Calculating Contained Firing Facility (CFF) Explosive Firing Zones

J. W. Lyle

October 20, 1998
CALCULATING CONTAINED FIRING FACILITY (CFF)
EXPLOSIVE FIRING ZONES

J. W. Lyle

October 20, 1998

I. INTRODUCTION

The University of California awarded LLNL contract No. B345381 for the design of the facility to Parsons Infrastructure & Technology, Inc., of Pasadena, California. The Laboratory specified that the firing chamber be able to withstand repeated firings of 60 Kg of explosive located in the center of the chamber, 4 feet above the floor, and repeated firings of 35 Kg of explosive at the same height and located anywhere within 2 feet of the edge of a region on the floor called the anvil. Other requirements were that the chamber be able to accommodate the penetrations of the existing bullnose of the Bunker 801 flash X-ray machine and the roof of the underground camera room.

These requirements and provisions for blast resistant doors formed the essential basis for the design. The design efforts resulted in a steel-reinforced concrete structure measuring (on the inside) 55 x 51 feet by 30 feet high. The walls and ceiling are to be approximately 6 feet thick. Because the 60-Kg charge is not located in the geometric center of the volume and a 35-Kg charge could be located anywhere in a prescribed area, there will be different dynamic pressures and impulses on the various walls, floor, and ceiling, depending upon the weights and locations of the charges.

The detailed calculations and specifications to achieve the design criteria were performed by Parsons and are included in Reference 1.

Reference 2, Structures to Resist the Effects of Accidental Explosions (TM5-1300), is the primary design manual for structures of this type. It includes an analysis technique for the calculation of blast loadings within a cubicle or containment-type structure. Parsons used the TM5-1300 methods to calculate the loadings on the various firing chamber surfaces for the design criteria explosive weights and locations. At LLNL the same methods were then used to determine the firing zones for other weights and elevations that would give the same or lesser loadings. Although very laborious, a hand calculation of the different variables is possible, and an example is given in Appendix C. Fortunately, a code called "SHOCK" is available to perform these calculations rapidly, and the code runs on a personal computer. The original code was developed by the firm Amman and Whitney, which they called "Painpres"; this was modified to its present form by the U.S. Naval Civil Engineering Laboratory. Parsons used the SHOCK code extensively, as well as several single- and multiple-degree-of-freedom codes, which were provided by the U.S. Corps of Engineers. In addition, Parsons based their analysis/design on procedures stipulated in the publication DOE/TIC-11268, A Manual for the Prediction of Blast and Fragment Loadings on Structures.

Loadings on structures in Reference 2 and in calculations performed with the SHOCK code are based on weights of explosives in pounds of TNT equivalent. The equivalency of an explosive (for its blast effects on structures) is calculated by the ratio of its heat to detonation to that of TNT. We intend to use the explosive C-4 for testing the response of the firing chamber. Various values of the ratio for C-4 are available: Reference 2 lists numbers leading to a ratio of 1.15, while 1.13 is the ratio calculated from numbers given in the LLNL Explosives Handbook (Reference 3). Parsons used a ratio value of 1.3 for generic high explosive-to-TNT equivalency. For design purposes, Reference 2 recommends a 20 percent increase in explosive weight. Parsons adopted this recommendation. Therefore, for calculational purposes, 60 Kg of generic high explosive was taken to be equivalent to 206.3 pounds of TNT. That is, 60 Kg x 2.204 lb/Kg x 1.3 x 1.2 = 206.3 lb (TNT).
II. CALCULATIONAL DETAILS

In section 2-14.2.1. of Reference 2, it is written:

An approximate method for the calculation of the internal shock pressures has been developed using theoretical procedures based on semi-empirical blast data and on the results of response tests on slabs. The calculated average shock pressures have been compared with those obtained from the results of tests of a scale-model steel cubicle and have shown good agreement for a wide range of cubicle configurations. This method consists of the determination of the peak pressures and impulses acting at various points of each interior surface and then integrating to obtain the total shock load. In order to simplify the calculation of the response of a protective structure wall to these applied loads, the peak pressures and total impulses are assumed to be uniformly distributed on the surface. The peak average pressure and the total average impulse are given for any wall surface. The actual distribution of the blast loads is highly irregular, because of the multiple reflections and time phasing and results in localized high shear stresses in the element. The use of the average blast loads, when designing, is predicated on the ability of the element to transfer these localized loads to regions of lower stress. Reinforced concrete with properly designed shear reinforcement and steel plates exhibit this characteristic.

The procedure for the determination of the shock loads was programmed for solutions on a digital computer. In Reference 2, the results are presented for the average peak reflected pressures on 48 figures and for the average scaled unit impulse on 48 more figures. Fortunately, the text and figures of TM5-1300 are available as computer software which includes the means to read the curves. In this way it is easy to obtain peak reflected pressure, impulse, pulse length, and other variables as a function of the scaled distance \(Z = \frac{R}{W^{1/3}} \). In this expression, \(R \) is the distance from charge center to the surface in question and \(W \) is the weight of explosive in equivalent TNT pounds. The CFF firing chamber geometry is included in the range of the plotted variables so that extrapolation was not necessary, but interpolation between as many as six curves was required to fit some charge locations. The use of the SHOCK code greatly assists this process. Again from Reference 2: "The wall (if any) parallel and opposite to the surface in question has a negligible contribution to the shock loads for the range of parameters used and was therefore not considered."

The analysis leads to the conclusion that each of the chamber surfaces can be characterized by the peak pressure it would experience. For the floor, it is obvious that the maximum charge at 4 feet elevation yields the highest pressure, which at a point directly beneath the charge would be approximately 15,541 psi. The same charge gives the highest pressure on the ceiling, approximately 78 psi. The various locations of a 120.3-lb charge two feet inside the anvil edge yield the highest pressures on the walls according to the following table.
Initially, a series of calculations was performed for the 4-foot elevation to determine where 60 Kg of explosive could be placed so that the design criteria pressures on the walls would not be exceeded. The area on the anvil for the location of 35-Kg charges was taken as given. The analysis was then extended at 5-Kg intervals to fill in the space on the anvil between 35 Kg and 60 Kg. The same analysis also located the 1-Kg line. Near the north wall there is a trench in the floor, so we thought it prudent to move the 1-Kg line a foot or so inwards to avoid bending the trench cover plates. Intermediate explosive weights between the north 1-Kg line and the 35-Kg line on the anvil were placed linearly between these two boundaries as an expedient even though it is recognized that the analysis is non-linear. In order to minimize stresses on the camera room roof, the area south of the 35 Kg line is limited to 1.5 Kg. After discussions with Larry Simmons, it was agreed that the maximum distributed explosive charge on top of the underground camera room would be 1.5 Kg. We derived this quantity by considering that, at most, 10 mirror pads would be used on a single shot. The pad’s present explosive weight is 75 grams, but anticipated future design modifications may call for up to 150 grams each.

The SHOCK code features a reduced area calculation. This scheme was used to calculate the pressures and the impulse on the inner door frame of the equipment blast door as if the door were there rather than its actual location at the outer wall, 6 feet further away from the explosive. The results were then used to adjust the map profiles so that the design criteria of pressure and impulse at the virtual door would not be exceeded for any explosive weight or location.

The explosive weights at elevations less than 4 feet were calculated so that the pressures on the floor would not exceed 15,541.3 psi. The explosive weights at elevations greater than 4 feet were calculated so that the pressure on the ceiling would not exceed 78 psi.

TABLE 1

SHOCK CODE CALCULATIONS OF PRESSURE ON THE VARIOUS SURFACES

<table>
<thead>
<tr>
<th>Surface</th>
<th>Pressure at Point Nearest Charge psi</th>
<th>Maximum Average Pressure on Entire Surface psi</th>
<th>Caused by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor</td>
<td>15,541.3</td>
<td>400.9</td>
<td>206.3 lb TNT, centered</td>
</tr>
<tr>
<td>Ceiling</td>
<td>163.5</td>
<td>78</td>
<td>206.3 lb TNT, centered</td>
</tr>
<tr>
<td>W wall</td>
<td>2,408.7</td>
<td>234.7</td>
<td>120.3 lb TNT, 8.53 feet from wall (as if no bullnose were present)</td>
</tr>
<tr>
<td>E wall</td>
<td>664.2</td>
<td>126.9</td>
<td>120.3 lb TNT, 13 feet from wall</td>
</tr>
<tr>
<td>N wall</td>
<td>2,602.9</td>
<td>209</td>
<td>120.3 lb TNT, at NE corner of the anvil</td>
</tr>
<tr>
<td>S wall</td>
<td>229.7</td>
<td>80</td>
<td>120.3 lb TNT, centered, 19.7 feet from S wall</td>
</tr>
</tbody>
</table>
III. CONCLUSIONS

The curves in Appendix A are meant to be used by ramrods, physicists, engineers, and bunker personnel for the safe placement of explosives at the facility. The objective is to maintain a minimum safety factor of 1.7 to the elastic limit for the most heavily stressed chamber element. It is important to point out that the curves are based solely on calculations. The firing chamber will be fitted with gauges to measure strain. As testing and operating experience are accumulated, it is quite likely that the map profiles will be adjusted. In addition, deviations from these maps are possible with appropriate analysis, approval, and planning and through the use of blast attenuation and mitigation measures.

