Overview of D-T results from TFTR

PDF Version Also Available for Download.

Description

Experiments with plasmas having nearly equal concentrations of deuterium and tritium have been carried out on TFTR. To date, the maximum fusion power has been 10.7 MW, using 39.5 MW of neutral-beam heating, in a supershot discharge and 6.7 MW in a high-{beta}{sub p} discharge following a current ramp-down. The fusion power density in the core of the plasma has reached 2.8 MWm{sup {minus}3}, exceeding that expected in the International Thermonuclear Experimental Reactor (ITTER). The energy confinement time, {tau}{sub E}, is observed to increase in D-T, relative to D plasmas, by 20% and the n{sub i}(O){center_dot}{tau}{sub E} product by 55%. ... continued below

Physical Description

15 p.

Creation Information

Bell, M.G.; McGuire, K.M. & Arunasalam, V. October 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Experiments with plasmas having nearly equal concentrations of deuterium and tritium have been carried out on TFTR. To date, the maximum fusion power has been 10.7 MW, using 39.5 MW of neutral-beam heating, in a supershot discharge and 6.7 MW in a high-{beta}{sub p} discharge following a current ramp-down. The fusion power density in the core of the plasma has reached 2.8 MWm{sup {minus}3}, exceeding that expected in the International Thermonuclear Experimental Reactor (ITTER). The energy confinement time, {tau}{sub E}, is observed to increase in D-T, relative to D plasmas, by 20% and the n{sub i}(O){center_dot}{tau}{sub E} product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter-H-mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high-{beta}{sub p} discharges. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP simulations assuming classical confinement. Measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from helium gas puffing experiments. The loss of energetic alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha-particle-driven instabilities has yet been observed. ICRF heating of a D-T plasma, using the second harmonic of tritium, has been demonstrated. D-T experiments on TFTR will continue both to explore the physics underlying the ITER design and to examine some of the physics issues associated with an advanced tokamak reactor.

Physical Description

15 p.

Notes

INIS; OSTI as DE96007496

Source

  • Other Information: PBD: Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96007496
  • Report No.: PPPL--3146
  • Grant Number: AC02-76CH03073
  • DOI: 10.2172/214286 | External Link
  • Office of Scientific & Technical Information Report Number: 214286
  • Archival Resource Key: ark:/67531/metadc666766

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 15, 2016, 6:48 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bell, M.G.; McGuire, K.M. & Arunasalam, V. Overview of D-T results from TFTR, report, October 1, 1995; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc666766/: accessed October 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.