An asynchronous modulation/demodulation technique for robust identification of a target for 3-D pose determination

PDF Version Also Available for Download.

Description

Engineers at Oak Ridge National Laboratory have been investigating the feasibility of computer-controlled docking in resupply missions, sponsored by the US Army. The goal of this program is to autonomously dock an articulating robotic boom with a special receiving port. A video camera mounted on the boom provides video images of the docking port to an image processing computer that calculates the position and orientation (pose) of the target relative to the camera. The control system can then move the boom into docking position. This paper describes a method of uniquely identifying and segmenting the receiving port from its background ... continued below

Physical Description

7 p.

Creation Information

Ferrell, R.K.; Jatko, W.B. & Sitter, D.N. Jr. March 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Engineers at Oak Ridge National Laboratory have been investigating the feasibility of computer-controlled docking in resupply missions, sponsored by the US Army. The goal of this program is to autonomously dock an articulating robotic boom with a special receiving port. A video camera mounted on the boom provides video images of the docking port to an image processing computer that calculates the position and orientation (pose) of the target relative to the camera. The control system can then move the boom into docking position. This paper describes a method of uniquely identifying and segmenting the receiving port from its background in a sequence of video images. An array of light-emitting diodes was installed to mark the vertices of the port. The markers have a fixed geometric pattern and are modulated at a fixed frequency. An asynchronous demodulation technique to segment flashing markers from an image of the port was developed and tested under laboratory conditions. The technique acquires a sequence of images and digitally processes them in the time domain to suppress all image features except the flashing markers. Pixels that vary at frequencies within the filter bandwidth are passed unattenuated, while variations outside the passband are suppressed. The image coordinates of the segmented markers are computed and then used to calculate the pose of the receiving port. The technique has been robust and reliable in a laboratory demonstration of autodocking.

Physical Description

7 p.

Notes

OSTI as DE96009721

Source

  • 10. SPIE`s international symposium on aerospace/defense sensing and controls, Orlando, FL (United States), 8-12 Apr 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96009721
  • Report No.: CONF-9604105--5
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 231336
  • Archival Resource Key: ark:/67531/metadc667035

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 21, 2016, 9:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ferrell, R.K.; Jatko, W.B. & Sitter, D.N. Jr. An asynchronous modulation/demodulation technique for robust identification of a target for 3-D pose determination, article, March 1, 1996; Tennessee. (digital.library.unt.edu/ark:/67531/metadc667035/: accessed November 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.