A Monte Carlo Procedure for the Construction of Complementary Cumulative Distribution Functions for Comparison with the EPA Release Limits for Radioactive Waste Disposal

J. C. Helton and A. W. Shiver
WIPP Performance Assessment Computational Support Department
Sandia National Laboratories
Albuquerque, New Mexico 87185-1328

ABSTRACT

A Monte Carlo procedure for the construction of complementary cumulative distribution functions (CCDFs) for comparison with the U.S. Environmental Protection Agency (EPA) release limits for radioactive waste disposal (40 CFR 191, Subpart B) is described and illustrated with results from a recent performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP). The Monte Carlo procedure produces CCDF estimates similar to those obtained with stratified sampling in several recent PAs for the WIPP. The advantages of the Monte Carlo procedure over stratified sampling include increased resolution in the calculation of probabilities for complex scenarios involving drilling intrusions and better use of the necessarily limited number of mechanistic calculations that underlie CCDF construction.
ACKNOWLEDGMENT

Review of this presentation was provided by M.G. Marietta and M.S. Tierney of Sandia National Laboratories and is gratefully acknowledged. Further, this presentation would not have been possible without the diligent and high-quality work of the many members of the 1991 and 1992 WIPP PA teams, including D.R. Anderson, B.L. Baker, J.E. Bean, J.W. Berglund, W. Beyeler, K. Economy, J.W. Garner, S.C. Hora, H.J. Iuzzolino, P. Knupp, M.G. Marietta, J. Rath, R.P. Rechard, P.J. Roache, D.K. Rudeen, K. Salari, J.D. Schreiber, P.N. Swift, M.S. Tierney, and P. Vaughn. Editorial support was provided by Tech Reps, Inc., with special thanks to H. Olmstead, J. Ripple, and D. Sessions. Work performed for Sandia National Laboratories and the U.S. Department of Energy under contract number DE-AC04-76DP00789. However, the views and ideas expressed in this presentation are the authors' and should not be interpreted as expressing any position or policy by the sponsors.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
CONTENTS

1. Introduction .. 1

2. CCDF Construction in 1991 and 1992 WIPP PAs ... 5

3. Monte Carlo Procedure for CCDF Construction ... 17

4. Monte Carlo Estimation of Scenario Probabilities ... 27

5. Discussion and Prospectus ... 31

References ... 33
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Comparison of CCDF for normalized release to the accessible environment with boundary line specified in 191.13(a)</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Location of Waste Disposal Panels at the WIPP.</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Construction of a CCDF from the Kaplan/Garrick ordered triple representation for risk</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Computer programs used in 1991 WIPP PA.</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Distribution of CCDFs for normalized release to the accessible environment due to cuttings removal (left frame) and groundwater transport (right frame) obtained in the 1991 WIPP PA.</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Estimated CCDFs for sample element 46.</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>Estimated CCDFs for sample element 46 obtained with importance sampling and a Monte Carlo sample of size 5×10^5.</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>Estimated CCDFs for sample element 46 obtained with Monte Carlo samples of size 5×10^2, 5×10^3, 5×10^4 and 5×10^5.</td>
<td>25</td>
</tr>
</tbody>
</table>

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Release Limits for the Containment Requirements</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Projected Activity Levels (Ci/m²) in Waste That Is Currently Stored and May Be Shipped to the WIPP</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Normalized Radionuclide Releases Used to Illustrate Scenario Construction Procedures</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Assumptions Used in Construction of Groundwater Release to the Accessible Environment $nRG(x)$ for an Arbitrary Element x of \hat{S}_c</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Parameter Values Used in Example Calculation of Probabilities for E1E2-Type Scenarios</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Comparison of Probabilities for Scenarios Involving E1E2-Type Intrusions That Occur with Fixed Time Intervals for the Defining Boreholes</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>Comparison of Probabilities for Scenarios Involving E1E2-Type Intrusions That Occur with Fixed Separation Times for the Defining Boreholes</td>
<td>29</td>
</tr>
</tbody>
</table>
1. Introduction

The U.S. Environmental Protection Agency (EPA) has promulgated the following containment requirement for the geologic disposal of radioactive waste:1

§ 191.13 Containment requirements.

(a) Disposal systems for spent nuclear fuel or high-level or transuranic radioactive wastes shall be designed to provide a reasonable expectation, based upon performance assessments, that cumulative releases of radionuclides to the accessible environment for 10,000 years after disposal from all significant processes and events that may affect the disposal system shall:

(1) Have a likelihood of less than one chance in 10 of exceeding the quantities calculated according to Table 1 (Appendix A); and

(2) Have a likelihood of less than one chance in 1,000 of exceeding ten times the quantities calculated according to Table 1 (Appendix A).

(b) Performance assessments need not provide complete assurance that the requirements of 191.13(a) will be met. Because of the long time period involved and the nature of the events and processes of interest, there will inevitably be substantial uncertainties in projecting disposal system performance. Proof of the future performance of a disposal system is not to be had in the ordinary sense of the word in situations that deal with much shorter time frames. Instead, what is required is a reasonable expectation, on the basis of the record before the implementing agency, that compliance with 191.13(a) will be achieved.

Further, "accessible environment" means (a) the atmosphere, (b) land surfaces, (c) surface waters, (d) oceans, and (e) all of the lithosphere that is beyond the controlled area, and "controlled area" means (a) a surface location, to be identified by passive institutional controls, that encompasses no more than 100 km2 and extends horizontally no more than 5 km in any direction from the outer boundary of the original location of the radioactive wastes in a disposal system, and (b) the subsurface underlying such a surface location. Table 1 (Appendix A) referred to in the preceding quote is reproduced here as Table 1.

Associated with Table 1 (App. A) of Ref. 1 are instructions for converting a radionuclide release to the accessible environment over 10,000 yr (units: Ci) to a normalized release (units: dimensionless) for different types of radioactive waste. For transuranic waste, which is the waste category considered in this presentation, the normalized release nR is defined by

$$nR = \sum_i \left(\frac{Q_i}{L_i} \right) \left(1 \times 10^6 \text{ Ci} / C \right)$$ (1)
Table 1. Release Limits for the Containment Requirements (Ref. 1, App. A, Table 1)

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Release Limit (L_i) per 1000 MTHMa or other unit of waste(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americum</td>
<td>100</td>
</tr>
<tr>
<td>Carbon 14</td>
<td>100</td>
</tr>
<tr>
<td>Cesium-135 or -137</td>
<td>1,000</td>
</tr>
<tr>
<td>Iodine-129</td>
<td>100</td>
</tr>
<tr>
<td>Neptunium-237</td>
<td>100</td>
</tr>
<tr>
<td>Plutonium-238, -239, -240, or -242</td>
<td>100</td>
</tr>
<tr>
<td>Radium-226</td>
<td>100</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>1,000</td>
</tr>
<tr>
<td>Technetium-99</td>
<td>10,000</td>
</tr>
<tr>
<td>Thorium-230 or -232</td>
<td>10</td>
</tr>
<tr>
<td>Tin-126</td>
<td>1,000</td>
</tr>
<tr>
<td>Uranium-233, -234, -235, -236, or -238</td>
<td>100</td>
</tr>
<tr>
<td>Any other alpha-emitting radionuclide with a half-life greater than 20 years</td>
<td>100</td>
</tr>
<tr>
<td>Any other radionuclide with a half-life greater than 20 years that does not emit alpha particles</td>
<td>1,000</td>
</tr>
</tbody>
</table>

\(^a\) Metric tons of heavy metal exposed to a burnup between 25,000 megawatt-days per metric ton of heavy metal (MWd/MTHm) and 40,000 MWd/MTHM.

\(^b\) An amount of transuranic wastes containing one million curies of alpha-emitting transuranic radionuclides with half-lives greater than 20 years.

where

\(Q_i = \) cumulative release of radionuclide \(i\) to the accessible environment during the 10,000-yr period following closure of the repository (Ci),

\(L_i = \) release limit for radionuclide \(i\) given in Table 1 (Ci),

\(C = \) amount of transuranic waste emplaced in the repository (Ci).

The preceding normalization provides a way to reduce the effects of releases involving a variety of radionuclides to a single number.

