Calibration of an Explosives Vapor Generator Based on Vapor Diffusion from a Condensed Phase

John E. Parmeter,
Department 5848, Sandia National Laboratories
Albuquerque, NM, 87185-0782

Gary A. Eiceman, Douglas A. Preston, and Gregory S. Tiano,
Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003-8001

Abstract

In the field of explosives detection there is currently a need for a calibrated source of explosives vapor. Such a source could be used to test and calibrate explosives detection systems which identify explosives via the collection of vapor or airborne particulate matter. This paper describes the principles of operation and evaluation of one such explosives vapor generator. This generator is based on the diffusion of vapor from a condensed phase (i.e. solid or liquid) in a source reservoir, and the output has been tied to a National Institute of Standards and Technology (NIST) mass standard. We discuss results of the calibration of this generator using the explosives 2,4,6-trinitrotoluene (TNT) and cyclonite (RDX). The mass output of this generator is stable over hundreds of hours of continuous operation, and is adjustable from the low picograms/pg/sec range to at least 10 nanograms/ng/sec. In the case of TNT, the mass output correlates well with predictions based on gas phase diffusion theory. In the case of RDX, the agreement with theory is less good. This may be attributable to a variety of factors, possibly including inaccuracies in the published data on RDX vapor pressure as a function of temperature.

Introduction

The use of explosives by terrorists worldwide continues to fuel interest in areas of research relating to explosives detection. Development of explosives vapor detectors has been especially rapid during the past few years, with a growing number of increasingly sophisticated ion mobility spectrometry- (IMS), electron capture detector-, and chemiluminescence-based systems appearing on the market. A persistent problem in this area is the lack of a standardized source of explosives vapor which can be used to test and calibrate systems of this type. Producing well-quantified and reproducible amounts of explosives vapor is difficult for several reasons. First, the vapor pressures of these compounds are extremely low in some cases. For example, TNT has a vapor pressure of a few parts per billion, and RDX has a vapor pressure of a few parts per trillion [1]. Developing a generator to produce known amounts of vapor from these compounds without also producing significant amounts of impurity vapor will therefore clearly be a challenge. Second, explosives are highly reactive compounds which tend to decompose when heated, and thus there is the possibility that the vapor produced will contain more decomposition products than undissociated explosive. Finally, the vapor produced by a generator must be transported to the detector without a significant loss of the compound, and there are obvious engineering problems associated with doing this.

In this paper, we describe an explosives vapor generator developed at Varian Associates and tested at New Mexico State University (NMSU) and Sandia National Laboratories (SNL). This generator produces vapor by heating a condensed phase explosive in a glass sample tube within a constant temperature oven, with

This work was supported by the United States Department of Energy under Contract DE-AC04-94.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED.

MASTERS

SAN096-2016C
CONF-960767--21
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
the vapor output rate being controlled by the oven temperature and by diffusion of vapor up the tube. We discuss experiments dealing with the mass output calibration of this generator for both TNT and RDX at several different temperatures. Of particular interest is the fact that the mass output for both molecules has been tied to an NIST mass standard. The results of this study indicate that this generator offers a highly reproducible and quantifiable output of pure explosives vapor for these compounds.

Description of the Varian Vapor Generator

A schematic diagram of the Varian vapor generator is shown in Figure 1.

![Figure 1](image-url)

The explosives source reservoir is a small amount of solid explosive powder placed in the bottom of a thin glass tube. While the tube dimensions could be varied, the tubes used in this study were 10 cm long with an inner diameter of 0.47 cm. This tube is placed in a well insulated oven, the temperature of which can be varied from room temperature to at least 200 °C with an accuracy of ± 1 °C. The chosen oven temperature will result in a certain equilibrium vapor pressure for the chosen explosive, and some of the vapor will diffuse upwards to the top of the sample tube. At this point, the vapor diffusing from the tube is swept along horizontally in an inert carrier gas flow (usually nitrogen or purified air), and carried through a short glass ducting tube to exit the vapor generator. By pushing a button on a control box, the vapor flow can be directed either out the generator exit nozzle and thus into a desired detector, or through a zeolite trap where the vapor is readorsed (and thus only clean carrier gas leaves the generator).