The most heavily stressed element in the firing chamber will be the floor. Various configurations of attenuating materials have been tested that minimize blast damage to the floors of explosive testing chambers. Some examples can be found in Reference 4. Additional experimental studies are now being planned as the basis for the design of an attenuating system for use in the firing chamber. Our intention is to use such a system until experience shows that it may not be necessary.
IV. REFERENCES

APPENDIX A

Explosive firing zone maps are given for six elevations 1, 2, 3, 3.5, 4, 8, and 12 feet above the floor. The region to the south of the 35 Kg line, over the camera room roof, is limited to a total distributed explosive weight of 1.5 Kg. This will accommodate 10 optical turning mirror explosive pads of 150 grams each.
APPENDIX B

The SHOCK code calculations for the 206.3-lb charge of TNT are given for the floor and roof of the firing chamber to illustrate the technique and because this charge results in the highest loading on the respective surfaces. This is followed by calculations for the 120.3-lb charge, giving the maximum pressures on the east and west walls (no bullnose accounted for). One of a series of code calculations is given to illustrate the reduced area feature of the code. In this case, a virtual blast door on the inside of the chamber wall is being considered. The two remaining plots are the calculated peak average pressures and impulses on the virtual door from charges of various weights as they are moved along a bisecting normal line to the door.
PROGRAM SHOCK
VERSION 1.0

**
PROGRAM FOR CALCULATION OF AVERAGE BARRIER REFLECTED
SHOCK PRESSURES AND IMPULSES DUE TO AN INCIDENT WAVE AND
REFLECTED WAVES FROM ONE TO FOUR REFLECTION SURFACES.
ORIGINAL PROGRAM "PAIMPRES" DEVELOPED BY AMMANN AND WHITNEY
MODIFIED TO "SHOCK" BY NAVAL CIVIL ENGINEERING LAB
INPUT DATA

DATA SET TITLE:
A206FS FLOOR

A. CHARGE WEIGHT, LBS...................... 206.30
B. DISTANCE TO BLAST SURFACE, FT........... 4.00
C. WIDTH OF BLAST SURFACE, FT.............. 55.00
D. HEIGHT OF BLAST SURFACE, FT............. 51.00
E. HORIZONTAL (X) DISTANCE TO CHARGE
 FROM REFLECTING SURFACE NO. 2, FT....... 27.50
F. VERTICAL (Y) DISTANCE TO CHARGE
 FROM REFLECTING SURFACE NO. 1, FT....... 25.50
G. REFLECTING SURFACES
 "1" FOR FULL REFLECTION, "0" FOR NONE
 SURFACE 1 (FLOOR)....................... 1
 SURFACE 2 (LEFT SIDEWALL)............... 1
 SURFACE 3 (CEILING)..................... 1
 SURFACE 4 (RIGHT SIDEWALL)............. 1
H. REDUCED SURFACE CALCULATION............. NO

ANALYSIS RESULTS

AVERAGE SHOCK PRESSURE AND SCALED SHOCK IMPULSE ON BLAST SURFACE
DUE TO WAVES OFF REFLECTING SURFACES DUE TO INCIDENT WAVE

<table>
<thead>
<tr>
<th>SURFACE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPULSE</td>
<td>8.6</td>
<td>7.9</td>
<td>8.6</td>
<td>7.9</td>
</tr>
<tr>
<td>PRESSURE</td>
<td>16.9</td>
<td>14.3</td>
<td>16.9</td>
<td>14.3</td>
</tr>
</tbody>
</table>

24.3
400.9

MAXIMUM AVERAGE SHOCK PRESSURE AND TOTAL AVERAGE SHOCK IMPULSE ON BLAST SURFACE

SCALED IMPULSE 57.2
IMPULSE 338.2
PRESSURE 400.9

IMPULSE DURATION ON BLAST SURFACE = 1.69 MS
SCALED IMPULSES HAVE BEEN DIVIDED BY W**(1/3) = 5.91
SCALED IMPULSES ARE PSI-MS/LBS**1/3, IMPULSES ARE PSI-MS, PRESSURES ARE PSI
PROGRAM SHOCK
VERSION 1.0

**
PROGRAM FOR CALCULATION OF AVERAGE BARRIER REFLECTED
SHOCK PressURES AND IMPULSES DUE TO AN INCIDENT WAVE AND
REFLECTED WAVES FROM ONE TO FOUR REFLECTION SURFACES.
ORIGINAL PROGRAM "PAIMPRES" DEVELOPED BY AMMANN AND WHITNEY
MODIFIED TO "SHOCK" BY NAVAL CIVIL ENGINEERING LAB

INPUT DATA

DATA SET TITLE:
A206RS ROOF

A. CHARGE WEIGHT, LBS.................. 206.30
B. DISTANCE TO BLAST SURFACE, FT........ 26.00
C. WIDTH OF BLAST SURFACE, FT........... 55.00
D. HEIGHT OF BLAST SURFACE, FT........... 51.00
E. HORIZONTAL (X) DISTANCE TO CHARGE
FROM REFLECTING SURFACE NO. 2, FT...... 27.50
F. VERTICAL (Y) DISTANCE TO CHARGE
FROM REFLECTING SURFACE NO. 1, FT....... 25.50
G. REFLECTING SURFACES
"1" FOR FULL REFLECTION, "0" FOR NONE
SURFACE 1 (FLOOR)..................... 1
SURFACE 2 (LEFT SIDEWALL)............. 1
SURFACE 3 (CEILING)................... 1
SURFACE 4 (RIGHT SIDEWALL)........... 1
H. REDUCED SURFACE CALCULATION........... NO

ANALYSIS RESULTS

AVERAGE SHOCK PRESSURE AND SCALED SHOCK IMPULSE ON BLAST SURFACE
DUE TO WAVES OFF REFLECTING SURFACES DUE TO INCIDENT WAVE

<table>
<thead>
<tr>
<th>SURFACE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPULSE</td>
<td>12.7</td>
<td>10.8</td>
<td>.12.7</td>
<td>10.8</td>
</tr>
<tr>
<td>PRESSURE</td>
<td>33.6</td>
<td>25.3</td>
<td>33.6</td>
<td>25.3</td>
</tr>
</tbody>
</table>

MAXIMUM AVERAGE SHOCK PRESSURE AND TOTAL AVERAGE SHOCK IMPULSE ON BLAST SURFACE

SCALED IMPULSE	67.0
IMPULSE	395.6
PRESSURE	78.0

IMPULSE DURATION ON BLAST SURFACE =10.14 MS
SCALED IMPULSES HAVE BEEN DIVIDED BY W**(1/3) = 5.91
SCALED IMPULSES ARE PSI-MS/LBS**1/3, IMPULSES ARE PSI-MS, PRESSURES ARE PSI
PROGRAM SHOCK
VERSION 1.0

PROGRAM FOR CALCULATION OF AVERAGE BARRIER REFLECTED
SHOCK PRESSURES AND IMPULSES DUE TO AN INCIDENT WAVE AND
REFLECTED WAVES FROM ONE TO FOUR REFLECTION SURFACES.
ORIGINAL PROGRAM "PAIMPRES" DEVELOPED BY AMMANN AND WHITNEY
MODIFIED TO "SHOCK" BY NAVAL CIVIL ENGINEERING LAB

INPUT DATA

DATA SET TITLE:
EW35KG

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>CHARGE WEIGHT, LBS.................................</td>
<td>120.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.</td>
<td>DISTANCE TO BLAST SURFACE, FT..........................</td>
<td>13.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.</td>
<td>WIDTH OF BLAST SURFACE, FT................................</td>
<td>51.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.</td>
<td>HEIGHT OF BLAST SURFACE, FT................................</td>
<td>30.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| E. | HORIZONTAL (X) DISTANCE TO CHARGE
FROM REFLECTING SURFACE NO. 2, FT........... | 19.50 |
| F. | VERTICAL (Y) DISTANCE TO CHARGE
FROM REFLECTING SURFACE NO. 1, FT.......... | 4.00 |
| G. | REFLECTING SURFACES
"1" FOR FULL REFLECTION, "0" FOR NONE
SURFACE 1 (FLOOR)..................... | 1 |
SURFACE 2 (LEFT SIDEWALL)............. | 1 |
SURFACE 3 (CEILING)........................ | 1 |
SURFACE 4 (RIGHT SIDEWALL)............. | 1 |
| H. | REDUCED SURFACE CALCULATION.................. | NO |

