DETECTING AND QUANTIFYING LEWISITE DEGRADATION
PRODUCTS IN ENVIRONMENTAL SAMPLES USING ARSENIC SPECIATION*

by

Dean A. Bass, Judith S. Yaeger,
James T. Kiely, and Jeffrey S. Crain
Analytical Chemistry Laboratory
Chemical Technology Division
and
Linda M. Shem, Hugh J. O'Neill, and Mark J. Gowdy
Energy Systems Division

Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

and

Mark Besmer and Greg B. Mohrman
Rocky Mountain Arsenal, Bldg. 111
Commerce City, CO 80022-2180

to be published in the
Proceedings of the 1995 U.S. Army Edgewood Research, Development
and Engineering Center
Scientific Conference on Chemical and Biological Defense Research
Aberdeen Proving Ground, MD
November 14-17, 1995

DETECTING AND QUANTIFYING LEWISITE DEGRADATION PRODUCTS IN ENVIRONMENTAL SAMPLES USING ARSENIC SPECIATION

Dean A. Bass, Judith S. Yaeger, James T. Kiely, Jeffrey S. Crain
Analytical Chemistry Laboratory, Chemical Technology Division
and
Linda M. Shem, Hugh J. O’Neill, Mark J. Gowdy
Energy Systems Division
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, IL 60439

Mark Besmer, Greg B. Mohrman
Rocky Mountain Arsenal, Bldg. 111
Commerce City, CO 80022-2180

ABSTRACT

A high performance liquid chromatography - inductively coupled plasma - mass spectrometry (HPLC-ICP-MS) method has been developed at Argonne National Laboratory to identify and quantify lewisite degradation products in soil and water samples. This method distinguishes among As(III), As(V), 2-chlorovinyl arsenous acid (CVAA), and other lewisite degradation products. Soil samples were analyzed to support the thermal desorption treatability studies for agents and pesticides being conducted for Rocky Mountain Arsenal. These data demonstrate that this technique is useful for the sensitive determination of lewisite degradation products. It is applicable to the analyzing a variety of materials.

INTRODUCTION

The measurement of lewisite degradation products in environmental samples is important to identify contamination areas, to determine the degradation products present, and to aid in the treatment of contaminated materials\(^2\). Typically, lewisite degradation analysis has been performed using a derivitization process followed by measurement using gas chromatography (GC) with one of the following: flame ionization detector (FID), photo ionization detector (PID), flame photometric detector (FPD), or a mass spectrometer (MS)\(^3\). These methods may have interferences in the derivitization process or from other organic compounds with similar retention times to the lewisite degradation products. Our method offers better detection limits than any of the GC methods, does not require the derivitization step and distinguishes the lewisite degradation products better.

The method uses inductively coupled plasma - mass spectrometry (ICP-MS) to detect the arsenic present in the sample. The arsenic species are separated using high performance liquid chromatography (HPLC). Interfacing the two creates an integrated HPLC-ICP-MS system that can identify not only lewisite degradation products, but other arsenic compounds as well. The method was developed previously to distinguish between organic and inorganic arsenic in soil\(^4\). The system can also be used to identify other metal species simultaneously.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
INSTRUMENTATION

The arsenic species were separated using reversed phase, ion-pairing chromatography. The column (SGE, Inc.) was interfaced to the ICP-MS (Fisons Instruments) using a direct injection nebulizer (DIN) (CETAC, Inc), which operates with low flow rates, such as those used in the microbore HPLC column. The following specifications were used:

HPLC Column specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Length</td>
<td>10 cm</td>
</tr>
<tr>
<td>Column I.D.</td>
<td>1 mm</td>
</tr>
<tr>
<td>Packing</td>
<td>Inertsil ODS-2™ (C18)</td>
</tr>
<tr>
<td>Particle Size</td>
<td>5 micron</td>
</tr>
<tr>
<td>Pore Size</td>
<td>300 angstrom</td>
</tr>
</tbody>
</table>

Chromatographic conditions

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile phase</td>
<td>tetrabutylammonium hydroxide</td>
</tr>
<tr>
<td></td>
<td>(TBAH)/5% methanol</td>
</tr>
<tr>
<td>Flow rate</td>
<td>40 - 50 µL/min</td>
</tr>
<tr>
<td>Injection volume</td>
<td>1 µL</td>
</tr>
</tbody>
</table>

ICP-MS parameters

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masses monitored</td>
<td>75 and 77</td>
</tr>
<tr>
<td>Collection rate</td>
<td>2 points per second per mass</td>
</tr>
<tr>
<td>Collection mode</td>
<td>Time resolved; peak hopping</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

Identification of arsenic species. Dimethyl arsinic acid (DMAA), As(III), and As(V) standards are well separated as shown in Figure 1. The separation indicates that these species could be easily identified in an aqueous sample. Figures 2 and 3 show a CVAA and 2-chlorovinylarsenic acid (CVAOA) standard in water. The CVAOA is an oxidized form of the CVAA and was prepared by adding hydrogen peroxide to the CVAA standard.

Degradation of lewisite from the soil and extraction procedure. Lewisite and its degradation products can be changed by the soil and by the extraction of the soil for analysis. A peak corresponding to CVAA is observed (Figure 4) when a soil containing CVAO is extracted. This is due to the hydrolysis of 2-chlorovinyl arsenous oxide (CVAO) during the extraction to form CVAA. When CVAA was spiked on the soil it is oxidized to form CVAOA and a peak corresponding to CVAOA was observed (Figure 5). This is consistent with the fact that the soil is oxidizing in character and previous results which showed the oxidation of As(III) to As(V)¹. The examples in Figures 4 and 5 show how two separate lewisite degradation products could be easily identified in soil.
FIGURE 1. Aqueous standard containing 100 ppb As(III), DMAA, and As(V).

