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PREMATURE SATURATION IN BACKPROPAGATION NETWORKS: 
MECHANISM AND NECESSARY CONDITIONS 

Javier E. Vitela* and Jaques Reifman 
Argonne National Laboratory 

Reactor Analysis Division 
Argonne, Illinois 60439 

The mechanism that gives rise to the phenomenon of premature saturation of the output 
units of feedforward multilayer neural networks during training with the standard 
backpropagation algorithm is described. The entire process of premature saturation is 
characterized by three distinct stages and it is concluded that the momentum term plays the 
leading role in the occurrence of the phenomenon. The necessary conditions for the 
occurrence of premature saturation are presented and their validity is illustrated through 
simulation results. 

1 Introduction _-______________________________________------_- 
The slow convergence of the standard backpropagation (BP) algorithm for training 

feedforward multilayer neural networks (NN) is generally attributed to the fact that BP is a 
gradient descent-based method (Rumelhart et al. 1986). Yet, another reason for the slow 
convergence of BP training that is sometimes overlooked, is the occurrence of the 
phenomenon of premature Saturation (PS) of the network output units when the units are 
mapped by sigmoid functions (Franzini 1987; Fahlman 1989; Chen and Mars 1990; Lee et 
al. 1991; Balakrishnan and Honavar 1992; Spartz and Honavar 1993; Parekh et al. 1993; 
Vitela and Reifman 1993). This undesirable phenomenon, sometimes referred in the 
literature as theflat spot problem, is characterized by the temporary trapping of the network 
output units at saturated activation levels during the early stages of the training process. 
While trapped, the saturated output units preclude any significant improvements in the 
training weights directly connected to these units causing an unnecessary increase in the 
number of iterations required to train the network. The temporary trapping may result in 
tens to thousands of iterations which can strongly affect the already slow convergence of 
the BP algorithm. 

* Currently on Sabbatical leave from: Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de 
Mexico, 04510 Mexico D.F. 
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Althmgh the PS problem has been widely recognized by researchers and NN 
users, to oul'knowledge, there is no work to date that correctly describes the mechanism 
that gives rise to the occurrence of the phenomenon. The purpose of this work is to 
analyze this mechanism and to present the necessary conditions for its occurrence. 

In the next Section a brief description of the standard BP training algorithm and the 
characterization of the phenomenon of premature saturation are presented, followed by a 
discussion in Sec. 3 of the mechanism that produces PS. In Sec. 4 the necessary 
conditions for the occurrence of PS are established and in Sec. 5 we describe the distinct 
characteristic stages of the phenomenon. Simulation results illustrating the validity of the 
necessary conditions are presented in Sec. 6,  followed by a summary and conclusions in 
Sec. 7. 

2 Backpropagation and Premature Saturation _______________________ 
The BP algorithm trains a feedforward multilayer NN by iteratively searching for a 

set of weights w in weight-space that minimize the total training error E. For reasons that 
will become clearer below, here we define E as the sum of partial training errors Ej 
(j=1,2, ..., JL) associated with each one of the JL output units 

where tpj and o&)are the desired target and the network actual activation level, 
respectively, for output unit j and pattern p (p=1,2, ..., P). By this definition, we may 
recognize that everyone of the partial training errors Ej associated with the corresponding 
output unit j constitutes an individual error-surface Ej(W) in weight-space. 

At each iteration k, the weights w are updated through the weight-update rule (see, 
Rumelhart et al. 1986) 

where q and a are positive constants smaller tgan 1 .O known as the learning parameter and 
momentum parameter, respectively, and VE =E VEj. The component of the gradient VEj 

unit of the &'-th layer can be obtained recursively from the rule 

L 

corresponding to weight wni (a which connects #e i-th unit in the (/-l)-th layer with the n-th 
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where o$-')is the output or activation level of the i-th unit in the (.t-I)-th layer associated 
with the p-th teaching pattern and 5;: is the delta rule associated with the training error E, 
of the j- fh output unit. For sigmoid mapping activation functions, the delta rule is given by: 

for C = L and n = j, 

for t = L and n f j, (4) 

This rule is similar to the original delta rule of Rumelhart et al. (1986), except that it is 
identically zero for weights that do not connect the units in  the last hidden layer to thej-th 
output unit. Thus, when the training error Ej for a particular output unit j is 
backpropagated to the last hidden layer, it will only affect a subset uj of the total weights 
connecting the units of the last hidden layer and the output units. The affected weights Uj 
are those that are directly connected to output unit j. 