ANALYSIS RESULTS

AVERAGE SHOCK PRESSURE AND SCALED SHOCK IMPULSE ON BLAST SURFACE
DUE TO WAVES OFF REFLECTING SURFACES DUE TO INCIDENT WAVE

<table>
<thead>
<tr>
<th>SURFACE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPULSE</td>
<td>19.5</td>
<td>9.3</td>
<td>9.3</td>
<td>6.6</td>
<td>21.8</td>
</tr>
<tr>
<td>PRESSURE</td>
<td>105.7</td>
<td>19.4</td>
<td>18.1</td>
<td>10.3</td>
<td>126.9</td>
</tr>
</tbody>
</table>

MAXIMUM AVERAGE SHOCK PRESSURE AND TOTAL AVERAGE SHOCK IMPULSE ON BLAST SURFACE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SCALED IMPULSE</td>
<td>66.5</td>
</tr>
<tr>
<td>IMPULSE</td>
<td>328.2</td>
</tr>
<tr>
<td>PRESSURE</td>
<td>126.9</td>
</tr>
</tbody>
</table>

IMPULSE DURATION ON BLAST SURFACE = 5.18 MS

SCALED IMPULSES HAVE BEEN DIVIDED BY W**(1/3) = 4.93
SCALED IMPULSES ARE PSI-MS/LBS**1/3, IMPULSES ARE PSI-MS, PRESSURES ARE PSI
PARSONS B LOCATION

120.3 ft TNT

PROGRAM SHOCK
VERSION 1.0

PROGRAM FOR CALCULATION OF AVERAGE BARRIER REFLECTED
SHOCK PressURES AND IMPULSES DUE TO AN INCIDENT WAVE AND
REFLECTED WAVES FROM ONE TO FOUR REFLECTION SURFACES.
ORIGINAL PROGRAM "PAIMPRES" DEVELOPED BY AMMANN AND WHITNEY
MODIFIED TO "SHOCK" BY NAVAL CIVIL ENGINEERING LAB

DATA SET TITLE:
B120WW

A. CHARGE WEIGHT, LBS. 120.30
B. DISTANCE TO BLAST SURFACE, FT. 8.53
C. WIDTH OF BLAST SURFACE, FT. 51.00
D. HEIGHT OF BLAST SURFACE, FT. 30.00
E. HORIZONTAL (X) DISTANCE TO CHARGE
FROM REFLECTING SURFACE NO. 2, FT. 25.50
F. VERTICAL (Y) DISTANCE TO CHARGE
FROM REFLECTING SURFACE NO. 1, FT. 4.00
G. REFLECTING SURFACES
"1" FOR FULL REFLECTION, "0" FOR NONE
SURFACE 1 (FLOOR) 1
SURFACE 2 (LEFT SIDEWALL) 1
SURFACE 3 (CEILING) 1
SURFACE 4 (RIGHT SIDEWALL) 1
H. REDUCED SURFACE CALCULATION NO

ANALYSIS RESULTS

+--+
| AVERAGE SHOCK PRESSURE AND SCALED SHOCK IMPULSE ON BLAST SURFACE |
DUE TO WAVES OFF REFLECTING SURFACES	DUE TO INCIDENT WAVE				
SURFACE	1	2	3	4	
IMPULSE	20.1	7.4	8.9	7.4	24.3
PRESSURE	180.3	12.8	16.8	12.8	234.7
+--+

MAXIMUM AVERAGE SHOCK PRESSURE AND TOTAL AVERAGE SHOCK IMPULSE ON BLAST SURFACE

SCALED IMPULSE 68.2
IMPULSE 336.4
PRESSURE 234.7

IMPULSE DURATION ON BLAST SURFACE = 2.87 MS
SCALED IMPULSES HAVE BEEN DIVIDED BY W**(1/3) = 4.94
SCALED IMPULSES ARE PSI-MS/LBS**1/3, IMPULSES ARE PSI-MS, PRESSURES ARE PSI
PROGRAM SHOCK
VERSION 1.0

PROGRAM FOR CALCULATION OF AVERAGE BARRIER REFLECTED SHOCK PRESSURES AND IMPULSES DUE TO AN INCIDENT WAVE AND REFLECTED WAVES FROM ONE TO FOUR REFLECTION SURFACES.

ORIGINAL PROGRAM "PAIMPRES" DEVELOPED BY AMMANN AND WHITNEY
MODIFIED TO "SHOCK" BY NAVAL CIVIL ENGINEERING LAB

INPUT DATA

- **DATA SET TITLE:** EW35DR

 A. CHARGE WEIGHT, LBS.................. 120.12
 B. DISTANCE TO BLAST SURFACE, FT........ 13.00
 C. WIDTH OF BLAST SURFACE, FT........... 51.00
 D. HEIGHT OF BLAST SURFACE, FT.......... 30.00
 E. HORIZONTAL (X) DISTANCE TO CHARGE
 FROM REFLECTING SURFACE NO. 2, FT..... 19.50
 F. VERTICAL (Y) DISTANCE TO CHARGE
 FROM REFLECTING SURFACE NO. 1, FT..... 4.00
 G. REFLECTING SURFACES
 "1" FOR FULL REFLECTION, "0" FOR NONE
 SURFACE 1 (FLOOR)..................... 1
 SURFACE 2 (LEFT SIDEWALL)............. 1
 SURFACE 3 (CEILING)................... 1
 SURFACE 4 (RIGHT SIDEWALL)............ 1
 H. REDUCED SURFACE CALCULATION......... YES

ANALYSIS RESULTS

AVERAGE SHOCK PRESSURE AND SCALED SHOCK IMPULSE ON REDUCED SURFACE DUE TO WAVES OFF REFLECTING SURFACES DUE TO INCIDENT WAVE

<table>
<thead>
<tr>
<th>SURFACE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPULSE</td>
<td>32.0</td>
<td>11.9</td>
<td>7.3</td>
<td>4.8</td>
<td>35.8</td>
</tr>
<tr>
<td>PRESSURE</td>
<td>266.3</td>
<td>25.7</td>
<td>11.2</td>
<td>5.4</td>
<td>303.4</td>
</tr>
</tbody>
</table>

MAXIMUM AVERAGE SHOCK PRESS AND TOTAL AVERAGE SHOCK IMPULSE ON REDUCED SURFACE

- **SCALED IMPULSE** 91.7
- **SCALED IMPULSE** 452.5
- **SCALED IMPULSE** 303.4

IMPULSE DURATION ON BLAST SURFACE = 2.98 MS

SCALED IMPULSES HAVE BEEN DIVIDED BY $W^{**(1/3)} = 4.93$

SCALED IMPULSES ARE PSI-MS/LBS**1/3, IMPULSES ARE PSI-MS, PRESSURES ARE PSI
REDUCED AREA CALCULATION FOR EQUIPMENT
BLAST DOOR. DESIGN PRESSURE AND IMPULSE
BASED ON MAXIMUM LOAD PREDICTED BY
PARSONS FOR NEAREST 35 KG CHARGE.

Charges located on the centerline of the door at various distances from the inside door frame. Calculated Pr and Ir are at the inside door frame.

DISTANCE FROM WALL DOOR FRAME

MAXIMUM AVERAGE SHOCK PRESSURE

DESIGN PRESSURE

W.E. KG.

2000

1000

500

0

10

20

30

40

50

60

70

80

90

100

110

120
REDUCED AREA CALCULATION FOR EQUIPMENT BLAST DOOR. DESIGN PRESSURE AND IMPULSE BASED ON MAXIMUM LOAD PREDICTED BY PARSONS FOR NEAREST 35 KG CHARGE.

Curves relate to charges located on the centerline of the door at various distances from the inside door frame. Calculated Pr and Ir are at the inside door frame.
APPENDIX C

These hand calculations illustrate the methods of Reference 2 that can be used to calculate explosive firing zones. The use of the SHOCK code has replaced these methods principally because of its speed and its reduced area feature which allows a determination of average shock and impulse on specified areas and points.
The HE Loading Curves for the Firing Chamber of the Contained Firing Facility (CFF), Site 300, LLNL.