Assessing compliance with 191.13 presents an interesting conceptual and computational problem due to the involvement of two different types of uncertainty. Requirement 191.13(a) specifies that the complementary cumulative distribution function (CCDF) for normalized radionuclide release to the accessible environment shall fall below a boundary line defined by the points \((1, 0.1)\) and \((10, 0.001)\) as indicated in Fig. 1. As such, 191.13(a) is an
example of the Farmer limit line approach to the definition of acceptable risk.3-5 The uncertainty characterized by the CCDF associated with 191.13(a) arises because a waste disposal site could experience a variety of different disruptions and is often referred to as stochastic uncertainty. Requirement 191.13(b) specifies that performance assessments should provide "a reasonable expectation" that compliance with 191.13(a) will be achieved. The "reasonable expectation" associated with 191.13(b) arises from an assessment of how much uncertainty there is with respect to where the CCDF in 191.13(a) is actually located. The uncertainty addressed in 191.13(b) arises from a lack of knowledge on the part of the analysts attempting to assess compliance with 191.13(a) and is often referred to as subjective uncertainty. The importance of separating the effects of stochastic and subjective uncertainty, as specified in 191.13, has been emphasized by a number of authors.6-16
The characterization of stochastic and subjective uncertainty involves the use of probability. Three entities are involved in a formal definition of probability: (1) a set \mathcal{S} that contains everything that could occur for the particular "universe" under construction, (2) a suitably restricted set \mathcal{A} of subsets of \mathcal{S} called a Borel or σ–algebra, and (3) a function p defined for elements of \mathcal{A} that actually defines probability. Collectively, the triple $(\mathcal{S}, \mathcal{A}, p)$ is a called a probability space. In the terminology of probability theory, \mathcal{S} is the sample space, the elements of \mathcal{S} are elementary events, and the subsets of \mathcal{S} contained in \mathcal{A} are events. The probability space $(\mathcal{S}_p, \mathcal{A}_p, p_p)$ associated with stochastic uncertainty gives rise to the CCDF specified in 191.13(a), and the probability space $(\mathcal{S}_{su}, \mathcal{A}_{su}, p_{su})$ associated with subjective uncertainty determines whether or not there is a "reasonable expectation" that 191.13(a) will be met as required by 191.13(b). In practice, a full measure-theoretic development of probability is never performed in a PA for a complex system. However, it is useful to introduce the idea of a probability space to emphasize that two internally-consistent developments of probability underly the treatment of stochastic and subjective uncertainty.

Preliminary performance assessments (PAS) conducted for the Waste Isolation Pilot Plant (WIPP) in 1991 and 1992 have used an experimental design based on importance sampling (Ref. 29, Sect. 5.4) to investigate the probability space for stochastic uncertainty and construct the CCDF specified in 191.13(a) and a random design based on Latin hypercube sampling to investigate the probability space for subjective uncertainty and assess the "reasonable expectation" called for in 191.13(b). This presentation will describe a Monte Carlo procedure that can be used to investigate stochastic uncertainty in PAs for the WIPP instead of the previously used importance sampling procedure. Desirable features of this Monte Carlo procedure include conceptual simplicity, computational efficiency, increased resolution on scenario probability, and better estimates of normalized releases to the accessible environment.

The presentation is organized as follows. The procedures used in the 1991 and 1992 WIPP PAs to treat stochastic and subjective uncertainty are described in Sect. 2. This description also introduces much of the notation and the mechanistic calculations that are needed to describe and illustrate the Monte Carlo procedure. The Monte Carlo construction of CCDFs is then presented in Sect. 3 and results of such constructions are compared with results obtained in the 1991 WIPP PA. The use of Monte Carlo procedures to estimate probabilities for certain complex scenarios involving pressurized brine pockets (i.e., E1E2-scenarios in a commonly-used WIPP terminology) is discussed in Sect. 4. Finally, a concluding discussion and prospectus on possible uses of Monte Carlo procedures for CCDF construction are given in Sect. 5.
2. CCDF Construction in 1991 and 1992 WIPP PAs

In the 1991 and 1992 WIPP PAs, the probability space \((\mathcal{S}_{st}, \mathcal{A}_{st}, P_{st})\) for stochastic uncertainty is defined by the following assumptions: (1) exploratory drilling for natural resources constitutes the only disruption at the WIPP with sufficient likelihood to be retained in the analysis (Ref. 21, Chapt. 3), (2) drilling intrusions follow a Poisson process\(^{32-35}\) with a rate term \(\lambda\), (3) waste is partitioned into five activity levels \((C/m^2)\) with a probability of \(p_{Li}\) that a randomly placed borehole will intersect waste of activity level \(i\) (Ref. 22, Table 3.4-1), and (4) a fraction \(p_{PB_i}\) of waste panel \(i\) (Fig. 2) is underlain by pressurized brine (Ref. 22, Sect. 5.1.1). In this development, the sample space \(\mathcal{S}_{st}\) is

\[
\mathcal{S}_{st} = \{x: x \text{ a single 10,000 yr history beginning at the decommissioning of the WIPP}\}.
\]

Further, the set \(\mathcal{A}_{st}\) and function \(P_{st}\) were never fully developed. Rather, as described below and in more detail elsewhere,\(^{36}\) an importance sampling procedure was used to subdivide \(\mathcal{S}_{st}\), with only those elements of \(\mathcal{A}_{st}\) used in this importance sampling procedure being defined and assigned probabilities.

The importance sampling procedure used in the 1991 and 1992 WIPP PAs to subdivide \(\mathcal{S}_{st}\) is based on the division of the 10,000-yr time period specified in 191.13(a) into a sequence

\[
[t_{i-1}, t_i], \quad i = 1, 2, \ldots, nT,
\]

of disjoint time intervals. When the activity levels of the waste are not considered, these time intervals lead to subsets of \(\mathcal{S}_{st}\) defined by

\[
\delta^i(n) = \{x: x \text{ an element of } \mathcal{S}_{st} \text{ for which exactly } n(i) \text{ intrusions occur in time interval } [t_{i-1}, t_i] \text{ for } i = 1, 2, \ldots, nT\}
\]

and

\[
\delta^+-(t_{i-1}, t_i) = \{x: x \text{ an element of } \mathcal{S}_{st} \text{ for which two or more boreholes penetrate the same waste panel during the time interval } [t_{i-1}, t_i], \text{ with at least one of these boreholes penetrating a pressurized brine pocket } (+) \text{ and at least one not penetrating a pressurized brine pocket } (-)\},
\]

where

\[
n = [n(1), n(2), \ldots, n(nT)].
\]

In the 1991 WIPP PA, \(nT = 5\) and each time interval \([t_{i-1}, t_i]\) had a length of 2000 yrs. In the 1992 WIPP PA, the intervals \([t_{i-1}, t_i]\) were defined in two different ways. To represent releases due to cuttings removal, \(nT = 6\) and the individual intervals are \([0, 150 \text{ yr}], [150, 200 \text{ yr}], [200, 500 \text{ yr}], [500, 1500 \text{ yr}], [1500, 4500 \text{ yr}]\) and [4500,
Fig. 2. Location of Waste Disposal Panels at the WIPP.
10,000 yr]; to represent releases due to groundwater transport, \(nT = 2 \) and the individual time intervals are [0, 2000 yr] and [2000, 10,000 yr].

When the activity levels of the waste are considered for the calculation of cuttings removal, the preceding time intervals lead to scenarios defined by

\[S(l,n) = \{ x: x \text{ an element of } S(n) \text{ for which the } j^{th} \text{ borehole encounters waste of activity level } l(j) \text{ for } j = 1, 2, ..., nBH, \text{ where } nBH \text{ is the total number of boreholes associated with a time history in } S(l,n) \} \tag{7} \]

and

\[S^{+}(l, t_{i-1}, t_i) = \{ x: x \text{ an element of } S^{+}(l, t_{i-1}, t_i) \text{ for which the } j^{th} \text{ borehole encounters waste of activity level } l(j) \text{ for } j = 1, 2, ..., nBH, \text{ where } nBH \text{ is the total number of boreholes associated with a time history in } S^{+}(l, t_{i-1}, t_i) \} \tag{8} \]

where

\[l = \{ l(1), l(2), ..., l(nBH) \} \text{ and } nBH = \sum_{i=1}^{nT} n(i). \tag{9} \]

The sets \(S(l,n) \) and \(S^{+}(l, t_{i-1}, t_i) \) were used as the strata (i.e., subsets of \(S(n) \)) in the importance sampling procedure used to incorporate stochastic uncertainty into the 1991 and 1992 WIPP PAS. The preceding sets are referred to as scenarios in most of the published literature relating to the 1991 and 1992 WIPP PAS (e.g., Refs. 27, 35-38); however, they will usually be referred to as strata in this presentation to emphasize that the procedures in use are a form of importance sampling.