In the literature, the phenomenon of PS of the network output units is characterized 
by the fact that the activation level o&)of one or more output units approaches either 0 or 1 
during the early stages of training for all patterns p=1,2,,..,P. As a consequence of the 

to the slope of the sigmoid function approaches zero, causing the magnitude of the gradient 
components aE,/aw$) to attain small values. The weights u, connected to the "saturated" 
output unit j are then negligibly updated at each subsequent iteration causing both Uj and 

(L) to become trapped at their current values for a number of iterations. The trapping of OPj 
the weights Uj and the activation level 0%) are generally characterized in the training error 
curve by regions of flat plateaus at high error levels. 

In the past, these plateaus have been erroneously interpreted by some authors (see, 
e.g., Dah1 1987) as an intrinsic process used by neural networks while constructing 
internal representations to distinguish between different input patterns. Further research 
has shown that the only role of PS is to produce a detrimental effect in the training process, 
which is manifested as an increment in the number of training cycles required to release the 
trapped weights from their saturated state. 

premature saturation of the output unitj, the factor o i l  [ l -  opj (L) 3 in Eq. (4) corresponding 
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A nrimber of researchers have addressed the problems posed by the premature 
saturation of the network output units in order to accelerate convergence. In essence, the 
proposed approaches consider the modification of either the slope of the sigmoid function 
o$) [l - o(L)] or the definition of the network training error E such that iijg in Eq. (4) 
remains finite even when an output unit is saturated. Franzini (1987), modified the 
standard BP algorithm by redefining the training error E in Eq. (1) such that 6 y i  remains 
large when 0%) [I - o&)] approaches zero and the absolute difference between the output 
and target values is near one, i.e., in the case of an output unit whose output is at the 
wrong end of the sigmoid. 

Fahlman (1989), experimented with a family of learning algorithms that eliminates 
premature saturation by directly altering the derivative of the sigmoid such that it does not 
go to zero. Of the modifications that he proposed, the one that seems to work best is the 
one where a constant 0.10 was added to the value of 02) [I - o;)] before this value was 
used to scale the backpropagation error. Chen and Mars (1990), however, were not 
successful in applying this modified algorithm. According to their simulations, the change 
in the derivative of the sigmoid from 0;) [l - o z ) ]  to o$) [l - o&)]+O.lO caused the 
weights to grow too fast leading to floating point overflows during training. In order to 
circumvent premature saturation, they suggested the removal of o ( ~ )  [l - o$)] from Eq. 
(4), Le., setting the slope of the sigmoid equal to one, for output layer units and the usage 
of different learning parameters q for updating weights in different layers. Balakrishnan 
and Honavar (1992), handled the premature saturation problem by redefining the training 
error E as the mean squared error over the inputs to the output layer units rather than over 
the outputs as is conventionally done in BP. By redefining E and approximating the 
sigmoid by a straight line, 6g (for l=L) becomes proportional to 1 / 0%) which permits 
the weights to be updated whenever there is an error in the output units. However, this 
method may lead to significant weight changes that result in large weights and oscillatory 
behavior. 

