Gas-phase diffusion in porous media: Evaluation of an advective- dispersive formulation and the dusty-gas model including comparison to data for binary mixtures

PDF Version Also Available for Download.

Description

Two models for gas-phase diffusion and advection in porous media, the Advective-Dispersive Model (ADM) and the Dusty-Gas Model (DGM), are reviewed. The ADM, which is more widely used, is based on a linear addition of advection calculated by Darcy`s Law and ordinary diffusion using Fick`s Law. Knudsen diffusion is often included through the use of a Klinkenberg factor for advection, while the effect of a porous medium on the diffusion process is through a porosity-tortuosity-gas saturation multiplier. Another, more comprehensive approach for gas-phase transport in porous media has been formulated by Evans and Mason, and is referred to as the ... continued below

Physical Description

72 p.

Creation Information

Webb, S.W. May 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 141 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Two models for gas-phase diffusion and advection in porous media, the Advective-Dispersive Model (ADM) and the Dusty-Gas Model (DGM), are reviewed. The ADM, which is more widely used, is based on a linear addition of advection calculated by Darcy`s Law and ordinary diffusion using Fick`s Law. Knudsen diffusion is often included through the use of a Klinkenberg factor for advection, while the effect of a porous medium on the diffusion process is through a porosity-tortuosity-gas saturation multiplier. Another, more comprehensive approach for gas-phase transport in porous media has been formulated by Evans and Mason, and is referred to as the Dusty- Gas Model (DGM). This model applies the kinetic theory of gases to the gaseous components and the porous media (or ``dust``) to develop an approach for combined transport due to ordinary and Knudsen diffusion and advection including porous medium effects. While these two models both consider advection and diffusion, the formulations are considerably different, especially for ordinary diffusion. The various components of flow (advection and diffusion) are compared for both models. Results from these two models are compared to isothermal experimental data for He-Ar gas diffusion in a low-permeability graphite. Air-water vapor comparisons have also been performed, although data are not available, for the low-permeability graphite system used for the helium-argon data. Radial and linear air-water heat pipes involving heat, advection, capillary transport, and diffusion under nonisothermal conditions have also been considered.

Physical Description

72 p.

Notes

OSTI as DE96011008

Source

  • Other Information: PBD: May 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96011008
  • Report No.: SAND--96-1197
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/242787 | External Link
  • Office of Scientific & Technical Information Report Number: 242787
  • Archival Resource Key: ark:/67531/metadc666717

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 14, 2016, 3:59 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 141

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Webb, S.W. Gas-phase diffusion in porous media: Evaluation of an advective- dispersive formulation and the dusty-gas model including comparison to data for binary mixtures, report, May 1, 1996; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc666717/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.