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ABSTRACT 

The problem of learning in the absence of external intelligence is discussed 
in the context of a simple model. The model consists of a set of randomly 
connected, or layered integrate-and fire neurons. Inputs to and outputs from 
the environment are connected randomly to subsets of neurons. The con- 
nections between firing neurons are strengthened or weakened according to  
whether the action is successful or not. The model departs from the tradi- 
tional gradient-descent based approaches to learning by operating at a highly 
susceptible “critical” .state, with low activity and sparse connections between 
firing neurons. Quantitative studies on the performance of our model in a 
simple association task show that by tuning our system close to this critical 
state we can obtain dramatic gains in performance. 

I. Introduction 

One of the most remarkable properties of biological neural networks is their ability to 
learn via self-organization. Simply put, this means that animals acquire experience and 
make sense of their environment without the aid of a “teacher” or some other form of 
external intelligence. To any non-expert that has ever seen a toddler acquiring a new skill 
with virtually no guidance or an animal adapting to a novel situation the statement would 
seem obvious. Yet for all’its simplicity and common sense this idea has long remained on 
the fringe of the experimental and theoretical research concerning brain function, in all 
likelihood because of the severity of the contraints it imposes on brain modelling. 

The term self-organization has been used in many different disciplines such as physics, 
chemistry, biology, and psychology, and often to convey different underlying mechanisms. 
Here, however, we will discuss self-organization solely in the context of learning1. 

The oldest and perhaps still most dominant approach to understanding the brain 
is what we call the “engineered brain” paradigm. According to this paradigm, brain 
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function emerges because nature, in the role of the engineer, has created all the necessary 
mechanisms by establishing an intricate web that brings billions of pieces together. But 
how can evolution achieve such an engineering feat? We do not deny the role of evolution 
in many aspects of brain function - the very fact that our brain is different than a lobster’s 
brain has to be. attributed to evolution. Nevertheless, it cannot possibly account for the 
brain’s ability to deal with unforseen situations, specific to an individual’s experience, or 
for novel ones that evolution had never had the opportunity to confront. 

,In providing an alternative to this view, the field of artificial neural networks (ANN) 
has been instrumental (For reviews see Hertz et a12 and Haykin3). The major contribution 
of ANN was that it demonstrated how non-trivial tasks can be achieved with networks 
composed of many simple computing elements. It also offered the first evidence that 
principles for brain function can be captured with models that have simple structure. 
Despite all the important insights ANN offered, however, they have not eliminated the 
need for an external intelligence. In the widely used supervised learning paradigm this 
takes the form of a “teacher” providing the system with a detailed scheme for the update 
of the synaptic weights based on knowledge of the goal to be achieved. Furthermore, most 
models for learning use gradient-based update rules, such as back-propagation, which are 
biologically implausible because they impose strong constraints on the architecture and 
they require computation that cannot be performed by the neural network itself. Thus, 
again the network is formed by design rather than by self-organization. 

The issues of self-organization have been addressed in the context of reinforcement 
learning  model^^*^. These models are more realistic in the sense that there is no teacher ex- 
plaining how to modify the synaptic weights, but only a “critic” telling the system whether 
its performance is successful or not. Most reinforcement learning models, however, still rely. 
on back-propagation4, or some other overseeing agency possessing prior knowledge of the 
problem, for the update of the synaptic weights. There is one exception, however. Barto’, 
in one of the first variants of his Associative Reward-PenaZty‘ (AR-P)  algorithm, discusses 
the idea of “self-interested” elements which do not have access to information other than 
a feedback signal from the environment broadcast simultaneously to all elements. We very 
much agree with his view that the difficulties in solving the problem of learning under the 
severe constraints imposed by self-organization are fundamental. 