A different approach due to Parekh et al. (1993), is based on an algorithm that 
works like BP unless the activation level of a unit in the output layer is greater than 1-E 
while the target is zero, or if its activation level is less than E and the target is one; where E 

is a small positive constant. When that happens, the weights connecting all units in the last 
hidden layer to this unit in the output layer are updated through a predefined rule such that 
the updated weights cause the activation level of this unit to fall in the ( E ,  1-E) interval. 
Once the updated weights satisfy this requirement, the standard BP algorithm is then used 
to update all the weights of the network. Yet, another simple modification of the standard 
BP algorithm has been proposed by Vitela and Reifman (1993), where the slope of the 

PJ 

pj 
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activation leyel is set to a constant value when the activation level of 0%) falls in predefined 
saturation regions. The saturation regions are defined by values of 0%) outside the 
(0.0025,0.9975) range corresponding to slope values smaller than 1% of the maximum 
slope obtained at 0$')=0.5. The constant slope value of 0.09, adopted for the saturation 
regions, corresponds to the slope value obtained when o$)=tpj=0.9 or 0.1, i.e., when the 
output units have reached their expected activation levels at the end of training. 

The objective of these modifications to the BP algorithm is to reduce the training 
time by precluding the output units from getting stuck in the wrong state. The amount of 
improvement, as compared to the standard BP algorithm, varies for each approach and was 
found to be problem-dependent. In spite of the fact that these researchers have recognized 
the premature saturation problem, to our knowledge, only Lee et al. (1991) have attempted 
to explain the origin of this undesirable phenomenon. In their analysis, the PS of the 
output units of the network is described as a static phenomenon that occurs at the first 
training cycle as a consequence of the randomly chosen initial set of weights. They also 
presented expressions that approximate the probability of the occurrence of PS at the first 
training cycle as a function of the value of the initial weights, the number of nodes in each 
layer, and the slope of the sigmoid function. In the next Section, we describe the dynamic 
mechanism that produces the phenomenon of PS, followed by a set of necessary conditions 
that need to be satisfied for the Occurrence of the phenomenon. 

3 The Mechanism that Produces Premature Saturation ________-_____ 
Premature saturation of a given output unit j is likely to occur at the early stages of 

the training process when the randomly selected weights, i.e., the starting point of the BP 
algorithm, lies in a skewed region of the error-surface Ej. The skewness of this error- 
surface may cause the components of the gradient VE(wk) associated with the subset of 
weights Uj defined in the last Section, to change signs at two consecutive iterations of the 
algorithm. In that case, at iteration k, the momentum term aAwk-1 in Eq. (2) which 
represents the "memory" of the previous directions of motion, may not have its projection 
along the direction of the gradient VEj, pointing in the desired negative gradient direction 
-VE,. If in addition, this projection is larger in magnitude than the corresponding 
projection of the learning term -qVE(wk), then the new weight update AWk will produce, 
at first order, an increase in the training error Ej(Wk+l). 

The observation that PS generally occurs at the early stages of the training process 
is due to the fact that at early stages the activation level of the output units are far from their 
target values causing the components of the weight update Awk to attain relatively large 
absolute values. Similarly, PS is more often observed with the "batch" mode of BP 
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training (Beiker and Le Cun 1988), rather than the "on-line" mode because of the larger 
Awk obtained by adding up the contributions of all patterns. When the components of 
Awk are of the same order of magnitude as the components of wk, the updated weight 
wk+l=wk+Awk may suddenly become quite large and cause the activation level o$')of the 
j - th  output unit to approach either 0 or 1, for all patterns p=1,2, ..., P, in the next pattern 
presentation, Le., iteration k+l, of the BP algorithm. The combination of the effects of 
this scenario with the effects of a skewed error-surface Ejmay cause an increase in 
Ej(Wk+l) and a decrease in the magnitude of VEj(Wk+l), reducing the contribution of the 
latter to the total gradient VE(Wk+l). If in addition, the new learning term -qVE(wk+l) 
cannot offset the tendency of the new momentum term cdwk to update the weights in the 
direction in which Ej increases, the magnitude of VEj(Wk+z) will be further reduced in the 
subsequent iteration. 

