Three-dimensional electromagnetic modeling and inversion on massively parallel computers

PDF Version Also Available for Download.

Description

This report has demonstrated techniques that can be used to construct solutions to the 3-D electromagnetic inverse problem using full wave equation modeling. To this point great progress has been made in developing an inverse solution using the method of conjugate gradients which employs a 3-D finite difference solver to construct model sensitivities and predicted data. The forward modeling code has been developed to incorporate absorbing boundary conditions for high frequency solutions (radar), as well as complex electrical properties, including electrical conductivity, dielectric permittivity and magnetic permeability. In addition both forward and inverse codes have been ported to a massively ... continued below

Physical Description

112 p.

Creation Information

Newman, G.A. & Alumbaugh, D.L. March 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 32 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report has demonstrated techniques that can be used to construct solutions to the 3-D electromagnetic inverse problem using full wave equation modeling. To this point great progress has been made in developing an inverse solution using the method of conjugate gradients which employs a 3-D finite difference solver to construct model sensitivities and predicted data. The forward modeling code has been developed to incorporate absorbing boundary conditions for high frequency solutions (radar), as well as complex electrical properties, including electrical conductivity, dielectric permittivity and magnetic permeability. In addition both forward and inverse codes have been ported to a massively parallel computer architecture which allows for more realistic solutions that can be achieved with serial machines. While the inversion code has been demonstrated on field data collected at the Richmond field site, techniques for appraising the quality of the reconstructions still need to be developed. Here it is suggested that rather than employing direct matrix inversion to construct the model covariance matrix which would be impossible because of the size of the problem, one can linearize about the 3-D model achieved in the inverse and use Monte-Carlo simulations to construct it. Using these appraisal and construction tools, it is now necessary to demonstrate 3-D inversion for a variety of EM data sets that span the frequency range from induction sounding to radar: below 100 kHz to 100 MHz. Appraised 3-D images of the earth`s electrical properties can provide researchers opportunities to infer the flow paths, flow rates and perhaps the chemistry of fluids in geologic mediums. It also offers a means to study the frequency dependence behavior of the properties in situ. This is of significant relevance to the Department of Energy, paramount to characterizing and monitoring of environmental waste sites and oil and gas exploration.

Physical Description

112 p.

Notes

OSTI as DE96008728

Source

  • Other Information: PBD: Mar 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96008728
  • Report No.: SAND--96-0582
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/212573 | External Link
  • Office of Scientific & Technical Information Report Number: 212573
  • Archival Resource Key: ark:/67531/metadc666656

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 1, 1996

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • April 14, 2016, 8:51 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 32

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Newman, G.A. & Alumbaugh, D.L. Three-dimensional electromagnetic modeling and inversion on massively parallel computers, report, March 1, 1996; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc666656/: accessed April 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.