Recently, we have proposed Democratic Reinforcement (DR) as a new approach to the 
long-standing issues of learning via self-organization7 . A similar approach was originally 
used to solve a non-trivial tracking problem by a continuous modification of its synaptic 
weights’. An evaluative feedback is sent democratically to all neurons simultaneously. 
The reinforcement rule operates in two modes: a “learning” mode when the evaluative 
feedback is positive, and an “exploration” mode when the evaluative feedback is negative. 
The reinforcement rule depends on the firing states of the presynaptic and postsynaptic 



neurons only. The novel feature of our model is that the threshold for firing is regulated 
in order to keep the output activity minimal. This sets the system up at or near a critical 
state, which turns out to be crucial for the performance of the network. 

To the best of our knowledge, the AR-P and the DR represent the only attempts 
to address the problem of learning via self-organization. However, the two algorithms 
are fundamentally different. While the AR-p is a gradient-descent algorithm, DR solves 
problems by operating at or near a highly-susceptible “critical” state in which the system 
becomes very sensitive to modification of the synaptic weights. To make our point more 
concrete we shall discuss the two algorithms in the context of a specific association task. 

11. The Model 
The problem we are addressing can be summarized as follows: How can many “agents”, 

be it neurons or some other kind of computing element, operating under local rules and 
receiving input only from a small fraction of other agents, cooperatively perform macro- 
scopic tasks imposed on them by their environment? For the agents to perform a task, 
they are given the freedom to tune some local parameters, such as their synaptic weights, 
to appropriate values. The severity of the prohlem arises from the requirements: i) that 
there can be no external intelligence with prior knowledge of the problem to instruct the 
agents on how to tune their parameters, only some form of overall evaluative feedback 
that tells the agents when some parameters essential for “survival” fall out of bounds, 
and ii) that the system is robust and Yersatile, allowing for solutions that are not task or 
architecture-specific. From an agent’s point of view any effective adjustment can be made 
only when the adjustment has a detectable impact on the overall, collective behavior of 
the system, allowing for a robust feedback. This, however, is a non-trivial requirement.. 
Most neural networks are rather insensitive to small changes in their parameters. Then we 
are left with a situation where no agent can “learn” from its actions because there is no 
way for it to know whether it should get “credit” or “blame” in the final evaluation. This 
is known as the credit-assignment problemg. 

The above problem remains largely unresolved. Of course, real biological networks 
serve as examples par-excellence that solutions to this problem exist, but how do we mimic 
this in a simple model? 

Our model imposes no constraints on the architecture whatsoever. In the most general 
case neurons are connected randomly to each other via unidirectional connections7. Each 
neural unit receives input and sends output to a small fraction of the total number of units. 
This ensures that the majority of units in our system are hidden, i.e., units that interact 
with the environment indirectly through other units. The system interacts with the outer 
world in three ways (Fig. 1); via i) its input units which receive input from the outside 
and thus provide the system with information about the state of the world; ii) its output 
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units which allow the system to act on the environment; nd iii) a binary yes/no feedback 
that is broadcast to all units and indicates whether the action to the environment was 
successful or not. 

Although from a conceptual point of view the random architecture is the most ap- 
pealing, we found the layered architecture of Fig.1 to work better”. Here each unit is 
connected to its three nearest neighbors in the next layer. The units can be either in 
a firing state, ni = 1, or in a quiescent state, ni = 0. In standard fashion, each unit 
integrates the input of its presynaptic units, hi = C j  Jijnj .  The unit fires if the input 
exceeds a threshold T. Input patterns, indicated in Fig. 1 by dark disks, are presented to 
the system by setting the corresponding units into a firing state. The system acts on the 
environment via its output sites, shaded disks in Fig. 1. The feedback, T ,  broadcast by the 
environment, takes two values; positive, T O ,  if the action was evaluated as successful and 
negative, -TO,  if not. Both the synaptic modification and the regulation of the threshold 
depend on the evaluative feedback, T .  

The update rule affects only connections between firing neurons, Jij  + Jij + [TJij + 
hij]n:nj , where nt denotes the state of the i’th neuron at the next time step and hij is a ran- 
dom noise between -ho and ho. The outgoing weights are normalized, Jij  + Jij /  xi Jij. 

