of a standard object oriented software
bus has been developed to provide a starting point for future
data analysis, data acquisition and control applications and
to display demonstration techniques for those who wish to
assemble their own applications from current off-the shelf
objects or to include objects of their own design. Using this
example as a model, laboratory-scale data acquisition tasks
may be created and executed in days, rather than weeks or
months. Although this general example contains a
substantial amount of code, all of it is encapsulated in
reusable (and hopefully fully debugged) objects.

A. OSB Implementation

The following is a brief summary of the implementation
of an OSB-based data acquisition system.

A. I . "Modules"

In this OSB system each individual hardware device has
a corresponding OOP software object. All of these objects
are grouped under a category of "Modules". Each
module/object has 3-4 associated functions: configuration,
basic operations, special operations, and in some instances
utilities. Modules fully support only one piece of hardware.
There are a number of classes of modules, including
controller and UO types. Since modules support all possible
hardware operations, they are ideal for testing and
debugging the individual hardware devices.

A.2. "Tasks"

"Tasks" are objects that utilize one or more hardware
devices in a coordinated fashion to acquire data. Tasks
usually perform initialization of the hardware, control of the
acquisition process, and finally recording andlor display of

the data, In some instances the,direct control of the hardware
is taken care of by an embedded processor(s) located in the
W E . In these cases, the Task downloads the software to
the embedded CPU, starts the processor running, and simply
transfers data between the VME hardware and the user
computer.

A.3. "Analysis"

Analysis objects allow one to display and manipulate the
data. Examples of such objects were discussed in Section V,
subsection A.

A.4. General Code Architecture

The OSB architecture allows - within'a module object -
the selection of which hardware controller hardware (object)
is going to be used at run time, with no recompile of the
code. In addition, the OSB code was designed and written to
make the procedure of adding duplicate or new modules and
tasks very simple. Adding duplicate modules is supported at
runtime, When adding a completely new task or module the
programmer simply has to modify a few lines in a
configuration file. All GUI related details for that module or
task are then included.

because the object oriented software bus allowed one to
concentrate on the actual hardware functions of these new
components. Using the old development methods one would
have spent a large amount of time in validating the new user
interfaces, determining the possible effects of adding new
software to an existing system as well as dealing with the
new hardware features and functions of the new modules.
Finally, since two of theiprojects required some of the same
new objects one only had to develop those new objects once
and could then use them without any modification
whatsoever in the second project.

D. Future Work

Most of our efforts have concentrated on the
development of hardware modules and tasks for data
acquisition, with only simple analysis tools being supported.
We are now in the process of extending our data acquisition
frame work to allow the simple indusion of analysis tools
(in the exact same fashion as we'allow the addition of new
Modules and Tasks). We are also adding more sophisticated
display features, including a set of C++ based histogram
tools.

We anticipate that future advances by commercial
vendors of multi-platform compiler support will allow our
code to be used on a variety of end user computer platforms
and buses. - B. Supported Hardware .

VII. SUMMARY
Our OSB system has been developed on Macintosh

computers using the Metrowerks Codewarrior C++
compiler (earlier versions used the Symantec Think C OOP
compiler). Hardware buses that are supported include
CAMAC, GPIB, VME, and NuBus. The Macintosh
communicates with these links via dedicated NuBus based
parallel controllers (bus adapters) or ethernet connections.
Supported configurations'include single crate, multi-crate,
and mixed CAMAC-VME-GPIB systems. We also support
theMVME 147 and MVME167 embedded CPUs (currently
in standard C code). A variety of hardware modules have
been implemented as objects.

' C. Current Examples

The object oriented software bus model described above
has been used successfully in numerous small laboratory-
scale data acquisition systems and in several larger projects.

. A sample of these projects include a neutron beta-decay

This paper has described a new approach to. the
development of software for highly integrated software -
hardware systems such as the type used for data acquisition
and control. This new approach is called the Object Oriented
Software Bus and is a way to develop software according to
a common specification similar to the way interface
hardware has been developed since the advent of bus
structures for minicomputers and microcomputers. The key
concept of the OSB is the extension of the common use of
objects to support user interface and data an'alysis functions
to .the development of software objects that directly
correspond to real-world hardware interfaces and modules.

The authors welcome discussion on this topic. and
encourage its development toward a possible future industry
standard.

coincidence experiment, an adaptive processing and fuzzy
logic support system, and a remote counting system for the
Sudbury Neutrino Observatory neutral-current detectors. In
each of these applications the software bus approach allows
one to quickly understand and verify the operation of the
individual hardware components (as objects) and then to
easily assemble those components to form the final system.
The development of objects for new hardware modules that
each system required was also done in a very short period

*