C. Y. KING

April 1998
Contents

<table>
<thead>
<tr>
<th>Topics</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary & Conclusions</td>
<td>2</td>
</tr>
<tr>
<td>I. Criteria</td>
<td>3</td>
</tr>
<tr>
<td>II. Procedures & Objectives</td>
<td>3</td>
</tr>
<tr>
<td>III Calculations</td>
<td>4</td>
</tr>
<tr>
<td>1. At 4', To determine the critical cases</td>
<td>5</td>
</tr>
<tr>
<td>2. To find the required distances from</td>
<td>6-11</td>
</tr>
<tr>
<td>the inside surface of the wall</td>
<td></td>
</tr>
<tr>
<td>3. Vertical loadings (from 1' to 4')</td>
<td>11</td>
</tr>
<tr>
<td>4. Horizontal Curves at 3' above the floor</td>
<td>11-14</td>
</tr>
<tr>
<td>5.</td>
<td>15-16</td>
</tr>
<tr>
<td>6.</td>
<td>18-21</td>
</tr>
<tr>
<td>7. To determine the stand-off distance</td>
<td>21</td>
</tr>
<tr>
<td>8. To find the distance from the floor</td>
<td></td>
</tr>
<tr>
<td>where the stress of the ceiling is 4 KSI</td>
<td>21</td>
</tr>
<tr>
<td>9. Limiting load above the camera room</td>
<td>21</td>
</tr>
<tr>
<td>Fig. 1 Horizontal Curves at above floor</td>
<td>22</td>
</tr>
<tr>
<td>1.</td>
<td>23</td>
</tr>
<tr>
<td>3.</td>
<td>24</td>
</tr>
<tr>
<td>4.</td>
<td>25</td>
</tr>
</tbody>
</table>

References 26
Summary & Conclusions

1. Horizontal loading curves for 1', 2', 3', and 4' above the floor are plotted.
2. From 4' to 18', the horizontal curves are the same as 4'.
3. The stand-off distance is 1'-6".
4. Limiting load above the camera room is 1500 lb to prevent damage of the camera lens.
I. Criteria:
 1. At 4' above the floor:
 a. 35 kg H.E at the edges where is 2' inside of the boundaries of the anvil plates.
 b. 60 kg H.E at the center of the chamber.
 2. The maximum concrete compressive stress on the floor is 12 ksi. 4 ksi concrete is at else-where.
 (Ref: Parsons Infrastructure & Technology Group, "OFF" Title I, 100% Design Review, "OFF" Anvil and Floor Blast Analysis For "OFF", LLNL, dated 31-8-97 Appendix 4, Summary of Maximum Compressive Stress along the Floor Depth.)

II. Procedures & Objectives:
 1. To calculate the required horizontal distances from the inside surface of the walls, for 35 kg to 60 kg at 5 kg increment, and from 35 kg down to the stand-off distance.
 2. To determine the amount of H.E. in kg at the different elevations for the loading Curves.
 3. To determine the stand-off distance from the walls.
 4. The end product is one of the H.E. loading curves for the firing chamber of the Contained Firing Facility (OFF) at different elevations.
III Calculations

Conversion from HE (Kg) to TNT (lb)

\[
W_{TNT} = W_{Kg\ HE} \times 2.2046 \times 1.3 \times 1.2
\]

Where 2.2046 is the conversion factor from Kg to Pounds.

1.3 is the factor from H.E. to TNT.

1.2 is the factor of Safety (Ref. 2. Chapter 1, Article 1-3)

\[
W_{TNT} = W_{Kg\ HE} \times 3.439
\]

<table>
<thead>
<tr>
<th>(W_{Kg\ HE})</th>
<th>(W_{lb\ TNT})</th>
<th>(W_{lb^{1/3}\ (16/3)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.860</td>
<td>0.951</td>
</tr>
<tr>
<td>0.5</td>
<td>1.720</td>
<td>1.198</td>
</tr>
<tr>
<td>1</td>
<td>3.439</td>
<td>1.509</td>
</tr>
<tr>
<td>2</td>
<td>6.878</td>
<td>1.902</td>
</tr>
<tr>
<td>3</td>
<td>10.317</td>
<td>2.177</td>
</tr>
<tr>
<td>4</td>
<td>13.756</td>
<td>2.394</td>
</tr>
<tr>
<td>5</td>
<td>17.195</td>
<td>2.581</td>
</tr>
<tr>
<td>6</td>
<td>20.634</td>
<td>2.743</td>
</tr>
<tr>
<td>7</td>
<td>24.073</td>
<td>2.887</td>
</tr>
<tr>
<td>8</td>
<td>27.512</td>
<td>3.019</td>
</tr>
<tr>
<td>9</td>
<td>30.951</td>
<td>3.140</td>
</tr>
<tr>
<td>10</td>
<td>34.390</td>
<td>3.252</td>
</tr>
<tr>
<td>15</td>
<td>51.585</td>
<td>3.723</td>
</tr>
<tr>
<td>20</td>
<td>68.780</td>
<td>4.097</td>
</tr>
<tr>
<td>25</td>
<td>85.975</td>
<td>4.414</td>
</tr>
<tr>
<td>30</td>
<td>103.170</td>
<td>4.690</td>
</tr>
<tr>
<td>35</td>
<td>120.365</td>
<td>4.937</td>
</tr>
<tr>
<td>W Kg HE</td>
<td>W kg TNT</td>
<td>W kg</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>40</td>
<td>137.560</td>
<td>5.162</td>
</tr>
<tr>
<td>45</td>
<td>154.755</td>
<td>5.369</td>
</tr>
<tr>
<td>50</td>
<td>171.950</td>
<td>5.561</td>
</tr>
<tr>
<td>55</td>
<td>189.145</td>
<td>5.740</td>
</tr>
<tr>
<td>60</td>
<td>206.340</td>
<td>5.909</td>
</tr>
</tbody>
</table>

1. At 4' above the floor, to determine the critical cases.

North Wall (left portion)

- 35 Kg $R = 8.5'$
 \[z = \frac{8.5}{4.937} = 1.72 \text{ ft/15 lb (control)} \]
- 60 Kg $R = 25.5'$
 \[z = \frac{21.5}{5.909} = 4.32 \]

North Wall (right portion)

- 35 Kg $R = 25.5 - 6 = 19.5'$
 \[z = \frac{19.5}{4.937} = 3.95 \text{ (control)} \]
- 60 Kg $R = 25.5'$
 \[z = \frac{25.5}{5.909} = 4.32 \]

West Wall

- 35 Kg $R = 9.57'$
 \[z = \frac{9.57}{4.937} = 1.90 \text{ (control)} \]
- 60 Kg $R = 27.50'$
 \[z = \frac{27.5}{5.909} = 4.65 \]

South Wall

- 35 Kg $R = 19.5'$
 \[z = \frac{19.5}{4.937} = 3.95 \text{ (control)} \]
- 60 Kg $R = 25.5'$
 \[z = \frac{25.5}{5.909} = 4.32 \]

East Wall

- 35 Kg $R = 15'$
 \[z = \frac{15}{4.937} = 2.63 \text{ (control)} \]
- 60 Kg $R = 27.5'$
 \[z = \frac{27.5}{5.909} = 4.65 \]
To find the required distances from the inside surface of the wall.

North wall (left portion)

From 35' kg up

35' kg \(R = 8.5 \) (E θ 6") \(z = \frac{E.5}{4.937} = 1.72 \)

\(R_{40} = 1.72 \times 5.162 = 8.879' \) (8' - 10 5/8")

\(R_{45} = 1.72 \times 5.369 = 9.235' \) (9' - 2 7/8")

\(R_{50} = 1.72 \times 5.561 = 9.565' \) (9' - 6 7/8")

\(R_{55} = 1.72 \times 5.740 = 9.873' \) (9' - 10 1/2")

\(R_{60} = 1.72 \times 5.909 = 10.163' \) (10' - 2")

From 35' kg down

\(R_{30} = 1.72 \times 4.696 = 8.067' \) (8' - 0 7/8")

\(R_{25} = 1.72 \times 4.419 = 7.592' \) (7' - 7 1/4")

\(R_{20} = 1.72 \times 4.097 = 7.211' \) (7' - 2 5/8")

\(R_{15} = 1.72 \times 3.723 = 6.404' \) (6' - 4 7/8")

\(R_{10} = 1.72 \times 3.322 = 5.593' \) (5' - 7 2/3")

\(R_{9} = 1.72 \times 3.140 = 5.401' \) (5' - 4 3/8")

\(R_{8} = 1.72 \times 3.019 = 5.193' \) (5' - 2 3/16")

\(R_{7} = 1.72 \times 2.887 = 4.966' \) (4' - 11 5/8")

\(R_{6} = 1.72 \times 2.743 = 4.718' \) (4' - 8 7/8")

\(R_{5} = 1.72 \times 2.581 = 4.439' \) (4' - 5 3/8")

\(R_{4} = 1.72 \times 2.396 = 4.121' \) (4' - 1 1/8")

\(R_{3} = 1.72 \times 2.177 = 3.744' \) (3' - 9")

\(R_{2} = 1.72 \times 1.902 = 3.271' \) (3' - 3 1/2")

R. = 1.72 \times 1.569 = 2.596' (2' - 7 1/4")
Engineering Calculation

| R_{0.5} = 1.72 \times 1.198 = 2.061' \ (2'-0 3/4'') |
| R_{0.25} = 1.72 \times 0.751 = 1.316' \ (1'-11 3/4'') |

North Wall (Right Portion)