The rule differs from standard gradient-descent based update rules in one crucial aspect: 
When T > 0 the system operates in a “learning” mode in which connections are being 
strengthened and the performance improves but when T < 0 the system operates in an 
“exploratory” mode in which strong connections are being weakened and weaker connec- 
tions are being strengthened. Typically, during this phase the performance deteriorates. 
In contrast, standard reinforcement schemes, such as AR-P,  rely on an improvement of the 
performance both for positive and negative T and perform the exploration stochastically. 

In addition to the synaptic update rules, T regulates the threshold, 2’. The objective is 
that the output activity is kept to a minimum. This is essential to ensure that the system 
attributes credit and blame to the minimum possible number of active units, in order to 
keep the network intact for other problems. In our first versions of the DR algorithm (Ref. , 

7, 8) the output activity was regulated to a small but arbitrarily chosen level of activity. 
Choosing a value for this parameter, however, assumes prior knowledge of tee task to 
be completed which runs counter to the self-organization philosophy. More recently’’ we 
have introduced a threshold mechanism that depends solely on T ,  T + 2’ + 6(r), where 6 
assumes a positive value, S+, if T > 0, and a negative value, 6-, if T < 0 (16-1 >> 6,). 

The typical criterion for success, T > 0, is that the selected output sites are active and 
for failure, T < 0, that at least one of the selected output sites is inactive. On first thought, 
that might sound like nonsense: the system can trivially obtain a positive feedback and 
thus get its reward by lowering its threshold, for instance, and keeping all of its output 
units active! However, the solution that the system opts for is the one where the selected 



output sites are active and all the rest are inactive. But even if we accept that such a rule 
makes computational sense what sense does it make in terms of biology? It is true that 
in some simple situations we may view this reward/penalty coming from the environment. 
This was the case in Ref. 7 where we used the analogy of a monkey that presses one or 
more buttons. In such a situation the environment indeed provides food as long as the 
selected buttons are among the ones pressed by the monkey. However, the monkey can 
not be considered successful merely because now and then it happens to press the right 
buttons. It is important to reduce the incorrect actions. In that respect it makes more 
sense to view T >,O not as an external reward but rather as the default mode of operation; 
an innate tendency of the system to minimize its efforts, while still having success. In 
contrast, one might view the T < 0 signal as an external wake-up call announcing that 
something is wrong, for instance when some parameter that is crucial to survival exceeds 
a certain value. The preference for passivity is sharply interrupted when T < 0. There is 
no symmetry between T < 0 and T > 0. 

How does the system solve problems? How does it successfully attribute credit and 
blame where it is due? Our studies indicate that this involves a build-up process in which 
the synaptic “landscape” reaches a near critical, highly susceptible state in which small 
changes in the synaptic weights can have a big effect on the collective activity. In such 
a state the system can establish efficiently causal relationships between changes in the 
synapses and the output. To achieve such a critical state the system: i) assigns credit and 
blame only to connections between active neurons, ii) keeps the activity low by means of 
the global regulation of the threshold and the local learning rules. By combination of these 
two mechanisms the system attributes credit and blame selectively by driving the system 
to the interface between success and failure. 

111. Self-organization in a Simple Association Task 
In an association task we ask the system to generate a certain input/output pattern. 

The insets in Figs. 2a, b offer examples of a simple association task. The system ac- 
complishes the task by “carving” paths between the input sites and the output sites. In 
previous ~ ~ r k ~ g ~ * ~ ~  we have investigated the performance of DR in a variety of situations: 
multiple input/output patterns, recovery from “damage”, tracking, conditioning, and so 
on. Here we will be concerned with the question of degradation of performance as the size 
of the association task grows. 

We consider an L1 x L2 layered network (Fig. 2a, inset). The number of layers in this 
networks is kept fixed, L1 = 16, while the lateral dimension is varied, L2 = 16,32,64,. . . 
The number, c, of input and output sites in the input/output pattern is varied accordingly, 
c = L2/l6. Here the input is confined to the top row and the output to the bottom row. 
To minimize crossover between paths we keep the input and output sites in pairs, well 



separated from each other. More precisely, each of the c columns of a given network 
contains a single input and a single desired output site. 