The probabilities \(pS(n) \) and \(pS(l,n) \) for \(S(n) \) and \(S(l,n) \) are given by

\[pS(l,n) = \left(\prod_{j=1}^{nBH} \frac{\lambda^{n(i)} (t_i - t_{i-1})^{n(i)}}{n(i)!} \right) \exp \left[-\lambda (nT - t_0) \right] \tag{10} \]

and

\[pS(l,n) = \left(\prod_{j=1}^{nBH} pL_j \right) pS(n) \tag{11} \]

under the assumption that the occurrence of boreholes through the repository follows a Poisson process with a rate constant \(\lambda \) (Ref. 21, Chapt. 2; Ref. 35), where \(n \) and \(l \) are defined in Eqs. (6) and (9), respectively, and \(pL_j \) is the probability that a randomly placed borehole through a waste panel will encounter waste of activity level \(l \).

The probabilities \(pS^{+}(l, t_{i-1}, t_i) \) and \(pS^{+}(l, t_{i-1}, t_i) \) for \(S^{+}(l, t_{i-1}, t_i) \) and \(S^{+}(l, t_{i-1}, t_i) \) are given by
\[pS^{+}(t_{i-1}, t_i) = \sum_{l=1}^{nP} \left\{ 1 - \exp\left[-\alpha_l (t_i - t_{i-1})\right]\right\} \left\{ 1 - \exp\left[-\beta_l (t_i - t_{i-1})\right]\right\} \]

and

\[pS^{-}(l; t_{i-1}, t_i) = \left(\prod_{j=1}^{nBH} pL_{(j)} \right) pS^{+}(t_{i-1}, t_i), \]

where

\[\alpha_l = aBP_l / aTOT \]
\[\beta_l = (aTOT_l - aBP_l) / aTOT \]
\[aBP_l = \text{area} (m^2) \text{ of pressurized brine pocket under waste panel } l, \]
\[aTOT_l = \text{area} (m^2) \text{ of waste panel } l, \]
\[aTOT = \text{area} (m^2) \text{ of all waste panels}, \]
\[nP = \text{number of waste panels}. \]

As illustrated in Fig. 2, the current design for the WIPP involves \(nP = 10 \) waste panels. For the 1991 and 1992 WIPP PAs, \(aTOT_l \) and \(aBP_l \) were assumed to be the same for all waste panels. Thus,

\[aTOT_l = aTOT / nP \text{ and } aBP_l = fBP \frac{aTOT}{aTOT}, \]

where

\[fBP = \sum_{l=1}^{nP} \frac{aBP_l}{aTOT}. \]

The expressions in Eqs. (11) and (12) are approximations, rather than exact formulas, for the probabilities \(pS^{+}(t_{i-1}, t_i) \) and \(pS^{-}(l; t_{i-1}, t_i) \) (Ref. 21, Chapt. 2; Ref. 35). As will be discussed later, one of the reasons for using a Monte Carlo procedure for CCDF construction is to obtain better approximations to these probabilities.

The probabilities \(pS(l, n) \) and \(pS^{+}(l; t_{i-1}, t_i) \) were used as the strata probabilities in the importance sampling procedure used in the 1991 and 1992 WIPP PAs.
The 1991 and 1992 WIPP PAs used the Kaplan/Garrick ordered triple representation for risk\(^7\) to express the connection between the importance sampling procedure in use and the CCDF required in 191.13(a). In this representation, risk is defined to be a set \(R \) of the form

\[
R = \{ (S_i, pS_i, cS_i), i = 1, ..., nS \},
\]

where

- \(S_i \) = a set of similar occurrences,
- \(pS_i \) = probability that an occurrence in the set \(S_i \) will take place,
- \(cS_i \) = a vector of consequences associated with \(S_i \),
- \(nS \) = number of sets selected for consideration.

Further, the sets \(S_i \) have no occurrences in common and \(S_i = \cup_j S_j \). In the context of the importance sampling procedure used in the 1991 and 1992 WIPP PAs, the \(S_j \) are the strata associated with the design (i.e., \(S_i(n,n) \) and \(S^{+(1,t_{i-1}, t_i)} \)), and the \(pS_i \) are the strata probabilities (i.e., \(pS_i(n,n) \) and \(pS_i^{+(1,t_{i-1}, t_i)} \)). The vector \(cS_i \) contains environmental releases for individual isotopes, the normalized EPA release summed over all isotopes (Eq. (1)), and possibly other information associated with \(S_i \). As indicated in Fig. 3, each consequence \(cS \) contained in \(cS \) leads to a CCDF. When \(cS \) is the normalized EPA release summed over all isotopes, the CCDF required in 191.13(a) is obtained.

In the 1991 WIPP PA, the consequence vectors \(cS_i \) in Eq. (16) were determined in a sequence of calculations involving the computer programs CUTTINGS (Ref. 21, Chapt. 7; Ref. 39), BRAGFLO (Ref. 21, Chapt. 5), PANEL (Ref. 21, Chapt. 5), SECO2D (Ref. 21, Chapt. 6; Ref. 40) and STAFF2D (Ref. 21, Chapt. 6; Ref. 41) as indicated in Fig. 4. An overview of the mathematical models incorporated into these programs and used in the 1991 WIPP PA is presented in Sect. 3 of Helton et al.\(^{38}\) The same sequence of models was also used in the 1992 WIPP PA with the exception that the SECO-TRANSPORT model (Ref. 25, Chapt. 7, App. C) was used instead of the STAFF2D to represent radionuclide transport in the Culebra Dolomite.

The importance sampling procedure used in the 1991 and 1992 WIPP PAs leads to too many strata to perform a detailed calculation for each strata with the models in Fig. 4. Rather, it is necessary to perform detailed release calculations for a relatively small number of strata and then to use these calculations to construct the releases associated with the remaining strata. In particular, the following results can be calculated for the time intervals \([t_{i-1}, t_i], i = 1, ..., nT\), in Eq. (3):
Fig. 3. Construction of a CCDF from the Kaplan/Garrick Ordered Triple Representation for Risk. The S_i are assumed to be ordered so that $cS_i \leq cS_{i+1}$, $i = 1, 2, \ldots, nS-1$, for the particular consequence cS under consideration.

Fig. 4. Computer programs used in 1991 WIPP PA.
\(r_{Ci} \) = EPA normalized release to the surface environment for cuttings removal due to a single borehole in time interval \(i \) with the assumption that the waste is homogeneous (i.e., wastes of different activity levels are not present),

\(r_{Cil} \) = EPA normalized release to the surface environment for cuttings removal due to a single borehole in time interval \(i \) that penetrates waste of activity level \(l \),

\(r_{GWli} \) = EPA normalized release to the accessible environment due to groundwater transport initiated by a single borehole in time interval \(i \) (i.e., an E2-type scenario),

\(r_{GW2i} \) = EPA normalized release to the accessible environment due to groundwater transport initiated by two boreholes in the same waste panel in time interval \(i \), of which one penetrates a pressurized brine pocket and one does not (i.e., an E1E2-type scenario),

with the assumption that the intrusions occur at the midpoints of the time intervals (e.g., at 1000, 3000, 5000, 7000 and 9000 yrs in the 1991 WIPP PA).

The normalized releases \(r_{Cp} \), \(r_{Cil} \) and \(r_{GWli} \) can be used to construct the EPA normalized releases for \(S(n) \) and \(S(l,n) \). For \(S(n) \), the normalized release to the accessible environment \(cS(n) \) is given by

\[
cS(n) = \sum_{j=1}^{nBH} (r_{Cm(j)} + r_{GWl_{m(j)}}),
\]

where \(m(j) \) designates the time interval in which the \(j^{th} \) borehole occurs. The vector

\[
m = \{m(1), m(2), \ldots, m(nBH)\}
\]

is uniquely determined once the vector \(n \) appearing in the definition of \(S(n) \) is specified. Further, the normalized release to the accessible environment \(cS(l,n) \) for \(S(l,n) \) is given by

\[
cS(l,n) = \sum_{j=1}^{nBH} (r_{Cm(j),l(j)} + r_{GWl_{m(j)}}).
\]

Similarly, the normalized releases to the accessible environment \(cS^{+(t_i, t_j)} \) and \(cS^{+(t_i, t_j)} \) for \(S^{+(t_i, t_j)} \) and \(S^{+(t_i, t_j)} \) can be approximated by

\[
cS^{+(t_i, t_j)} = 2r_{Ci} + r_{GW2i},
\]

and

\[
cS^{+(t_i, t_j)} = \sum_{j=1}^{2} r_{C_{i,l(j)}} + r_{GW2i},
\]
respectively. Once the $cS(l,n)$ and $cS^+((l; t_{i-1}, t_i)$ are determined, the CCDF for comparison with the EPA release limits can be constructed as indicated in Fig. 3.