FIGURE 2. CVAA aqueous standard.

FIGURE 3. CVAOA aqueous standard.
Thermal decomposition of CVAO. This method can also be used to monitor soil thermal treatment processes. Figure 5 shows a soil spiked with CVAA without thermal treatment. Figures 6, 7, and 8 show chromatograms of soil spiked with CVAA and heated to 200°C (400°F), 320°C (600°F), and 430°C (800°F), respectively. As shown in each of these figures, we can tell the final form of the arsenic at each stage in the treated soil, the temperature at which any of the organic arsenic species are destroyed, and the intermediate species that might be formed. This can be useful in determining how to best treat contaminated soils and whether any organic arsenic degradation products remain.

Quantitation. Potential quantitation procedures for this method involve running calibration standards, check standards, internal standards, duplicates, surrogates, and matrix spikes. Results without the internal standard varied as much as 40%. DMAA was used as an internal standard. With an internal standard, reproducibility is improved to less than 10% relative standard deviation (RSD). DMAA can potentially interfere with other organic arsenic compounds, such as CVAA, and better internal standards should be developed. A matrix spike and surrogate have not yet been implemented in this method.
Figure 6. Extract from soil spiked with CVAA and heated to 200°C.

Figure 7. Extract from soil spiked with CVAA and heated to 320°C.

Figure 8. Extract from soil spiked with CVAA and heated to 430°C.
Figures of merit. The detection limit for this technique is 0.1 pg or 0.1 ppb of arsenic, which is equivalent to approximately 0.2 ppb CVAA. Figure 9 shows the resulting chromatogram from an arsenic standard containing 1 pg each of arsenic (III), arsenic (V), and DMAA. The estimated reproducibility, using a 50 ppb standard is 5% RSD using an internal standard. Similar reproducibility is possible without an internal standard, although periodic instrument drift can greatly increase the uncertainty of the measurement. The instrument is linear up to 500 ppb of arsenic with a correlation coefficient of 0.999.

![Figure 9. Arsenic species at concentrations near the detection limit (1 ppb each).](image)

CONCLUSIONS

An HPLC-ICP-MS method has been developed for measuring lewisite degradation products in a variety of environmental samples. It allows us to detect trace levels (<1 ppb) of As(III) and As(V), as well as lewisite degradation products and to distinguish among them. The method is relatively free of interferences, particularly because it does not require the derivatization step, as the GC method does. This method can also be used to speciate other metals simultaneously. Additional work is needed to develop matrix spikes, surrogates, and a better internal standard.

ACKNOWLEDGMENTS

This work was supported by the U. S. Army and the U. S. Department of Energy under Contract W-31-109-ENG-38.
REFERENCES

Detecting and Quantifying Dysvrite Degradation Products in Environmental Samples Using Arsenic Speciation

Dean R. Ph.D.

Analytical Chemistry Laboratory
Argonne National Laboratory
Judi S. Meeger, James T. Kirby, Jeffrey S. Crain
Analytical Chemistry Laboratory,
Chemical Technology Division
Argonne National Laboratory

Marsha J. Crowdy, Linda M. Shem
Health and Safety Systems Division
Argonne National Laboratory

Greg B. McConnel
Rocky Mountain Laboratory
Measurement of Deterioration Products

What advantages does the analysis offer?

Results
GC Methods

- FID, MS, PID, FPD, ECD
- DL from 1 to 200 pg
- GC/MS Derivatization
- Potentially interferes
- High temperature separation
High Performance Liquid Chromatography - Inductively Coupled Plasma - Mass Spectrometry (HPLC-ICP-MS)

- HPLC - Separation of Arsenic Species
- ICP-MS - Detection of Arsenic
Method Features

- Solids or liquids
- Van-a GC Method
- Low detection limits (<1 pg)
- Distinguish CuVAA, CuVAA
- Follow changes in As species
- Few interference
- Low sample volume required
- General metal specialty capability
Method Features

- Solids or liquids
- Non-aqueous GC Method
- Low detection limits (<1 pg)
- Distinguish between degradation products (e.g., CVAA, PyroQA)
- Follow changes in As species
- Few interferences
- Low sample volumes required
Analysis of solids and solutions

- Solutions measured directly

- Solid Li-extraction extraction (using ultrasound probe)
Results

- Separation of As(III), As(V), and DMA
- CVA (aerobic)
- CVA (anaerobic)
- CVAOA (aqueous)
- CVAO (in soil)
- Thermal degradation of DMA in soil
Separation of As Species
100pg As for each species
CVAO on Soil
CVAA Spiked on Soil
No thermal treatment
CVAA Spiked on Soil
400 degree thermal treatment
CVAA Spiked on Soil
600 degree thermal treatment

As (III)
Analytical Figures of Merit

- Detection limit: 0.1 pg (ppb)
- Reproducibility: <10% with internal standard
- Calibration range: up to 500 ppb
Conclusions

Unique method

As(V), As(III) and Lewis basic degradation
products identified and quantified.

- Analysis linear to 500 ppb and
 reproducible at 5% RSD
- Detection limits of 0.1 pg (ppb)
- General metal speciation capabilities
- Areas for additional
Acknowledgements

Jack O'Neill; Energy System Division
Argonne National Laboratory

Peter G. Vollhardt; Analytical Chemistry Laboratory
Argonne National Laboratory

Department of Energy