From 35 kg up

- \(R = 19.5' \)
- \(\varepsilon = \frac{19.5}{4.537} = 4.35 \)
- \(R_{35} = 3.95 \times 4.357 = 17.5' \ (17'-9 1/2'') |
- \(R_{20} = 3.95 \times 5.162 = 20.396' \ (20'-4 3/4'') |
- \(R_{16} = 3.95 \times 5.369 = 21.208' \ (21'-2 1/2'') |
- \(R_{10} = 3.95 \times 5.561 = 21.961' \ (21'-11 3/8'') |
- \(R_{8} = 3.95 \times 5.740 = 22.673' \ (22'-8 1/8'') |

From 35 kg down

- \(R_{35} = 3.95 \times 4.690 = 18.526' \ (18'-5 7/8'') |
- \(R_{25} = 3.95 \times 4.914 = 19.455' \ (19'-6 1/4'') |
- \(R_{20} = 3.95 \times 4.978 = 19.626' \ (19'-6 1/2'') |
- \(R_{15} = 3.95 \times 3.723 = 14.706' \ (14'-9 1/2'') |
- \(R_{10} = 3.95 \times 3.252 = 12.843' \ (12'-10 1/4'') |
- \(R_{8} = 3.95 \times 3.140 = 12.463' \ (12'-4 7/8'') |
- \(R_{6} = 3.95 \times 3.019 = 11.926' \ (11'-11 3/8'') |
- \(R_{4} = 3.95 \times 2.887 = 11.744' \ (11'-9 3/4'') |
- \(R_{3} = 3.95 \times 2.743 = 10.935' \ (10'-11 3/8'') |
- \(R_{5} = 3.95 \times 2.584 = 10.195' \ (10'-2 3/4'') |
- \(R_{4} = 3.95 \times 2.396 = 9.464' \ (9'-10 3/4'') |
- \(R_{3} = 3.95 \times 2.177 = 8.599' \ (8'-10 3/8'') |
ENGINEERING CALCULATION

\begin{align*}
R_2 &= 3.95 \times 1.92 = 7.513' (7' - 6\frac{1}{2}"
R_1 &= 3.95 \times 1.509 = 5.961' (5' - 11\frac{1}{8})
R_{0.15} &= 3.95 \times 1.198 = 4.732' (4' - 8\frac{3}{8})
R_{0.25} &= 3.95 \times 0.951 = 3.757' (3' - 9\frac{1}{8})
\end{align*}

\textbf{West Wall}

\textbf{From 35' Up}

\begin{align*}
R_{35} &= 1.9 \times 4.937 = 9.37' (9' - 4\frac{1}{2})
R_{30} &= 1.9 \times 5.162 = 9.808' (9' - 10\frac{3}{4})
R_{25} &= 1.9 \times 5.369 = 10.201' (10' - 2\frac{1}{8})
R_{20} &= 1.9 \times 5.561 = 10.566' (10' - 6\frac{3}{8})
R_{15} &= 1.9 \times 5.790 = 10.906' (10' - 10\frac{5}{8})
R_{10} &= 1.9 \times 5.909 = 11.227' (11' - 2\frac{3}{4})
\end{align*}

\textbf{From 35' Down}

\begin{align*}
R_{30} &= 1.9 \times 4.690 = 8.911' (8' - 11"
R_{25} &= 1.9 \times 4.914 = 8.387' (8' - 4\frac{3}{4}"
R_{20} &= 1.9 \times 4.097 = 7.784' (7' - 9\frac{1}{2})
R_{15} &= 1.9 \times 3.723 = 7.079' (7' - 1"
R_{10} &= 1.9 \times 3.252 = 6.179' (6' - 2\frac{1}{2})
R_{9} &= 1.9 \times 3.146 = 5.966' (5' - 11\frac{3}{8})
R_{8} &= 1.9 \times 3.019 = 5.736' (5' - 8\frac{1}{2})
R_{7} &= 1.9 \times 2.887 = 5.485' (5' - 5\frac{7}{8})
R_{6} &= 1.9 \times 2.743 = 5.212' (5' - 2\frac{3}{8})
R_{5} &= 1.9 \times 2.581 = 4.964' (4' - 10\frac{7}{8})
R_{4} &= 1.9 \times 2.396 = 4.552' (4' - 6\frac{3}{8})
Engineering Calculation

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>C. Y. King</td>
<td>4/20/98</td>
</tr>
</tbody>
</table>

\[
R_3 = 1.9 \times 2.177 = 4.156' (4' 1\frac{3}{8}"
\]
\[
R_2 = 1.9 \times 1.902 = 3.614' (3' 7\frac{3}{8}"
\]
\[
R_1 = 1.9 \times 1.509 = 2.867' (2' 10\frac{1}{2}"
\]
\[
R_5 = 1.9 \times 1.198 = 2.276' (2' 3\frac{5}{8}"
\]
\[
R_{25} = 1.9 \times 0.951 = 1.807' (1' 7\frac{3}{8}"
\]

South Wall

From 35 Kg up

\[
R_{35} = 3.95 \times 4.937 = 19.5' (19' 6"
\]
\[
R_{40} = 3.95 \times 5.162 = 20.390' (20' 4\frac{3}{8}"
\]
\[
R_{45} = 3.95 \times 5.529 = 21.706' (21' 8\frac{1}{4}"
\]
\[
R_{50} = 3.95 \times 5.561 = 21.966' (21' 11\frac{1}{4}"
\]
\[
R_{55} = 3.95 \times 5.740 = 22.673' (22' 8\frac{1}{8}"
\]
\[
R_{60} = 3.95 \times 5.909 = 23.341' (23' 4\frac{1}{2}"
\]

From 35 Kg down

\[
R_{30} = 3.95 \times 4.690 = 18.526' (18' 6\frac{3}{8}"
\]
\[
R_{25} = 3.95 \times 4.914 = 17.485' (17' 5\frac{3}{4}"
\]
\[
R_{20} = 3.95 \times 4.097 = 16.183' (16' 2\frac{1}{4}"
\]
\[
R_{15} = 3.95 \times 3.723 = 14.706' (14' 8\frac{1}{2}"
\]
\[
R_{10} = 3.95 \times 3.252 = 12.845' (12' 10\frac{1}{4}"
\]
\[
R_{9} = 3.95 \times 3.140 = 12.463' (12' 4\frac{7}{8}"
\]
\[
R_{8} = 3.95 \times 3.019 = 11.925' (11' 11\frac{1}{8}"
\]
\[
R_{7} = 3.95 \times 2.887 = 11.744' (11' 9\frac{3}{8}"
\]
\[
R_{6} = 3.95 \times 2.793 = 10.835' (10' 9\frac{1}{2}"
\]
\[
R_{5} = 3.95 \times 2.581 = 10.145' (10' 1\frac{7}{8}"
\]
\[
R_{4} = 3.95 \times 2.386 = 9.466' (9' 7\frac{1}{8}"
\]
\[
R_{3} = 3.95 \times 2.177 = 8.599' (8' 7\frac{1}{2}"
\]
<table>
<thead>
<tr>
<th>ENGINEERING CALCULATION</th>
<th>Page No. 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>C.Y. King</td>
</tr>
<tr>
<td>Date</td>
<td>1/20/98</td>
</tr>
</tbody>
</table>

\[
R_z = 3.95 \times 1.902 = 7.513' (7' 6\ 1/4'') \\
R_1 = 3.95 \times 1.509 = 5.961' (5' 11\ 3/8'') \\
R_{.5} = 3.95 \times 1.198 = 4.732' (4' 8\ 3/8'') \\
R_{.25} = 3.95 \times 0.951 = 3.777' (3' 9\ 1/8'')
\]

East Wall

From 35 kg up

\[
R_{35} = 2.63 \times 4.937 = 13' \\
R_{40} = 2.63 \times 5.162 = 13.576' (13' 7'') \\
R_{45} = 2.63 \times 5.369 = 14.120' (14' 1\ 1/2'') \\
R_{50} = 2.63 \times 5.561 = 14.625' (14' 7\ 1/2'') \\
R_{55} = 2.63 \times 5.790 = 15.096' (15' 1\ 1/4'') \\
R_{60} = 2.63 \times 5.909 = 15.541' (15' 6\ 1/2'')
\]

From 35 kg down

\[
R_{30} = 2.63 \times 4.690 = 12.335' (12' 4\ 9/8'') \\
R_{25} = 2.63 \times 4.414 = 11.609' (11' 7\ 3/8'') \\
R_{20} = 2.63 \times 4.097 = 10.775' (10' 9\ 3/8'') \\
R_{15} = 2.63 \times 3.723 = 9.792' (9' 9\ 1/2'') \\
R_{10} = 2.63 \times 3.252 = 8.553' (8' 6\ 3/4'') \\
R_9 = 2.63 \times 3.146 = 8.258' (8' 5\ 1/8'') \\
R_8 = 2.63 \times 3.019 = 7.940' (7' 11\ 3/8'') \\
R_7 = 2.63 \times 2.887 = 7.593' (7' 7\ 3/8'') \\
R_6 = 2.63 \times 2.743 = 7.214' (7' 2\ 5/8'') \\
R_5 = 2.63 \times 2.581 = 6.788' (6' 9\ 1/8'') \\
R_4 = 2.63 \times 2.396 = 6.352' (6' 3\ 5/8'')
\[R_3 = 2.63 \times 2.177 = 5.726 \ \text{ft} \quad (5' - 8\frac{3}{4}"
\]
\[R_2 = 2.63 \times 1.902 = 5.002 \ \text{ft} \quad (5' - 0\frac{1}{4}"
\]
\[R_1 = 2.63 \times 1.569 = 3.969 \ \text{ft} \quad (3' - 11\frac{5}{8}"
\]
\[R_0.5 = 2.63 \times 1.198 = 3.151 \ \text{ft} \quad (3' - 1\frac{7}{8}"
\]
\[R_{25} = 2.63 \times 0.951 = 2.501 \ \text{ft} \quad (2' - 6\frac{1}{4}"
\]