So far, this section has outlined the importance sampling procedure used to incorporate stochastic uncertainty into the 1991 and 1992 WIPP PAs. Subjective uncertainty enters the analysis when parameter values must be selected and various other decisions made in the quantification of the risk representation R in Eq. (16). Specifically, R can be viewed as a function of the form

$$R(x) = \left\{ [S_l^j(x), pS_l^j(x), cS_l^j(x)], i = 1, \ldots, nS(x) \right\},$$

(26)

where

$$x = [x_1, x_2, \ldots, x_{nl}]$$

(27)

is a vector of inputs required in the determination of R and thus in the determination of the CCDF specified in 191.13(a). Lack of knowledge about the appropriate value to use for x is subjective uncertainty and is characterized by the probability space $(S_{su}, \mathcal{A}_{su}, p_{su})$ for subjective uncertainty.

In the 1991 and 1992 WIPP PAs, the probability space $(S_{su}, \mathcal{A}_{su}, p_{su})$ for subjective uncertainty was defined by specifying distributions D_1, D_2, \ldots, D_{nl}

(28)

for the elements of x, where D_j is the distribution for x_j. These distributions characterize subjective uncertainty and indicate a degree of belief as to where the appropriate value to use for each variable is located. Specifically, the sample space S_{su} for subjective uncertainty consists of all possible values for x, and the definitions of \mathcal{A}_{su} and p_{su} follow from the D_j. The 1991 WIPP PA considered $nl = 45$ imprecisely-known variables (Ref. 22, Tables 6.0-1, 6.0-2, 6.0-3; also, Ref. 37, Table VIII and Ref. 38, Table 8). The variables contained in x for the 1992 WIPP PA were modified slightly, with a total of $nl = 49$ variables contained in x (Ref. 26, Tables 6.0-1, 6.0-2, 6.0-3; Ref. 27, Table 3-1). As some of the variables contained in x affect the definition of the probability space for stochastic uncertainty (e.g., the rate constant λ in the Poisson model for drilling intrusions), this space is actually a function $[S_{sf}(x), \mathcal{A}_{sf}(x), p_{sf}(x)]$ of x.

The 1991 and 1992 WIPP PAs used a random design to incorporate the probability space for subjective uncertainty into the analysis to show compliance with 191.13 and, in particular, to satisfy the "reasonable expectation" requirement in 191.13(b). Specifically, Latin hypercube sampling30,31 was used to generate a sample

$$x_k, k = 1, 2, \ldots, nK,$$

(29)

12
from the \(\mathbf{x} \) (i.e., from \(S_{su} \)) according to the distributions indicated in Eq. (28). Further, the Iman/Conover restricted pairing technique\(^{42}\) was used to induce specified correlations between correlated variables and to assure that uncorrelated variables had correlations close to zero. Sample sizes of \(nK = 60 \) and \(nK = 70 \) were used in the 1991 and 1992 WIPP PAs, respectively.

A random design, and Latin hypercube sampling in particular, was selected as the experimental design for subjective uncertainty for several reasons (Ref. 43, Sect. 2.6): (1) efficient stratification across the full range of each variable, (2) ease of incorporation of correlations, (3) computational efficiency, (4) ease of implementation, (5) conceptual simplicity, (6) facilitation of sensitivity analysis, and (7) observed robustness in past studies (Refs. 44-46). In contrast, the high dimensionality of \(S_{su} \) (i.e., \(S_{su} \) is a subset of \(R^{45} \) and \(R^{49} \) in the 1991 and 1992 WIPP PAs, respectively) and associated correlation structure make importance sampling and classical experimental designs (e.g., fractional factorial, central composite, \ldots) unlikely candidates for the incorporation of subjective uncertainty.

Evaluation of \(\mathbf{R} \) for the sample elements \(\mathbf{x}_k \) in Eq. (20) leads to the sequence of results

\[
R(\mathbf{x}_k) = \left\{ \left[S_i(\mathbf{x}_k), pS_i(\mathbf{x}_k), \mathbf{cS}_i(\mathbf{x}_k) \right], i = 1, \ldots, nS(\mathbf{x}_k) \right\}
\]

for \(k = 1, \ldots, nK \). For a given set \(\mathbf{R}(\mathbf{x}_k) \), each consequence result \(cS \) contained in the vectors \(\mathbf{cS}_i(\mathbf{x}_k) \) leads to a CCDF as shown in Fig. 3 that displays the effect of stochastic uncertainty (i.e., this CCDF derives from the probability space \((S_{st}, J_{st}, p_{st})\) or, more explicitly, the probability space \((S_{st}(\mathbf{x}_k), J_{st}(\mathbf{x}_k), p_{st}(\mathbf{x}_k))\)). In turn, consideration of all the \(\mathbf{R}(\mathbf{x}_k) \) leads to a distribution of CCDFs for each consequence result that displays the effect of subjective uncertainty (i.e., this distribution of CCDFs derives from the probability space \((S_{su}, J_{su}, p_{su})\) for subjective uncertainty). As an example, the distributions of CCDFs for normalized release to the accessible environment due to cuttings removal and groundwater transport obtained in the 1991 WIPP PA are shown in Fig. 5. The individual CCDFs in this figure result from stochastic uncertainty, while the distributions of CCDFs result from subjective uncertainty. It is the location of the distribution of CCDFs in Fig. 5 relative to the limit line specified in 191.13(a) that is providing information on the "reasonable expectation" required in 191.13(b) that 191.13(a) will be met. In particular, the appearance of all or most of the CCDFs in distributions of the form shown in Fig. 5 is indicative of a "reasonable expectation" that 191.13(a) will be met.

Results obtained in the analysis that lead to the CCDFs in Fig. 5 will be used to illustrate the Monte Carlo procedure for CCDF construction presented in the next section. In particular, results obtained for sample element 46 in the 1991 WIPP PA will be used as this sample element was previously used to illustrate the importance sampling procedure summarized in this section.\(^{35,36}\) For future reference, CCDFs constructed for this sample element are shown in Fig. 6. This construction used the activity level probabilities in Table 2 and the normalized releases in Table 3. Further, the rate constant \(\lambda \) in the Poisson model for drilling intrusions in Eqs. (10) and (12) and the brine
Fig. 5. Distribution of CCDFs for normalized release to the accessible environment due to cuttings removal (left frame) and groundwater transport (right frame) obtained in the 1991 WIPP PA (Ref. 36, Figs. 1 and 2).

Fig. 6. Estimated CCDFs for sample element 46 (Ref. 36, Fig. 4).
Table 2. Projected Activity Levels (Ci/m²) in Waste That Is Currently Stored and May Be Shipped to the WIPP (Ref. 35, Table 5; based on the Table 3.4-1 of Ref. 22)

<table>
<thead>
<tr>
<th>Activity level</th>
<th>Typea</th>
<th>Probabilityb</th>
<th>Time (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>CH</td>
<td>0.402</td>
<td>3-483</td>
</tr>
<tr>
<td>2</td>
<td>CH</td>
<td>0.299</td>
<td>34-832</td>
</tr>
<tr>
<td>3</td>
<td>CH</td>
<td>0.224</td>
<td>348-326</td>
</tr>
<tr>
<td>4</td>
<td>CH</td>
<td>0.014</td>
<td>348-326</td>
</tr>
<tr>
<td>5</td>
<td>RH</td>
<td>0.058</td>
<td>117-671</td>
</tr>
</tbody>
</table>

Average for CH waste: 150-790 5 11-764 8 7-965 8 7-305 3 6-817 4 6-376 4

a CH designates contact-handled waste; RH designates remote-handled waste.
b Probability \(p_{L1} \) that a randomly placed borehole through the waste panels will intersect waste of activity level \(l \), \(l = 1, 2, 3, 4, 5 \).