The mass output of explosive vapor per unit time is thus controlled both by the oven temperature, which establishes the explosive vapor pressure, and by the tube dimensions, which control the rate of vapor diffusion to the top of the tube. Although the rate of carrier gas flow across the top of the tube will affect the concentration of explosives vapor in the carrier gas that exits the system, it does not affect the rate of explosives mass output. From gas phase diffusion theory, the mass output of such a vapor generator is predicted to be

\[
\text{(1) output} = \frac{\text{ADn}}{L},
\]

where the output is in units of mass (typically ng in this case)/sec, \(n_0 \) is the equilibrium vapor concentration of the explosive at the chosen oven temperature in units of mass/cm\(^3\), \(D \) is the gas phase diffusion coefficient of the explosive molecule in units of cm\(^2\)/sec, \(A \) is the cross sectional area of the sample tube in cm\(^2\), and \(L \) is the tube length in cm [2]. The values of \(A \) and \(L \) are known, while \(n_0 \) can be obtained from published equations or tables of vapor pressure data [3]. The value of \(D \) is not known precisely and this prevents an exact prediction of the generator mass output, but for cyclic compounds such as TNT and RDX the value of \(D \) is typically 0.05-0.1 cm\(^2\)/sec. Thus once the output has been measured for a given set of experimental conditions, equation (1) can be used to back out a value of \(D \), and a \(D \) value that falls within the expected range serves to at least partially validate both the model and the observed results. Another noteworthy feature of equation (1) is that it predicts an exponential increase in generator mass output with oven temperature, due to the exponential increase in \(n_0 \).

Experimental

A detailed description of the experiments performed in this work will be provided elsewhere [4]. In brief, the experiments performed at NMSU involved running the vapor generator continuously over dozens or hundreds of hours, with the sample tube being removed from the vapor generator periodically to measure the sample mass loss on a Perkin-Elmer AD-6 microbalance. This balance has a sensitivity of ±
0.1 microgram, and calibration with a 10 milligram NIST standard mass provided the desired traceability to a NIST mass standard. The carrier gas was nitrogen with a flow rate of 100 cm³/min. Experiments at SNL utilized an ion mobility spectrometer (IMS) detector to calibrate the vapor generator independently by comparing the IMS signal from the generator to the IMS signal for direct injections of known explosives masses from standard solutions. These experiments will also be described in detail elsewhere [4].

Results

Figure 2 shows mass loss data as a function of time for TNT at four different generator oven temperatures from 79 to 150 °C.

The plotted data at each temperature are clearly very linear, and the slopes of these lines yield the mass output per unit time. The inset lists the average mass output rates at these temperatures, which range from 84 pg/sec at 79 °C to 13 ng/sec at 150 °C. The linearity of these plots over hundreds of hours confirms the stability of the vapor generator output, and the approximately exponential increase of output with temperature is in accord with theoretical predictions. Plots of this type for RDX are quite similar but show somewhat more experimental scatter. The mass output values for RDX vary from 50 pg/sec at 110 °C to 2.4 ng/sec at 150 °C. Several experimental runs were performed at both of these temperatures and at 129 °C, and the relative standard deviation in the measured output at each temperature is approximately 25-30 %.

Figure 3 shows plots of log(output rate) versus 1/T for both TNT and RDX.

The approximately linear nature of these plots provides a more direct demonstration of the exponential increase of the output rate with temperature for both molecules. Note that the mass output values for TNT are 1-2 orders of magnitude above those for RDX due to the much higher vapor pressure of TNT.

Figure 4 shows data obtained at SNL in performing an IMS calibration of the vapor generator output for TNT at 79°C.
The upper plot shows the IMS response to timed doses of TNT from the vapor generator, while the lower plot shows the IMS response to known TNT masses from standard solutions. Taking the ratio of the two slopes yields an estimate of the mass output that is completely independent of that derived from the mass loss plot. The value obtained in this case is 85 pg/sec, and the nearly perfect agreement with the mass loss estimate is a further confirmation of the accuracy of these results. These IMS studies also showed that the generator output consisted of pure TNT vapor entrained in the carrier gas, with no identifiable impurities or decomposition products.

Conclusions

The results of this study indicate that the Varian vapor generator provides a quantifiable and reproducible source of explosives vapor for both TNT and RDX, and the mass output for each explosive can be tied to an NIST mass standard through carefully performed mass loss measurements. This generator could thus be used to test or calibrate explosives detectors which detect vapor of these two compounds. Use of this generator with other types of explosives such as dinitrotoluene (DNT) may also be possible, but has yet to be demonstrated. Initial experiments with pentaerythritol tetranitrate (PETN) indicate that molecular decomposition may be a severe problem with that compound.

Acknowledgments

The authors thank Brady Pompei for obtaining data in the vapor generator/IMS studies, and James Arnold of Varian for many useful technical discussions. This work was supported by the Department of Energy Office of Safeguards and Security, and by the Federal Aviation Administration under Interagency Agreement number DTFA03-95-X-90005.

References

[3] The most commonly cited source of vapor pressure data for TNT and RDX is the so-called

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.