3. To determine the maximum loading at 3', 2'
and 1' from the floor.

at 4'
\[55 \text{ kg} \quad \frac{Z}{\sqrt{V}} = \frac{4}{4.937} = 0.8102 \]
\[60 \text{ kg} \quad \frac{Z}{\sqrt{V}} = \frac{\frac{3}{2}}{1.902} = 0.6769 \quad \text{(Control)} \]

at 3'
\[\frac{Z}{\sqrt{V}} = 0.6769 \quad V_{1/3} = \frac{3}{1.6769} = 4.4520 \quad W = 25.7927 \quad \# \text{TNT} = 7.5 \text{ kg} \]

at 2'
\[\frac{Z}{\sqrt{V}} = \frac{2}{\sqrt{0.951}} = 1.6769 \quad V_{1/3} = \frac{2}{1.6769} = 1.198 \quad W = 23.2241 \quad \# \text{TNT} = 0.9375 \text{ kg} \]

4. At 3' above the floor, to find the required
distances from 2' inside of anvil plate to
the inside surface of the wall.

North wall (Left portion)
\[R = 8.5' \quad W = 4.4320 \quad \frac{Z}{\sqrt{W}} = \frac{8.5}{4.4320} = 1.9179 \quad \frac{4V}{3} \]
\[25 \text{ kg} \quad R_{25} = 1.9179 \times 4.4320 = 8.466' \quad (8' - 5\frac{5}{8}"
\]
\begin{align*}
20 \text{ kg} & \quad R_{20} = 1.9179 \times 6.0397 = 7.2876 \text{ } (7' - 10\frac{3}{8}) \\
15 \text{ kg} & \quad R_{15} = 1.9179 \times 3.723 = 7.1403 \text{ } (7' - 1\frac{3}{4}) \\
10 \text{ kg} & \quad R_{10} = 1.9179 \times 3.252 = 6.2370 \text{ } (6' - 2\frac{7}{8}) \\
5 \text{ kg} & \quad R_{5} = 1.9179 \times 2.581 = 4.9500 \text{ } (4' - 11\frac{1}{2}) \\
4 \text{ kg} & \quad R_{4} = 1.9179 \times 2.396 = 4.5943 \text{ } (4' - 7\frac{1}{4}) \\
3 \text{ kg} & \quad R_{3} = 1.9179 \times 2.177 = 4.1753 \text{ } (4' - 2\frac{1}{8}) \\
2 \text{ kg} & \quad R_{2} = 1.9179 \times 1.902 = 3.6478 \text{ } (3' - 7\frac{3}{8}) \\
1 \text{ kg} & \quad R_{1} = 1.9179 \times 1.509 = 2.8941 \text{ } (2' - 10\frac{3}{8}) \\
0.5 \text{ kg} & \quad R_{1/2} = 1.9179 \times 1.198 = 2.2976 \text{ } (2' - 3\frac{3}{8}) \\
0.25 \text{ kg} & \quad R_{1/4} = 1.9179 \times 0.951 = 1.8239 \text{ } (1' - 10\frac{3}{8}) \\
\end{align*}

\textbf{North Wall (Right Portion)}

\begin{align*}
R = 19.5' & \quad W/3 = 4.4320 & \quad z = \frac{19.5}{4.4320} = 4.3998 \\
2.5 \text{ kg} & \quad R_{2.5} = 4.3998 \times 4.914 = 19.4207 \text{ } (19' - 5\frac{7}{8}) \\
R_{20} = 4.3998 \times 6.0397 = 18.0260 \text{ } (18' - 0\frac{3}{8}) \\
R_{15} = 4.3998 \times 3.723 = 16.5895 \text{ } (16' - 4\frac{3}{4}) \\
R_{10} = 4.3998 \times 3.252 = 14.3083 \text{ } (14' - 3\frac{3}{4}) \\
R_{5} = 4.3998 \times 2.581 = 11.3554 \text{ } (11' - 4\frac{3}{8}) \\
R_{4} = 4.3998 \times 2.396 = 10.5419 \text{ } (10' - 6\frac{3}{8}) \\
R_{3} = 4.3998 \times 2.177 = 9.5784 \text{ } (9' - 7\frac{1}{4}) \\
R_{2} = 4.3998 \times 1.902 = 8.3684 \text{ } (8' - 4\frac{1}{2}) \\
R_{1} = 4.3998 \times 1.509 = 6.6393 \text{ } (6' - 7\frac{3}{4}) \\
R_{1/2} = 4.3998 \times 1.198 = 5.2710 \text{ } (5' - 3\frac{3}{8}) \\
R_{1/4} = 4.3998 \times 0.951 = 4.1842 \text{ } (4' - 2\frac{1}{4}) \\
\end{align*}
\[W_{c s} + W_{s s} + \frac{W_{s s}}{R} = 9.37 \quad W_{s s} = 4.43 \, \text{lb} \quad \theta = \frac{9.37}{4.43 \, \text{lb}} = 2.1142 \]

\[R_{25} = 2.1142 \times 4.414 = 9.3321 \quad (9' - 0\frac{3}{8}') \]
\[R_{20} = 2.1142 \times 4.097 = 8.6919 \quad (8' - 8\frac{3}{8}') \]
\[R_{15} = 2.1142 \times 3.723 = 7.8712 \quad (7' - 9\frac{3}{8}') \]
\[R_{10} = 2.1142 \times 3.252 = 6.8754 \quad (6' - 10\frac{3}{8}') \]
\[R_5 = 2.1142 \times 2.581 = 5.4968 \quad (5' - 5\frac{3}{4}') \]
\[R_{4} = 2.1142 \times 2.396 = 5.0656 \quad (5' - 0\frac{3}{4}') \]
\[R_{3} = 2.1142 \times 2.177 = 4.6226 \quad (4' - 7\frac{3}{4}') \]
\[R_{2} = 2.1142 \times 1.902 = 4.0212 \quad (4' - 0\frac{3}{8}') \]
\[R_1 = 2.1142 \times 1.509 = 3.1903 \quad (3' - 2\frac{3}{8}') \]
\[R_{.5} = 2.1142 \times 1.198 = 2.5328 \quad (2' - 6\frac{1}{2}') \]
\[R_{.25} = 2.1142 \times 0.951 = 2.0166 \quad (2' - 0\frac{1}{4}') \]

South Wall

\[R = 19.5' \quad W_s = 4.43 \, \text{lb} \quad \theta = \frac{15.5}{4.43 \, \text{lb}} = 3.4998 \]

\[R_{25} = 4.3998 \times 4.414 = 19.4207' \quad (19' - 5\frac{3}{8}') \]
\[R_{20} = 4.3998 \times 4.097 = 18.0260' \quad (18' - 0\frac{3}{8}') \]
\[R_{15} = 4.3998 \times 3.723 = 16.3805' \quad (16' - 4\frac{3}{8}') \]
\[R_{10} = 4.3998 \times 3.252 = 14.3081' \quad (14' - 3\frac{3}{4}') \]
\[R_{5} = 4.3998 \times 2.581 = 11.5914' \quad (11' - 1\frac{3}{4}') \]
\[R_0 = 4.3998 \times 2.396 = 10.5419' \quad (10' - 6\frac{3}{8}') \]
\[R_{-5} = 4.3998 \times 1.509 = 6.6935' \quad (6' - 7\frac{3}{8}') \]
\[R_{-10} = 4.3998 \times 1.198 = 5.3716' \quad (5' - 3\frac{3}{8}') \]
\[R_{-15} = 4.3998 \times 0.951 = 4.2242' \quad (4' - 0\frac{3}{8}') \]

From wall to edge of anvil

\[R = 4.735' = 186.92 \quad (18' - 6\frac{3}{8}') \]

From edge of anvil to edge of grillage

\[R = 3.06' = 12'' = 1' \]

\[(15' - 6\frac{3}{8}) + 1' = 16' - 6\frac{3}{8} \]

\[16' - 6\frac{3}{8} + 1' = 17' - 0\frac{3}{8}'' \]