Table 3. Normalized Radionuclide Releases Used to Illustrate Scenario Construction Procedures (Ref. 36, Table 4)

<table>
<thead>
<tr>
<th>Timea</th>
<th>(r_{GW1}^b)</th>
<th>(r_{GW2}^c)</th>
<th>(r_{C_i}^d)</th>
<th>(r_{C_{il}}^e)</th>
<th>(r_{C_{i2}}^e)</th>
<th>(r_{C_{i3}}^e)</th>
<th>(r_{C_{i4}}^e)</th>
<th>(r_{C_{i5}}^e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 yr</td>
<td>9.92E-06</td>
<td>1.48E-05</td>
<td>6.96E-03</td>
<td>1.71E-04</td>
<td>1.71E-03</td>
<td>1.71E-02</td>
<td>1.71E-01</td>
<td>9.71E-05</td>
</tr>
<tr>
<td>3000 yr</td>
<td>2.51E-06</td>
<td>5.08E-06</td>
<td>4.72E-03</td>
<td>1.16E-04</td>
<td>1.16E-03</td>
<td>1.16E-02</td>
<td>1.16E-01</td>
<td>7.61E-05</td>
</tr>
<tr>
<td>5000 yr</td>
<td>3.61E-07</td>
<td>1.34E-06</td>
<td>4.33E-03</td>
<td>1.06E-04</td>
<td>1.06E-03</td>
<td>1.06E-02</td>
<td>1.06E-01</td>
<td>7.16E-05</td>
</tr>
<tr>
<td>9000 yr</td>
<td>0.00E+00</td>
<td>5.08E-08</td>
<td>3.78E-03</td>
<td>9.28E-05</td>
<td>9.28E-03</td>
<td>9.28E-02</td>
<td>9.28E-01</td>
<td>6.47E-05</td>
</tr>
</tbody>
</table>

The releases presented in this table were calculated for sample element 46 in the 1991 WIPP PA (see Ref. 21, Appendix B).
a Time at which intrusion occurs.
b EPA normalized release (dimensionless) to the accessible environment for groundwater transport (with a dual porosity model in the Culebra Dolomite) initiated by a single borehole in time interval \(i \) (i.e., an E2-type intrusion).
c EPA normalized release (dimensionless) to the accessible environment for groundwater transport (with a dual porosity model in the Culebra Dolomite) initiated by two boreholes in the same waste panel in time interval \(i \), of which one penetrates a pressurized brine pocket and one does not (i.e., an E1E2-type intrusion).
d EPA normalized release (dimensionless) to the surface environment for cuttings removal as a result of a single borehole in time interval \(i \) with the assumption that the waste is homogeneous (i.e., waste of various activity levels is not present). Calculation of the \(r_{C_i} \) used the average activity level shown in Table 2.
e EPA normalized release (dimensionless) to the surface environment for cuttings removal as a result of a single borehole in time interval \(i \) that penetrates waste of activity level \(l \). Calculation of the \(r_{C_{il}} \) used the activity levels corresponding to \(l = 1, 2, 3, 4, 5 \) shown in Table 2.

Pocket area fraction \(f_{BP} \) in Eq. (15) were uncertain inputs in the 1991 WIPP PA, with assigned values of \(\lambda = 8.4424 \times 10^{-5} \text{ yr}^{-1} \) and \(f_{BP} = 0.44981 \) for sample element 46.
This page intentionally left blank.
3. Monte Carlo Procedure for CCDF Construction

Monte Carlo procedures provide an alternative to the importance sampling procedure described in the preceding section for the construction of the CCDF specified in 191.13(a). With such procedures, elements of the sample space \(S_{st} \) are randomly sampled and the associated releases to the accessible environment are estimated. This produces a sequence of results of the form

\[
(x_i, cS_i), \quad i = 1, 2, \ldots, nRS,
\]

where

\[x_i = \text{randomly selected element of } S_{st}, \]

\[cS_i = \text{vector of consequences associated with } x_i, \]

\[nRS = \text{number of random samples taken from } S_{st}. \]

As in the importance sampling procedure indicated in Eq. (16), the vector \(cS_i \) would typically contain a variety of quantities, including the normalized releases to the accessible environment required in conjunction with 191.13(a). The number of samples \(nRS \) could possibly be quite large (e.g., on the order of \(10^5 \) or larger). Once the results in Eq. (31) are generated, CCDFs for the elements of \(cS \) can be constructed as shown in Fig. 3. The probabilities \(pS_i \) in this construction are given by

\[
pS_i = 1/nRS
\]

when random sampling is used to select the \(x_i \) from \(S_{st} \). As done in the preceding sentence, it is sometimes semantically convenient to refer to \(1/nRS \) as the probability for \(x_i \); however, this is not technically correct when the \(x_i \) are generated by random sampling. Each \(x_i \) has a probability of zero; \(1/nRS \) is not the probability of \(x_i \), but rather a weight that can be used to estimate distributions and other quantities (e.g., a mean) associated with the \(x_i \).

Two obvious questions arise in the implementation of the Monte Carlo procedure indicated in Eq. (31): “How to sample the \(x_i \) from \(S_{st} \)?”, and “How to obtain the consequence vectors \(cS_i \)?”. Each of these questions is now addressed.

How to sample the \(x_i \) is addressed first. As indicated in Eq. (2), each element \(x \) of \(S_{st} \) contains a description of a possible 10,000 yr sequence of occurrences at the WIPP. In this analysis, drilling intrusions are the only occurrences under consideration. Thus, each element of \(S_{st} \) is defined by the number of drilling intrusions that occur, the time of each drilling intrusion, the location of each drilling intrusion, and the activity level of the waste encountered by each drilling intrusion. Thus, each element \(x \) of \(S_{st} \) is characterized by a vector \(c(x) \) of the form...
\[
C(x) = \left[t_{BH1}, x_{BH1}, a_{BH1}, t_{BH2}, x_{BH2}, a_{BH2}, \ldots, t_{BHn_{BH}}, x_{BHn_{BH}}, a_{BHn_{BH}} \right]
\tag{33}
\]

where

\begin{align*}
 t_{BHj} &= \text{time (yr) at which the } j\text{th drilling intrusion occurs}, \\
 x_{BHj} &= \text{location of the } j\text{th drilling intrusion}, \\
 a_{BHj} &= \text{activity level of waste (Ci/m}^2\text{) penetrated by the } j\text{th drilling intrusion,} \\
 n_{BH} &= \text{number of drilling intrusions},
\end{align*}

and the times \(t_{BHj} \) are assumed to be ordered so that \(t_{BHj} \leq t_{BHj+1} \) for \(j = 1, 2, \ldots, n_{BH}-1 \). In the preceding description, only one coordinate (i.e., \(x_{BHj} \)) is used to represent the location of a drilling intrusion due to the rectilinear nature of the waste panels at the WIPP (Fig. 2) and the current level of resolution used in BRAGFLO to model gas and brine behavior in a waste panel. The use of two coordinates (i.e., \(x_{BHj} \) and \(y_{BHj} \)) to represent the location of a drilling intrusion is also possible if such resolution is appropriate for the models used to represent the physical processes associated with \(x \).

Once an element of \(S_m \) is represented as a vector of the form in Eq. (33), sampling from \(S_m \) becomes an exercise in randomly sampling numbers from the interval \([0, 1]\). The manner in which such sampling can be done to produce the vector \(C(x) \), and hence an element of \(x \) of \(S_m \), is not unique. The following outlines one possible procedure.

With the assumption that drilling intrusions follow a Poisson process with a rate constant \(\lambda \), the probability \(\text{prob}(n) \) that exactly \(n \) drilling intrusions occur in the time interval \([t_0, t_nT]\) is given by

\[
\text{prob}(n) = \left[\frac{(t_nT - t_0)^n \lambda^n}{n!} \right] \exp \left[-(t_nT - t_0) \lambda \right].
\tag{34}
\]

In PAs for the WIPP, \(t_0 = 100 \text{ yr} \) due to the assumption of 100 yr of administrative control and \(t_nT = 10,000 \text{ yr} \) as specified in 191.13(a). The value for \(n_{BH} \) in Eq. (33) can be obtained by randomly sampling a number \(r \) from the interval \([0, 1]\) and then assigning \(n_{BH} \) the smallest integer value for which the inequality

\[
r \leq \sum_{n=0}^{n_{BH}} \text{prob}(n)
\tag{35}
\]

is satisfied.