As the magnitude of VEj is further reduced, so is its contribution to VE allowing 
the momentum term to keep governing the motion of the weights across the error-surface 
Ej. The repetition of this undesirable mechanism for consecutive iterations launches a 
"snowball" effect that causes, as an end-result, the components of VEj to approach an 
asymptotic zero value. As a consequence, the weights Uj connecting all units of the last 
hidden layer to output unit j become trapped at their current values and the activation level 
(L) remains at its saturated state. This precludes any significant change in Ej originating OPj 

the characteristic flat plateau in the training error curve. 
As VEj decreases quickly towards its asymptotic zero value during the snowball 

effect, so does the contribution of the learning term -qVE in updating u,. Because of this 
and the fact that the momentum parameter a is selected from the [0,1] interval, the 
contribution of the momentum term aAw in updating u, also decreases, but at a slower 
rate. The contribution of aAw decreases continuously at each iteration beyond the end of 
the snowball effect until it becomes comparable with the asymptotic contribution of -qVE, 
at which point the trapped weights uj may start recovering from their frozen state. 

In general, PS is not manifested in all output units of the network. The occurrence 
of this phenomenon as well as the number of saturated units are strongly dependent on the 
starting point in weight-space, the values of the parameters q and a, the topology of the 
network, and the number and type of training patterns. These dependencies together with 
the strong nonlinearity of sigmoid-mapped units offer tremendous difficulties in obtaining 
both the necessary and sufficient conditions for the occurrence of premature saturation. 
Hence, in the following Section we present only a set of necessary conditions that need to 
be satisfied if an output unit is to saturate prematurely. 
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4 Neceswry Conditions for Premature Saturation ____________________ 
Based on the above discussions, we established the following four necessary 

conditions which must be satisfied if premature saturation is to occur in thej-th output unit: 

The mechanism that gives rise to premature saturation is embedded in the four 
necessary conditions. To first order, each iteration of the BP algorithm yields smaller 
values of Ej if the weight update AWk satisfies the inequality Awk*VE,(wk) < 0. 
However, as discussed in the previous Section, at the onset of PS this inequality is not 
satisfied, i.e., Ej increaes, which is expressed by condition c l .  Condition c2 states that the 
projection of the momentum term along the direction VEj(Wk) should be in the direction 
which causes Ej to increase. Condition c3 reflects the necessity that the magnitude of the 
projection of the momentum term must be larger than the projection of the learning term, 
along the VEj direction. These last two conditions summarize the role of the momentum 
term CXAWk-1 as the driving force that governs the updating of the weights at the onset of 
premature saturation. Finally, condition c4 requires that the magnitude of the gradient of 
unit j decreases monotonically at subsequent iterations and reflects the fact that the 
activation level of the unit is prematurely approaching the saturated levels of 0 or 1. 

As mentioned before, these conditions, although necessary, are not sufficient. 
Nevertheless, our experimental results have shown that the satisfaction of these four 
conditions for a large enough number of successive iterations characterizes the 
phenomenon unequivocally. The number of successive iterations for which the conditions 
need to be satisfied in order to saturate output unit j is problem-dependent and the larger the 
number of successive iterations is, the higher is the degree of saturation that the unit may 
reach. The degree of saturation that a saturating unit j reaches can be quantified by the 
magnitude of the gradient VEj at the last iteration in which the four conditions are satisfied. 
Thus, smaller asymptotic zero values of IVE,I indicate higher degrees of saturation and 
vice-versa. 
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5 Stages ?f the Process of Premature Saturation _____________ 
The analysis presented in the foregoing Sections allow us to characterize the entire 

process of premature saturation of output unit j by three distinct stages: beginning of 
saturation, saturation plateau, and recovery from saturation. The first stage, beginning of 
saturation, corresponds to the first few iterations of the BP algorithm where conditions c i  
through c4 are simultaneously satisfied during consecutive iterations. During this stage, 
the "snowball" effect is launched causing IVEjl to decrease monotonically and to approach 
an asymptotic value of zero, 