One motivation for this analysis is to demonstrate in a convincing manner the differ- 
ence between DR and AR-P.  We were not so interested in the absolute performances of 
the two algorithms, which tend to be sensitive to the tuning of the various parameters, 
but rather to the scaling of the performance with the size of the network. For our simu- 
lations with AR-P the same layered architecture was chosen (Fig. 1) but the number of 
layers was set to L1 = 4 (more layers would degrade the performance of AR-P too much). 
The lateral dimension is varied, L2 = 4,8,12,. . . The input/output patterns were chosen 
with similar considerations as in the DR case (see insets in Figs. 2a,b for a comparison). 
Figures 2a and 2b show examples of the performance, P ,  for DR and AR-P as a function 
of time. P is defined as the temporal average of the activity at the selected output sites 
minus the activity at the rest of the output sites. Appropriate normalization assures that 
best performance (P = 1). corresponds to persistent firing at the selected output sites only, 
whereas worst performance ( P  = -1) corresponds to persistent firing everywhere except 
at the selected sites. 

The DR is characterized by intervals of rapid improvement in performance, inter- 
rupted by sudden dips. This behaviour is a signature of the dual mode of operation of the 
algorithm: i) the learning or exploitation mode in which the system strengthens connec- 
tions and “weeds out’, irrelevant paths, and ii) the exploration mode in which the system 
tends to spread the activity in an attempt to explore new possibilities with subsequent 
decrease in the performance P. The AR-P performance versus time, although also highly 
irregular, seems to have a very different structure. It is dominated by very fast fluctuations 
at the smallest time scale (not seen here due to averaging of P).  At longer time scales 
it seems to be dominated by long periods during which the system seems trapped at a 
certain level of performance. Once the system escapes this barrier the transition to a new 
performance level appears to be very fast. We would like to point out that at the individ- 
ual level, and with the limited information available to it, each neuron always opts for the 

. change that it expects will increase the collective performance. In its decisions, however, 
it cannot take into account the positive or negative contributions of the other neurons. 
Therefore, it is only in a statistical sense that the system senses the gradient towards a 
better performance and can tune its synapses accordingly. The stochastic nature of the 
AR-P can also be witnessed in Fig. 3, (A). Here we depict the time to completion of 
the task, (averaged over many runs obtained with different initialization) as a function 
of the number, c, of input/output pairs. In a first order approximation, it seems that 
scales exponentially with c, t‘; - eac, with a N 1.6. 

DR (Fig. 3,O) has a significantly better scaling behavior. When plotted in a log-log 
plot (inset of Fig. 3) t‘; might follow a power law, & - cy, which subsequently breaks 



down around c = 8. If this is true it would not be inconsistent with our suggestion that 
the algorithm operates near a “critical”, highly susceptible regime. Although evidence 
of such a critical regime have previously been seen in the dynamics of our system7, this 
scaling behavior offers the first quantitative evidence. Clearly, this initial data seems to 
be amenable to more than one interpretation, therefore it is imperative that the direct 
consequences of our critical-state hypothesis are tested further. 

The convergence towards the critical state is accomplished by ensuring that the pat- 
terns of activity for different input signals do not overlap, on one hand, while, on the other 
hand, not being too sparse to connect inputs with desired outputs. In “sand” models of 
self-organized criticality,13 overlap of events (“avalanches”) is avoided by keeping the input 
rate low. Here, criticality is achieved by keeping the output low. 

It turns out that one can improve the efficiency, and carry the system closer to the 
critical point by further ensuring that changes in the activity, due to threshold modulation 
do not overlap in time, while not happening too infrequently with respect to the synaptic 
modification rate. We do so by allowing a variable rate 6+ for increasing the threshold 2”. 
More precisely the rise of the threshold is governed by 6+(t,r>, 6+ + a&+, where a > 1. 
Notice that now 6+ is time dependent in the sense that, while T > 0, it is constantly 
increased and T dependent in the sense that it is reset to a small value whenever T becomes 
negative, 6+ + ~-~16+. The rate of decrease of T, 6- is kept constant as before. The 
modified algorithm leads to a significant improvement of the performance (Fig. 3, (0)). 
Furthermore, the new curve, G ( c ) ,  gives a stronger indication for the existence of a power 
law with exponent y N 1.3. The modification was chosen for its simplicity rather than 
its performance and, based on our experience, it appears to be straightforward to obtain 
further improvements. 