Once a value for \(n_{BH} \) is selected, an additional \(3 \ n_{BH} \) random numbers can be used to assign the values for \(t_{BHj}, x_{BHj} \) and \(a_{BHj}, j = 1, 2, \ldots, n_{BH} \). Specifically, let \(r_{tBHj}, r_{xBHj} \) and \(r_{aBHj}, j = 1, 2, \ldots, n_{BH} \), represent numbers randomly selected from the interval \([0, 1]\). Then, the \(t_{BHj} \) are defined by
\[t_{BH_j} = t_0 + rt_{BH_j} (t_{nT} - t_0), \]
where \(t_0 = 100 \) yr and \(t_{nT} = 10,000 \) yr in recent WIPP PAs. Similarly, the \(x_{BH_j} \) are defined by

\[x_{BH_j} = r x_{BH_j} \, a_{TOT}, \]

where \(a_{TOT} \) is the total area (m\(^2\)) of the waste panels as defined in conjunction with Eqs. (12) and (13). Finally, \(a_{BH_j} \) corresponds to penetration of waste of activity level \(m \), where \(m \) is the smallest integer such that

\[ra_{BH_j} + \sum_{l=1}^{m} p_{L_l} \leq \sum_{l=1}^{m} a_{TOT_l}, \]

and \(p_{L_l} \) is the probability that a randomly placed drilling intrusion will penetrate waste of activity level \(l \).

The definition of \(x_{BH_j} \) in Eq. (37) permits the determination of both the waste panel penetrated by a drilling intrusion and whether or not a pressurized brine pocket is penetrated. Specifically, the \(j \)th drilling intrusion penetrates waste panel \(m \), where \(m \) is the smallest integer such that

\[x_{BH_j} \leq \sum_{l=1}^{m} a_{TOT_l}, \]

and \(a_{TOT_l} \) is the area of waste panel \(l \) as defined in conjunction with Eqs. (12) and (13). Further, a pressurized brine pocket is penetrated when the inequality

\[\sum_{l=1}^{m-1} a_{TOT_l} < x_{BH_j} \leq a_{BP_m} + \sum_{l=1}^{m-1} a_{TOT_l} \]

is satisfied, where \(a_{BP_m} \) is the area (m\(^2\)) of pressurized brine under waste panel \(m \).

How to obtain consequence values, in particular normalized releases to the accessible environment, contained in the consequence vectors \(c_{S_i} \) is now addressed. The large number of samples that will be required from \(S_r \) precludes the use of the models indicated in Fig. 4 to perform a release calculation for every \(x_i \) sampled from \(S_r \). Rather, it is necessary to perform a limited number of detailed calculations with the models indicated in Fig. 4 and then use the results of these calculations to construct the releases associated with the individual \(x_i \). There is nothing novel in this. The same type of process was also needed in the importance sampling procedure described in the preceding section. Indeed, the example in this section will use the same release results (i.e., \(rC_{i}, rC_{il}, rGW_{1i}, rGW_{2i} \) in Eqs. (17)-(20)) that underlie the example used to illustrate importance sampling.
The normalized release to the accessible environment $nR(x)$ for an element x of S_{sr} is given by

$$nR(x) = nRC(x) + nRG(x),$$

where

$$nRC(x) = \text{normalized release to the accessible environment due to cuttings removal},$$

$$nRG(x) = \text{normalized release to the accessible environment due to groundwater transport}.$$

The releases $nRC(x)$ and $nRG(x)$ can be determined separately and then summed to obtain $nR(x)$.

Definition of the cuttings release $nRC(x)$ is considered first. The assumption is made that no synergisms exist between the cuttings releases associated with individual drilling intrusions; specifically, the releases associated with individual drilling intrusions are assumed to be unaffected by any other drilling intrusions that may occur. When the effects of activity loading are included, $nRC(x)$ is defined by

$$nRC(x) = \sum_{j=1}^{nBH} rC_{m(j),i(j)}$$

with the vectors l and m defined for x as indicated in Eqs. (9) and (22), respectively. The preceding is the same as the cuttings component of the releases defined in Eqs. (23) and (25) for use with the importance sampling procedure. If the effects of activity loading are not included, $nRC(x)$ is defined by

$$nRC(x) = \sum_{j=1}^{nBH} rC_{m(j)},$$

which is the same as the cuttings component of the releases defined in Eqs. (21) and (24) for use with the importance sampling procedure.

Definition of the groundwater release $nRG(x)$ is now considered. A number of assumptions as summarized in Table 4 are made to provide a basis for the use of the releases $rGW1_i$ and $rGW2_i$ in Eqs. (19) and (20) in the construction of a release $nRG(x)$ for an arbitrary element x from S_{sr}. Assumption 1 implies that the releases from the individual waste panels can be considered separately. As a result, it is convenient to express $nRG(x)$ in the form

$$nRG(x) = \sum_{i=1}^{nP} nRG_i(x).$$
Table 4. Assumptions Used in Construction of Groundwater Release to the Accessible Environment

\(n_{RG}(x) \) for an Arbitrary Element \(x \) of \(S_d' \)

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Waste panels are isolated in the sense that the releases that occur from one waste panel are unaffected by the drilling intrusions that may occur in other waste panels.</td>
</tr>
<tr>
<td>2</td>
<td>Single drilling intrusions that penetrate a pressurized brine pocket (i.e., an E1 intrusion in WIPP terminology) and single drilling intrusions that do not penetrate a pressurized brine pocket (i.e., an E2 intrusion in WIPP terminology) have the same releases. This may not be an appropriate assumption because the waste panel will fill with brine more rapidly for an E1 than an E2 intrusion (Ref. 37, Sect. IV.D). However, this assumption was made in the 1991 and 1992 WIPP PAs.</td>
</tr>
<tr>
<td>3</td>
<td>Multiple E1 intrusions into a waste panel have the same release as the single earliest intrusion. Similarly, multiple E2 intrusions into a waste panel have the same release as the single earliest intrusion. This assumption derives from the fact that brine from the Salado Formation transports radionuclides to an intruding borehole and multiple boreholes will not increase the amount of this brine available for radionuclide transport within a panel.</td>
</tr>
<tr>
<td>4</td>
<td>A release involving at least one drilling intrusion that penetrates a pressurized brine pocket and at least one drilling intrusion that does not penetrate a pressurized brine pocket (i.e., an E1E2 intrusion in WIPP terminology) begins at the earliest time at which both an E1 and an E2 intrusion have occurred.</td>
</tr>
<tr>
<td>5</td>
<td>An E1E2 intrusion into a waste panel involving more than 2 drilling intrusions has the same release as an E1E2 intrusion involving exactly 2 drilling intrusions. As in Assumption 3, this assumption derives from the amount of brine available for radionuclide transport within a waste panel.</td>
</tr>
</tbody>
</table>

where

\(n_{RG}(x) = \text{normalized release to accessible environment associated with } x \text{ due to groundwater transport for radionuclides originating from waste panel } l. \)

The releases \(n_{RG}(x) \) can then be determined separately and summed to obtain \(n_{RG}(x) \). To facilitate this determination, let

\[
\mathbf{v}_l(x) = [t_l(1), m_l(1), b_l(1), t_l(2), m_l(2), b_l(2), \ldots, t_l(nBH_l), m_l(nBH_l), b_l(nBH_l)],
\]

(45)

where

\[
t_l(j) = \text{time (yr) at which the } j^{th} \text{ drilling intrusion into waste panel } l \text{ occurs,}
\]

\[
m_l(j) = i \text{ implies that the } j^{th} \text{ drilling intrusion into waste panel } l \text{ occurs in time interval } [t_{i-1}, t_i].
\]

\[
b_l(j) =
\begin{cases}
1 & \text{if the } j^{th} \text{ drilling intrusion into waste panel } l \text{ penetrates a pressurized brine pocket} \\
0 & \text{otherwise},
\end{cases}
\]
number of drilling intrusions into waste panel \(l \),

and the intrusion times \(t_f(j) \) are assumed to be ordered to that \(t_f(j) \leq t_f(j+1) \) for \(j = 1, 2, \ldots, nBH_l \). The vector \(\mathbf{v}(x) \) can be constructed from information in the definition of \(\mathbf{c}(x) \) in Eq. (33).