Loading Curve

\[\text{here} \]
East Wall

\[R = 13' \quad \bar{z} = \frac{13}{4.9310} = 2.9332 \]

- \[R_{25} = 2.9332 \times 4.414 = 12.9971 \quad (12' - 11\frac{3}{8}) \]
- \[R_{10} = 2.9332 \times 4.097 = 12.0173 \quad (12' - 0\frac{1}{4}) \]
- \[R_{15} = 2.9332 \times 3.773 = 10.9203 \quad (10' - 11\frac{1}{8}) \]
- \[R_{20} = 2.9332 \times 3.252 = 9.5388 \quad (4' - 6\frac{1}{2}) \]
- \[R_{25} = 2.9332 \times 2.581 = 7.5706 \quad (7' - 6\frac{1}{8}) \]
- \[R_{30} = 2.9332 \times 2.396 = 7.1279 \quad (7' - 0\frac{3}{4}) \]
- \[R_{35} = 2.9332 \times 2.177 = 6.3856 \quad (6' - 4\frac{1}{2}) \]
- \[R_{40} = 2.9332 \times 1.902 = 5.5789 \quad (5' - 7\frac{1}{4}) \]
- \[R_{45} = 2.9332 \times 1.569 = 4.4262 \quad (4' - 5\frac{3}{8}) \]
- \[R_{50} = 2.9332 \times 1.198 = 3.5140 \quad (3' - 6\frac{3}{4}) \]
- \[R_{55} = 2.9332 \times 0.951 = 2.7895 \quad (2' - 9\frac{1}{2}) \]

5. **At 2' above the floor, to find the required distances from 2' inside of the anvil plate to the inside surface of the wall.**

North Wall (Left Portion)

\[R = 8.5' \quad \bar{w} = 2.9546 \quad \bar{z} = \frac{8.5}{2.9546} = 2.8769 \]

- \[R_7 = 2.8769 \times 2.587 = 7.3586 \quad (7' - 3\frac{3}{4}) \]
- \[R_6 = 2.8769 \times 2.742 = 7.9813 \quad (7' - 11\frac{3}{4}) \]
- \[R_5 = 2.8769 \times 3.581 = 8.2253 \quad (8' - 2\frac{1}{4}) \]
- \[R_4 = 2.8769 \times 3.96 = 6.8931 \quad (6' - 10\frac{3}{4}) \]
- \[R_3 = 2.8769 \times 2.177 = 6.2450 \quad (6' - 3\frac{1}{4}) \]
- \[R_2 = 2.8769 \times 1.702 = 5.4719 \quad (5' - 5\frac{3}{4}) \]
\[R_1 = 2.8769 \times 1.509 = 4.3412 \ (4' 4\frac{1}{6}"") \]
\[R_5 = 2.8769 \times 1.198 = 3.4465 \ (3' 5\frac{3}{8}"") \]
\[R_{15} = 2.8769 \times 0.951 = 2.7357 \ (2' 8\frac{5}{8}"") \]

North Wall (Right portion)

\[R = 19.5' \quad W = 2.9546 \quad Z = \frac{19.5}{2.9546} = 6.6299 \]
\[R_7 = 6.5999 \times 2.887 = 19.0539 \ (19' 0\frac{3}{4}"") \]
\[R_6 = 6.5999 \times 2.743 = 18.1035 \ (18' 1\frac{1}{4}"") \]
\[R_5 = 6.5999 \times 2.581 = 17.0343 \ (17' 0\frac{1}{2}"") \]
\[R_4 = 6.5999 \times 2.396 = 15.8134 \ (15' 9\frac{3}{4}"") \]
\[R_3 = 6.5999 \times 2.177 = 14.3680 \ (14' 4\frac{1}{2}"") \]
\[R_2 = 6.5999 \times 1.902 = 12.5530 \ (12' 6\frac{3}{4}"") \]
\[R_1 = 6.5999 \times 1.509 = 9.9592 \ (9' 11\frac{3}{8}"") \]
\[R_5 = 6.5999 \times 1.198 = 7.9617 \ (7' 11"") \]
\[R_{25} = 6.5999 \times 0.951 = 6.2765 \ (6' 3\frac{3}{8}"") \]

West Wall

\[R = 9.37' \quad W = 2.9546 \quad Z = \frac{9.37}{2.9546} = 3.1713 \]
\[R_7 = 3.1713 \times 2.887 = 9.1555 \ (9' 1\frac{7}{8}"") \]
\[R_6 = 3.1713 \times 2.743 = 8.6989 \ (8' 8\frac{1}{2}"") \]
\[R_5 = 3.1713 \times 2.581 = 8.1851 \ (8' 1\frac{1}{4}"") \]
\[R_4 = 3.1713 \times 2.396 = 7.5984 \ (7' 7\frac{1}{4}"") \]
\[R_3 = 3.1713 \times 2.177 = 6.9639 \ (6' 10\frac{7}{8}"") \]
\[R_2 = 3.1713 \times 1.902 = 6.4122 \ (6' 5"") \]
\[R_1 = 3.1713 \times 1.509 = 5.0673 \ (5' 1\frac{3}{8}"") \]
Engineering Calculation

Ko,5 = 3.1715 \times 1.198 = 3.7922 (3' - 4\frac{3}{4}"")

Ko,25 = 3.1715 \times 0.951 = 3.0159 (3' - 0\frac{3}{4}"")

South Wall

<table>
<thead>
<tr>
<th>R</th>
<th>W/2</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.5</td>
<td>2.9546</td>
<td>\frac{(19.5)}{2.9546} = 6.6599</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>(R_o \times W/2)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6.5999 \times 2.887 = 19.0529 (19' - 0\frac{3}{4}"")</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6.5999 \times 2.743 = 18.1035 (18' - 0\frac{1}{2}"")</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6.5999 \times 2.581 = 17.0343 (17' - 0\frac{1}{2}"")</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6.5999 \times 2.396 = 15.6134 (15' - 9\frac{1}{8}"")</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.5999 \times 2.177 = 14.3680 (14' - 4\frac{7}{8}"")</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6.5999 \times 1.902 = 12.5530 (12' - 6\frac{3}{4}"")</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6.5999 \times 1.509 = 9.9552 (9' - 11\frac{3}{8}"")</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>6.5999 \times 1.198 = 7.9067 (7' - 10"")</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>6.5999 \times 0.951 = 6.2743 (6' - 1"")</td>
<td></td>
</tr>
</tbody>
</table>

East Wall

<table>
<thead>
<tr>
<th>R</th>
<th>W/2</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>2.9546</td>
<td>\frac{13}{2.9546} = 4.3999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>(R_o \times W/2)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4.3999 \times 2.887 = 12.3747 (12' - 4\frac{3}{4}"")</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.3999 \times 2.743 = 12.0641 (12' - 0\frac{3}{4}"")</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.3999 \times 2.581 = 11.3507 (11' - 0\frac{3}{4}"")</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.3999 \times 2.396 = 10.1109 (10' - 0\frac{1}{4}"")</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.3999 \times 2.177 = 9.7874 (9' - 4"")</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.3999 \times 1.902 = 8.4363 (8' - 4\frac{1}{8}"")</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.3999 \times 1.509 = 6.6194 (6' - 7\frac{3}{8}"")</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>4.3999 \times 1.198 = 5.2271 (5' - 3\frac{3}{8}"")</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>4.3999 \times 0.951 = 4.1335 (4' - 1\frac{1}{4}"")</td>
<td></td>
</tr>
</tbody>
</table>
Small Loading

<table>
<thead>
<tr>
<th>$W_{Kg HE}$</th>
<th>$W_{16 TNT}$</th>
<th>$W^{1/3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>3.0951</td>
<td>1.4573</td>
</tr>
<tr>
<td>0.8</td>
<td>2.7512</td>
<td>1.4012</td>
</tr>
<tr>
<td>0.7</td>
<td>2.4007</td>
<td>1.3462</td>
</tr>
<tr>
<td>0.6</td>
<td>2.0634</td>
<td>1.2731</td>
</tr>
<tr>
<td>0.5</td>
<td>1.7195</td>
<td>1.1980</td>
</tr>
<tr>
<td>0.4</td>
<td>1.3756</td>
<td>1.1122</td>
</tr>
<tr>
<td>0.3</td>
<td>1.0317</td>
<td>1.0105</td>
</tr>
<tr>
<td>0.25</td>
<td>0.8598</td>
<td>0.9509</td>
</tr>
<tr>
<td>0.2</td>
<td>0.6878</td>
<td>0.8827</td>
</tr>
<tr>
<td>0.1</td>
<td>0.3439</td>
<td>0.7006</td>
</tr>
<tr>
<td>0.05</td>
<td>0.1720</td>
<td>0.5561</td>
</tr>
<tr>
<td>0.025</td>
<td>0.0860</td>
<td>0.5914</td>
</tr>
</tbody>
</table>
At 1' above the floor, to find the required distances from 2' inside of the roof plate to the inside surface of the wall.