The second stage, saturation plateau, starts when the four conditions are no longer 
simultaneously satisfied and both the momentum term and learning term have become small 
enough to produce any significant update of the weights Uj at a single iteration. The 
trapping of the weights causes the training error Ej to remain practically constant, which is 
then reflected as a saturation plateau in the training curve at high values of the total training 
error E. The length of the saturation plateau is strongly dependent on the level of saturation 
of the unit, with long lengths associated with high levels of saturation and vice-versa. If 
the level of saturation characterized by IVEjl, is not high enough the unit may only show a 
slight tendency to saturate in which case the saturation plateau may not be noticeable. Also, 
during the second stage, IVEjl suffers fluctuations about its asymptotic zero value and in 
some cases during this stage the four necessary conditions may once again become satisfied 
for a number of iterations. 

Finally, the third and last stage, recovery from saturation, begins when the 
magnitude of the gradient lVE,l starts increasing monotonically. The monotonic increase is 
a consequence of the fact that the learning term and the momentum term are now allowed to 
update the weights in the direction in which Ej decreases; thus untrapping the weights Uj 
and reversing the snowball effect described in Sec. 3 during the saturation of the output 
unit. The end of the recovery from saturation stage is characterized by values of IVEjl of 
the same order of magnitude of its values just before the beginning of the saturation stage 
followed by a quick settle down. 

6 Simulation Results _____________________-_-___---____-_--__-__ 
In order to show the validity of the necessary conditions described in Sec. 4, we 

present the results of a BP training session for the classificztion of three component failures 
in a nuclear power plant in which the phenomenon of premature saturation was observed in 
the network output units (Reifman and Vitela 1994). The network consisted of three layers 
with 20-20-3 units per layer, respectively, and the desired target values tpj for the three 
output units were set to either 0.1 or 0.9 depending on the training pattern. The value of 
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the learning parameter q was fixed at 0.1 throughout the training session and the value of 
the momentum parameter a was set to 0.0 for the first two training cycles and after that it 
was set to 0.9. A training cycle or iteration in the BP algorithm consisted of the 
presentation of the entire set of 108 training patterns, corresponding to 36 patterns for each 
one of the three component failures, after which the weights were adjusted. 

Figure 1 shows the behavior of the total training error E for a training session in 
which a set of randomly selected weights caused two units, out of the network three output 
units, to saturate prematurely. The occurrence of the premature saturation phenomenon is 
clearly represented in the figure by regions of flat plateaus at high error levels. The 
corresponding training errors Ej, for j=1,2,3, associated with each one of the three output 
units of the network is illustrated in Fig. 2. Figure 2 shows that output units 1 and 3 are 
the two saturated units responsible for the formation of the flat plateaus in  Fig. 1 and that 
the sharp decrease in the total training error E around 350 training cycles is caused by the 
recovery from saturation of output unit 3. 

During the beginning of saturation stage of the phenomenon of PS, the four 
necessary conditions defined in Sec. 4 are satisfied. As illustrated in Fig. 2, the training 
errors El and E3 increase after a couple of iterations of the algorithm. The increase in El 
and E3 satisfy necessary condition c l  and expresses the fact that the weights directly 
connected to units 1 and 3 are not being updated in a minimizing direction, as a 
consequence of the satisfaction of necessary conditions c2 and c3. Necessary condition c4, 
which requires that the magnitude of the gradient IVEjl for saturating unit j decreases 
monotonically at subsequent iterations, is also satisfied after the second iteration for both 
output units as illustrated in Fig. 3. 

Table I summarizes the results of testing the three output units for the four 
necessary conditions during the first 20 iteration of the BP algorithm. Each entry in the 
table is a number with four binary digits, where each one of the four digits corresponds to 
the status of one necessary condition. A necessary condition is satisfied if the associated 
digit has a value of 1, and is not satisfied if the value of the digit is 0. For example, the 
entry for unit 2 at the fourth iteration, 0101, satisfies conditions c2 and c4 but does not 
satisfy conditions c l  and c3. The table shows that in both units 1 and 3 the four necessary 
conditions are satisfied simultaneously between iterations 3 and 14 constituting the 
beginning of saturation stage for both output units. 