Four possibilities exist. First, \(nBH_l = 0 \). In this case, no groundwater release occurs and

\[
nRG_l(x) = 0. \tag{46}
\]

Second, \(nBH_l \neq 0 \) and all drilling intrusions penetrate a pressurized brine pocket (i.e., \(b_l(j) = 1 \) for \(j = 1, 2, \ldots, nBH_l \)). Third, \(nBH_l \neq 0 \) and none of the drilling intrusions penetrate a pressurized brine pocket (i.e., \(b_l(j) = 0 \) for \(j = 1, 2, \ldots, nBH_l \)). From Assumption 2 in Table 4, the two preceding cases will have the same release. Further, from Assumption 3, the release from the waste panel is the release for the earliest intrusion. Thus, the release for the two preceding cases is

\[
nRG_l(x) = r_{GW}I_{m_l(1)}. \tag{47}
\]

Fourth, \(nBH_l \geq 2 \), at least one drilling intrusion penetrates a pressurized brine pocket (i.e., \(b_l(j) = 1 \) for at least one \(j \)) and at least one drilling intrusion does not penetrate a pressurized brine pocket (i.e., \(b_l(j) = 0 \) for at least one \(j \)). Let \(j_{E1E2} \) be the smallest integer such that the sequence \(b_l(1), b_l(2), \ldots, b_l(j_{E1E2}) \) contains both 0's and 1's (i.e., \([t_0, t_f(j_{E1E2})] \) is the shortest time interval associated with \(x \) that includes at least one drilling intrusion that penetrates a pressurized brine pocket and at least one drilling intrusion that does not penetrate a pressurized brine pocket). The release for this case is approximated by

\[
nRG_l(x) = \left(r_{GW}I_{m_l(1)} - r_{GW}I_{m_l(j_{E1E2})} \right) + r_{GW}2m_l(j_{E1E2}). \tag{48}
\]

The first term on the right in Eq. (48) is the release that takes place before the occurrence of an \(E1E2 \)-type intrusion and derives from Assumptions 2 and 3. The second term on the right in Eq. (48) is the release that takes place after the occurrence of an \(E1E2 \)-type intrusion and derives from Assumptions 4 and 5.

A Monte Carlo procedure for the construction of the CCDF specified in 191.13(a) has been described. The results for sample element 46 in the 1991 WIPP PA are now used to illustrate this procedure. Specifically, vectors of the form \(\mathbf{c}(x) \) indicated in Eq. (33) are randomly selected with \(\lambda = 8.4424 \times 10^{-3} \text{ yr}^{-1} \) (i.e., the value for \(\lambda \) in sample element 46), the waste panel areas in Table 5, and the activity level probabilities in Table 2. Once \(\mathbf{c}(x) \) is obtained, the vectors \(\mathbf{v}(x) \) in Eq. (45) are constructed. In this construction, a brine pocket area fraction of \(f_{BP} = 0.44981 \) is used in consistency with the 1991 WIPP PA (see Eq. (15)), which is the sampled value for sample element 46. Given \(\mathbf{c}(x) \) and \(\mathbf{v}(x) \), the associated normalized releases \(nR(x) \), \(nRC(x) \), \(nRG(x) \) and \(nRG_l(x) \) are then
Table 5. Parameter Values Used in Example Calculation of Probabilities for E1E2-Type Scenarios (Ref. 35, Table 4; adapted from Table 5.1-1 of Ref. 22 with depth to pressurized brine assumed to be less than 1250 m)

<table>
<thead>
<tr>
<th>Panel</th>
<th>a_{TOT}^a</th>
<th>a_{BP}^b</th>
<th>a_{BP}/a_{TOT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel 1</td>
<td>11 530</td>
<td>11 530</td>
<td>1.000 0</td>
</tr>
<tr>
<td>Panel 2</td>
<td>11 530</td>
<td>8 249</td>
<td>0.715 4</td>
</tr>
<tr>
<td>Panel 3</td>
<td>11 530</td>
<td>3 548</td>
<td>0.307 7</td>
</tr>
<tr>
<td>Panel 4</td>
<td>11 530</td>
<td>8 869</td>
<td>0.769 2</td>
</tr>
<tr>
<td>Panel 5</td>
<td>11 530</td>
<td>4 833</td>
<td>0.419 2</td>
</tr>
<tr>
<td>Panel 6</td>
<td>11 530</td>
<td>0</td>
<td>0.000 0</td>
</tr>
<tr>
<td>Panel 7</td>
<td>11 530</td>
<td>0</td>
<td>0.000 0</td>
</tr>
<tr>
<td>Panel 8</td>
<td>11 530</td>
<td>7 432</td>
<td>0.644 6</td>
</tr>
<tr>
<td>Southern panel</td>
<td>8 413</td>
<td>3 786</td>
<td>0.450 0</td>
</tr>
<tr>
<td>Northern panel</td>
<td>8 701</td>
<td>1 044</td>
<td>0.120 0</td>
</tr>
</tbody>
</table>

Additional values:

\[
a_{TOT} = \sum_{l=1}^{10} a_{TOT_l} = 109\,354
\]

\[
a_{BP} = \sum_{l=1}^{10} a_{BP_l} = 49\,291
\]

\[
f_{BP} = a_{BP}/a_{TOT} = 0.45075
\]

a a_{TOT_l} = area (m2) of waste panel l.

b a_{BP_l} = area (m2) of pressurized brine under waste panel l.

constructed from the results in Table 3 as indicated in Eqs. (41) - (48). The outcome of this procedure is a sequence of results of the form shown in Eq. (31). Due to the large number of samples in use (i.e., nRS), the results c_{S_l} for the individual x_i sampled from S_{xi} are not saved; instead, a binning procedure is used whereby the range of each release is subdivided into intervals and the number of releases falling into each interval is accumulated. This binning procedure was also used in the importance sampling procedure described in the preceding section due to the large number of strata involved.

As shown in Fig. 7, the importance sampling procedure implemented with the program CCDFPERM36 described in Sect. 2 and the Monte Carlo procedure described in this section produce similar results. The CCDFs for cuttings removal for waste of average activity level are essentially identical. The CCDFs for cuttings removal for waste of different activity levels are also similar. There is some separation between the two CCDFs for groundwater transport because the Monte Carlo simulation is using a less restrictive definition of an E1E2-type intrusion. Specifically, the drilling intrusions that produce an E1E2-type intrusion are not required to fall in the time intervals [100, 2000 yr], [2000, 4000 yr], [4000, 6000 yr], [6000, 8000 yr] and [8000, 10,000 yr] used to define E1E2-type intrusions in the importance sampling procedure. In addition, the Monte Carlo procedure includes the
release that takes place before the second borehole associated with an ElE2-type intrusion occurs, allows for the possibility that an ElE2-type intrusion may occur in conjunction with one or more E2-type intrusions for a given element of S_{yr}, and also allows for the possibility that more than one ElE2-type intrusion may occur for a given element of S_{yr}.

As shown in Fig. 8, the Monte Carlo procedure for CCDF construction has clearly converged with a sample of size 5×10^5. Indeed, adequate resolution for comparison with the EPA release limits is obtained with a much smaller sample size (i.e., between 5×10^3 and 5×10^4). The evaluation of the three CCDFs in Fig. 8 with a sample of size 5×10^5 required approximately 27 s on a Digital Vax Alpha using VMS. Thus, the computational requirements associated with the Monte Carlo procedure for CCDF construction described in this presentation are quite reasonable. In particular, the computational cost associated with the Monte Carlo procedure is acceptable for the construction of distributions of CCDFs of the form shown in Fig. 5.
Fig. 8. Estimated CCDFs for sample element 46 obtained with Monte Carlo samples of size 5×10^2, 5×10^3, 5×10^4 and 5×10^5.

TRI-6342-4338-0
This page intentionally left blank.
4. Monte Carlo Estimation of Scenario Probabilities

Scenarios that involve E1E2-type intrusions are important in PAs for the WIPP because of the potentially large releases associated with these intrusions. Large releases may result because of brine flow up an intruding borehole from a pressurized brine pocket, through a waste panel, and then up a second borehole to the Culebra Dolomite. Such flow has the potential to access more of the radionuclide inventory in a waste panel than a single borehole or multiple boreholes that do not involve cross flow between the individual boreholes.

Due to the complexity of the problem (i.e., multiple waste panels, different areas of pressurized brine under individual waste panels, drilling intrusions at different times and locations), the derivation of exact formulas for the probability of scenarios that involve E1E2-type intrusions is difficult. Formulas such as the one given in Eq. (12) and used in 1991 and 1992 WIPP PAs are approximations whose accuracy is difficult to verify with analytic procedures. In contrast, Monte Carlo procedures of the type discussed in the preceding section provide a relatively simple means of obtaining accurate approximations of the probability of such scenarios.