N 

IV. Conclusions 
In this paper we have been concerned with the issues of self-organization which must 

play a central role in brain function. We propose a new mechanism through which efficient 
. self-organized learning takes place. The central element of is a build-up process that 
allows the system to operate at a c‘critica”’ state, characterized by high sensitivity to 
small modifications of the synaptic weights and low output activity. The combination of 
those features allows the system to establish strong cause-effect relationships that allow 
the coexistence of many input/output patterns. 

We suggest that the .mechanisms that enables self-organizion in our model might 
also underlie real brain function, so DR can serve as an excellent testbed for further 
exploration of the consequences of such a hypothesis. It might be worthwhile exploring 
whether some signature of the critical state described in our model can also be observed 
in actual experiments. 
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Figure captions 
Figure 1. Block diagram of the model, here shown for the layered architecture. The input sites 

that receive signals from the environment are shown as dark discs. The output sites 
are shown as shaded disks. Periodic boundary conditions are assumed for the layers. 

Figure 2. a) DR: Performance vs. time, for a 16 x 64 system and, for the input/output pattern 
shown in the inset. Light sites denote quiescent units and dark sites denote firing ones. 
The firing sites connect the input and output sites by effectively forming wires. The 
parameters of the algorithm have been set to: TO = 0.1, S+ = 0.01/16,5- = -0.05/16, 
and ho = 0.01. The performance is obtained by averaging over 50 time steps. b) 
AR-P: Performance vs. time (measured in ‘trials’), for a 4 x 16 system, and for the 
input/output pattern shown in the inset. The connections between input and output 
sites are more complicated. The central element of the algorithm is the update rule 
for the synaptic weights, J;j + Jij + T(T[n;- < n; >] + X ( l  - r)[-n;- < ni >])nj, 
where 77 is the ‘learning’ coefficient, X is the ‘penalty learning rate factor’, < n; >= 
tanh(P Cj Ji jn j )  is the average firing state, and T is the edutation feedback (for 
details see Hertz et d i n  Ref. 2). The parameters have been set to: 77 = 0.5, X = 0.001, 
and P = 0.5. The performance is obtained by averaging over 100 trials. Insets: Typical 
successful (P = 1) activity patterns for DR and AR-P. 

Figure 3. Average time elapsed, <, to completion of an assodiation task vs. number of in- 
put/output pairs, c. (A) AR-P: systems of size L1 x L2, L1 = 4 and L2 = 4,8,12, 
and 16 have been considered. For each case twenty runs were performed (with the 
exception of the 4 x 16 system for which we conducted five runs only, due to computing 
time limitations) for the same association task but with different initialization; (0) 
DR: systems of size L1 x L2, L1 = 16 and L2 = 16,32,64,128, and 192 have been 
considered. For the same association task fifty runs, with differing initializations, were 
considered; (0) DR with variable S+ (a = 1.05): systems of size L1 x L2, L1 = 16 and 
L2 = 16,32,64,128, and 256 have been considered. For the same association task, 
fifty runs with differing initializations, were considered. Vertical bars denote standard 
deviation. Inset: Same data in log-log plot. The solid lines represent least-squares 
fits. (A): N (0): N ~ l - ~ .  . 
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mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 



Figure 1 



Figure 2a 

-0 
-0 
0 - *  

co 
0 

co 
0 

d- 
o 

cu 0 
0 0 



Figure 2b 
0 
0 
0 

I I I I 

L 
w 
Y 

06 

ln 

0 
-0 
-0 
-0 -c o  

0 
-0 
-0 
-0 - a  

0 
-0 
-0 
-0 - e  

n 

0 
Y 

03 
0 

a 
0 

T 
0 

cv 
0 

0 
0 