The second stage of the saturation process, in which El and E3 remain practically 
constant, starts at iteration 15 for both saturated units. At this point, at least one of the four 
conditions is no longer satisfied, although the magnitude of the gradients lVEll and IVE31, 
which quantify the level of saturation of the units, are still decreasing and approaching their 
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asymptotic ,'zero'' value. The duration of this stage is different for each unit due to the 
different level of saturation reached by each output uni t  at the end of the first stage. The 
fact that output unit 1 has a higher degree of saturation than output unit 3, as illustrated in 
Fig. 3, causes unit 1 to delay its recovery from its PS state. This is manifested by a larger 
saturation plateau in Fig. 2. 

The recovery from saturation stage beings around iteration 70 €or output unit 3, 
while for unit 1 it only starts around iteration 6000. This final stage of the saturation 
process is characterized by the monotonic increase in the magnitude of VEj, which is 
satisfied until the recovery from saturation is completed. As shown in Fig. 3, the full 
recovery from saturation occurs around iteration 350 for unit 3 and around iteration 30000 
for output unit 1, after which IVEjl, for j=1,3, decreases as the BP algorithm is free from 
the phenomenon of PS and resumes its motion towards the minimum of the total training 
error. The typical activation levels of the three output units corresponding to an arbitray 
teaching pattern are illustrated in Fig. 4. 

The results presented for this particular training session were confirmed in other 
experiments performed by changing the learning parameter, momentum parameter, and by 
starting the training session at different positions in weight-space. These experiments have 
also shown that the occurrence of PS in a given output unit is an overall property of the 
network, with the remaining output units playing important roles. Because all output units 
contribute to the total error gradient IVEl and therefore to the weight update Awk, the 
unsaturated output units may alter the activation level of the units in the last hidden layer, 
which in turn, may alter the activation level of the saturated output units. In this way, the 
unsaturated units may prevent a saturated unit from reaching high degrees of saturation 
during the early stages of the saturation process, while on the other hand, they may inhibit 
a faster recovery of the saturated unit at later stages. 

7 Summary and Conclusions ____________________---------------- 
In this work we have analyzed the mechanism by which the process of premature 

saturation of the output units is produced during training with the standard BP algorithm. 
In addition, a set of four necessary conditions that should be satisfied when a given output 
unit is to saturate prematurely was established and it was concluded that the momentum 
term plays the leading role at the onset of premature saturation. Furthermore, our analysis 
showed that the entire premature saturation process can be characterized by three distinct 
stages, beginning of saturation, saturation plateau, and the recovery from saturation stage. 

The validity of these results was illustrated by means of a typical premature 
saturation problem encountered during a training session of a feedforward multilayer 
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network. Additional experiments performed changing the values of the learning parameter, 
momentum parameter, as well as running the same problem with different sets of initial 
weights confirmed the results presented here and validate the necessary conditions. 
Finally, we want to point out that although not sufficient, the satisfaction of these 
conditions for a large enough number of consecutive iterations constitutes an unequivocal 
sign of premature saturation. 
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1 Table I. Results of the Four Necessary Conditions for the Three 
Output Units During the First Few Training Cycles 
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Fig. 1. Effects of the Premature Saturation of the Network Output Units 
on the Total Training Error 
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Fig. 2. Behavior of the Partial Training Errors Associated With the Three 
Output Units Showing the Effect of Premature Saturation in Two Units 
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Fig. 3. Behavior of the Magnitude of the Gradient of the Partial Training Errors 
Showing the Effect of Premature Saturation in Output Units 1 and 3 
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Fig. 4. Typical Activation Level of the Three Output Units for a Given 
Pattern When Premature Saturation Occurs in Units 1 and 3 
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