Page 11 at 1' \(W/3 = 1.4773 \quad W = 3.2241 = .9375 \text{ KG} \)

North Wall (Left Portion)

\[
R = 8.5' \quad W/3 = 1.4773 \quad \frac{R}{W/3} = \frac{8.5}{1.4773} = 5.7537
\]

\(W = 0.9 \text{ KG} \)

\[
R_9 = 5.7537 \times 1.4773 = 8.3849' \quad (8' 4\frac{3}{8}'')
\]

\[
R_8 = 5.7537 \times 1.4012 = 6.6621' \quad (6' 10\frac{3}{8}''')
\]

\[
R_7 = 5.7537 \times 1.3402 = 7.7111' \quad (7' 8\frac{3}{8}''')
\]

\[
R_6 = 5.7537 \times 1.2731 = 7.3250' \quad (7' 3\frac{3}{8}''')
\]

\[
R_5 = 5.7537 \times 1.1980 = 6.8909' \quad (6' 10\frac{3}{8}''')
\]

\[
R_4 = 5.7537 \times 1.1220 = 6.5981' \quad (6' 4\frac{1}{8}''')
\]

\[
R_3 = 5.7537 \times 1.0165 = 5.8211' \quad (5' 9\frac{3}{8}''')
\]

\[
R_2 = 5.7537 \times 0.9569 = 5.4712' \quad (5' 5\frac{3}{8}''')
\]

\[
R_1 = 5.7537 \times 0.8827 = 5.0788' \quad (5' 1\frac{3}{8}''')
\]

\[
R_{10} = 5.7537 \times 0.7845 = 4.5310' \quad (4' 0\frac{3}{8}''')
\]

\[
R_{10} = 5.7537 \times 0.5987 = 3.4196' \quad (3' 2\frac{3}{8}''')
\]

\[
K_{10} = 5.7537 \times 0.5508 = 2.5347' \quad (2' 6\frac{3}{8}''')
\]

North Wall (Right Portion)

\[
R = 19.5' \quad W/3 = 1.4773 \quad \frac{R}{W/3} = \frac{19.5}{1.4773} = 13.1996
\]

\(W = 6.9 \text{ KG} \)

\[
R_9 = 13.1996 \times 1.4773 = 19.2361' \quad (19' 2\frac{3}{8}''')
\]

\[
R_8 = 13.1996 \times 1.4012 = 18.0956' \quad (18' 6''')
\]

\[
R_7 = 13.1996 \times 1.3402 = 17.6904' \quad (17' 8\frac{3}{8}''')
\]
| R.6 = 13,1998 x 1.2731 = 16,824.7 (16' 9\frac{3}{4}"
| R.5 = 13,1998 x 1.1980 = 15,813.4 (15' 9\frac{5}{8}"
| R.4 = 13,1998 x 1.1720 = 14,678.2 (14' 8\frac{1}{4}"
| R.3 = 13,1998 x 1.0705 = 13,338.4 (13' 4\frac{1}{8}"
| R.25 = 13,1998 x 0.9504 = 12,547.7 (12' 6\frac{7}{8}"
| R.2 = 13,1998 x 0.8627 = 11,651.5 (11' 7\frac{3}{8}"
| R.1 = 13,1998 x 1.0006 = 9,247.8 (9' 3"
| R.05 = 13,1998 x 0.5561 = 7,394.4 (7' 4\frac{1}{8}"
| R.025 = 13,1998 x 0.4414 = 5,826.4 (5' 10"

West Wall

\[R = 9.37 \quad W^3 = 1.4773 \quad Z = \frac{9.37}{1.4773} = 6.3427 \]

| R.9 = 6,3427 x 1.4573 = 9,243.2 (9' 3"
| R.8 = 6,3427 x 1.4012 = 8,887.4 (8' 10\frac{3}{4}"
| R.7 = 6,3427 x 1.3402 = 8,500.5 (8' 6\frac{1}{8}"
| R.6 = 6,3427 x 1.2731 = 8,047.9 (8' 1"
| R.5 = 6,3427 x 1.1980 = 7,598.6 (7' 7\frac{1}{4}"
| R.4 = 6,3427 x 1.1120 = 7,053.1 (7' 0\frac{3}{4}"
| R.3 = 6,3427 x 1.0105 = 6,419.3 (6' 5"
| R.25 = 6,3427 x 0.9509 = 6,031.3 (6' 0\frac{7}{8}"
| R.2 = 6,3427 x 0.8827 = 5,598.1 (5' 7\frac{1}{4}"
| R.1 = 6,3427 x 0.7906 = 4,943.7 (4' 8\frac{3}{8}"
| R.05 = 6,3427 x 0.5561 = 3,527.2 (3' 8\frac{3}{8}"
| R.025 = 6,3427 x 0.4414 = 2,799.7 (2' 9\frac{3}{8}"

Page No.

<table>
<thead>
<tr>
<th>Name</th>
<th>C. Y. King</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>1/21/98</td>
</tr>
<tr>
<td>South Wall</td>
<td>East Wall</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>$R = 19.5'$</td>
<td>$R = 13'$</td>
</tr>
<tr>
<td>$W/3 = 1.4773$</td>
<td>$W/3 = 1.4773$</td>
</tr>
<tr>
<td>$e = \frac{13.5}{1.4773} = 8.7998$</td>
<td>$e = \frac{13}{1.4773} = 8.7998$</td>
</tr>
<tr>
<td>$R_1 = 13.1998 \times 1.4573 = 19.2361 (19' 2 \frac{7}{8}'')$</td>
<td>$R_1 = 8.7998 \times 1.4573 = 12.8257 (12' 10 10''$</td>
</tr>
<tr>
<td>$R_2 = 13.1998 \times 1.4012 = 18.4426 (18' 6'')$</td>
<td>$R_2 = 8.7998 \times 1.4012 = 12.5396 (12' 3 9/16'')$</td>
</tr>
<tr>
<td>$R_3 = 13.1998 \times 1.5402 = 17.6949 (17' 8 \frac{7}{8}'')$</td>
<td>$R_3 = 8.7998 \times 1.5402 = 11.9541 (11' 11 1/2'')$</td>
</tr>
<tr>
<td>$R_4 = 13.1998 \times 1.2731 = 16.1547 (16' 9 \frac{3}{4}'')$</td>
<td>$R_4 = 8.7998 \times 1.2731 = 11.3516 (11' 3 1/8'')$</td>
</tr>
<tr>
<td>$R_5 = 13.1998 \times 1.1200 = 14.6782 (14' 8 1/2'')$</td>
<td>$R_5 = 8.7998 \times 1.1200 = 9.9404 (9' 9 1/2'')$</td>
</tr>
<tr>
<td>$R_0 = 13.1998 \times 1.0105 = 13.3382 (13' 3 1/8'')$</td>
<td>$R_0 = 8.7998 \times 1.0105 = 8.8682 (8' 5 3/4'')$</td>
</tr>
</tbody>
</table>

South Wall

East Wall
\[K_{12} = 8.7998 \times 1.6827 = 7.7276 \ (7\,\text{ft} - 9\frac{3}{4}\,\text{in}) \]
\[R_{11} = 8.7998 \times 7.006 = 61.651 \ (6\,\text{ft} - 2\,\text{in}) \]
\[R_{1.05} = 8.7998 \times 5.561 = 4.939 \ (4\,\text{ft} - 10\frac{3}{4}\,\text{in}) \]
\[R_{0.15} = 8.7998 \times 1.4414 = 3.2842 \ (3\,\text{ft} - 10\frac{3}{8}\,\text{in}) \]

7. To determine stand-off distance

For close-in region, keep \(z = 1 \)
\[\frac{z}{R_{0.9}} = 1 \]
\[W = 1 \times 10^9 \times 4.34 \times 0.1517 \]
\[W = 1.509 \times 10^9 \]
\[z = 1.509 \ (1\,\text{ft} - 6\,\text{in}) \]

8. To find the distance from the floor where the stress of the ceiling is 4 ksi.

Concrete compression stress of floor = 12 ksi

Ceiling = 4 ksi

\[z_{\text{floor}} = \frac{4}{12} = 0.333 \]
\[z_{\text{ceiling}} = 1.677 \times \frac{12}{4} = 2.031 \]
\[\frac{R}{5.909} = 2.031 \]
\[R = 2.031 \times 5.909 = 12.03 \,\text{ft} \ (\text{from ceiling}) \]
\[30' - 12.03' = 17.97' \ (\text{from floor}) \]
The horizontal curves from 4' up to 17.97' are the same as 4'.

9. Above camera room, limit \(W = 150^9 \) to prevent damage of the camera lens.
References

1. Parsons Infrastructure & Technology Group
 "CFF" Title I, 100% Design Review.

2. TM 5-1300, NAVFAC P-397, AFB 88-22 "Structures
to resist the effects of Accidental Explosions"