Examples of probabilities for scenarios involving E1E2-type intrusions are shown in Table 6. Scenarios of the form $S^+(t, t+\Delta t)$ are defined in Eq. (5) and involve intrusion of a waste panel during the time interval $[t, t+\Delta t]$ by two or more boreholes, with at least one of these boreholes penetrating a pressurized brine pocket and at least one of these boreholes not penetrating a pressurized brine pocket. For perspective, a scenario denoted by $S^+(t, t+\Delta t)$ is also considered, where

$$S^+(t, t+\Delta t) = \{x: x \text{ an element of } S_{t+1} \text{ for which two or more boreholes penetrate the same waste panel during the time interval } [t, t+\Delta t], \text{ with at least one of these boreholes penetrating a pressurized brine pocket}\}.$$ (49)

The scenarios $S^+(t, t+\Delta t)$ and $S^+(t, t+\Delta t)$ differ in that only penetration of a pressurized brine pocket is required in the definition of $S^+(t, t+\Delta t)$. As examination of Table 6 shows, (1) the approximate formula in Eq. (12) for the probability of $S^+(t, t+\Delta t)$ provides results close to those obtained in the Monte Carlo simulation, (2) probabilities for $S^+(t, t+\Delta t)$ are somewhat higher than those for $S^+(t, t+\Delta t)$, (3) probabilities for $S^+(t, t+\Delta t)$ can be large when the entire 9900 yr period is considered, (4) probabilities for $S^+(t, t+\Delta t)$ are small when $\Delta t \leq 500$ yr, (5) the probability of $S^+(t, t+\Delta t)$ decreases as λ increases, and (6) the use of panel-dependent brine pocket area fractions produces somewhat smaller probabilities for $S^+(t, t+\Delta t)$ than the use of a single average brine pocket area fraction.

The probabilities in Table 6 are for the scenarios $S^+(t, t+\Delta t)$ and $S^+(t, t+\Delta t)$ and thus involve drilling intrusions that occur within the time interval $[t, t+\Delta t]$. Another way to define scenarios that involve E1E2-type intrusions is on the basis of the time of separation between the drilling intrusions. Specifically, scenarios $S^+(\Delta t)$ and $S^+(\Delta t)$ can be defined by
Table 6. Comparison of Probabilities for Scenarios Involving E1E2-Type Intrusions That Occur with Fixed Time Intervals for the Defining Boreholes

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>$p_{A}^{+}(t, t+\Delta t)$</th>
<th>$p_{M}^{+}(t, t+\Delta t)$</th>
<th>$p_{A}^{+}(t, t+\Delta t)$</th>
<th>$p_{A}^{+}(t, t+\Delta t)$</th>
<th>$p_{M}^{+}(t, t+\Delta t)$</th>
<th>$p_{M}^{+}(t, t+\Delta t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[t, t+100 \text{ yr}]$</td>
<td>2.69×10^{-5}</td>
<td>2.40×10^{-5}</td>
<td>3.40×10^{-5}</td>
<td>1.78×10^{-6}</td>
<td>0.00</td>
<td>1.00×10^{-6}</td>
</tr>
<tr>
<td>$[t, t+500 \text{ yr}]$</td>
<td>6.68×10^{-4}</td>
<td>6.20×10^{-4}</td>
<td>8.79×10^{-4}</td>
<td>4.45×10^{-5}</td>
<td>5.00×10^{-5}</td>
<td>6.60×10^{-5}</td>
</tr>
<tr>
<td>$[t, t+1000 \text{ yr}]$</td>
<td>2.65×10^{-3}</td>
<td>2.61×10^{-3}</td>
<td>3.65×10^{-3}</td>
<td>1.78×10^{-4}</td>
<td>1.89×10^{-4}</td>
<td>2.49×10^{-4}</td>
</tr>
<tr>
<td>$[t, t+2000 \text{ yr}]$</td>
<td>1.04×10^{-2}</td>
<td>1.02×10^{-2}</td>
<td>1.43×10^{-2}</td>
<td>7.08×10^{-4}</td>
<td>7.33×10^{-4}</td>
<td>9.85×10^{-4}</td>
</tr>
<tr>
<td>$[t, t+5000 \text{ yr}]$</td>
<td>6.20×10^{-2}</td>
<td>6.00×10^{-2}</td>
<td>8.25×10^{-2}</td>
<td>4.37×10^{-3}</td>
<td>4.37×10^{-3}</td>
<td>6.11×10^{-3}</td>
</tr>
<tr>
<td>$[t, t+9900 \text{ yr}]$</td>
<td>2.24×10^{-1}</td>
<td>2.02×10^{-1}</td>
<td>2.67×10^{-1}</td>
<td>1.68×10^{-2}</td>
<td>1.68×10^{-2}</td>
<td>2.34×10^{-2}</td>
</tr>
</tbody>
</table>

Panel-Dependent Brine Pocket Area Fractions: $f_{BP_i} = a_{BP_i}/a_{TOT_i}$ (Table 5)

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>$f_{BP_i}(t, t+100)$</th>
<th>$f_{BP_i}(t, t+500)$</th>
<th>$f_{BP_i}(t, t+1000)$</th>
<th>$f_{BP_i}(t, t+2000)$</th>
<th>$f_{BP_i}(t, t+5000)$</th>
<th>$f_{BP_i}(t, t+9900)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[t, t+100 \text{ yr}]$</td>
<td>1.50×10^{-5}</td>
<td>1.00×10^{-5}</td>
<td>2.40×10^{-5}</td>
<td>9.96×10^{-7}</td>
<td>0.00</td>
<td>1.00×10^{-6}</td>
</tr>
<tr>
<td>$[t, t+500 \text{ yr}]$</td>
<td>3.73×10^{-4}</td>
<td>3.74×10^{-4}</td>
<td>7.57×10^{-4}</td>
<td>2.49×10^{-5}</td>
<td>2.90×10^{-5}</td>
<td>5.60×10^{-5}</td>
</tr>
<tr>
<td>$[t, t+1000 \text{ yr}]$</td>
<td>1.48×10^{-3}</td>
<td>1.46×10^{-3}</td>
<td>3.16×10^{-3}</td>
<td>9.92×10^{-5}</td>
<td>1.06×10^{-4}</td>
<td>1.97×10^{-4}</td>
</tr>
<tr>
<td>$[t, t+2000 \text{ yr}]$</td>
<td>5.82×10^{-3}</td>
<td>5.68×10^{-3}</td>
<td>1.22×10^{-2}</td>
<td>3.95×10^{-4}</td>
<td>4.22×10^{-4}</td>
<td>8.38×10^{-4}</td>
</tr>
<tr>
<td>$[t, t+5000 \text{ yr}]$</td>
<td>3.47×10^{-2}</td>
<td>3.41×10^{-2}</td>
<td>7.07×10^{-2}</td>
<td>2.44×10^{-3}</td>
<td>2.49×10^{-3}</td>
<td>5.20×10^{-3}</td>
</tr>
<tr>
<td>$[t, t+9900 \text{ yr}]$</td>
<td>1.26×10^{-1}</td>
<td>1.19×10^{-1}</td>
<td>2.31×10^{-1}</td>
<td>9.37×10^{-3}</td>
<td>9.57×10^{-3}</td>
<td>1.99×10^{-2}</td>
</tr>
</tbody>
</table>

\[S^{-}(\Delta t) = \{ x: x \text{ an element of } S_{i}, \text{for which two or more boreholes penetrate the same waste panel, with at least one of these boreholes penetrating a pressurized brine pocket, at least one borehole not penetrating a pressurized brine pocket, and the minimum time of separation between a borehole that penetrates a pressurized brine pocket and a borehole that does not penetrate a pressurized brine pocket less than } \Delta t \} \] (50)

and

\[S^{+}(\Delta t) = \{ x: x \text{ an element of } S_{i}, \text{for which two or more boreholes penetrate the same waste panel, with at least one borehole penetrating a pressurized brine pocket, and the minimum time of separation between a borehole that penetrates a pressurized brine pocket and any other borehole is less than } \Delta t \} \] (51)
Probabilities for $S^-(\Delta t)$ and $S^+(\Delta t)$ are shown in Table 7. As examination of Table 7 shows, the probability of scenarios involving E1E2-type scenarios decreases as the allowed time of separation between the defining boreholes decreases. Indeed, scenarios involving E1E2-type scenarios almost go away (i.e., have probabilities approaching or less than 10^{-3}) if an argument can be made that the defining intrusions must occur within 100 yr of each other.

Table 7. Comparison of Probabilities for Scenarios Involving E1E2-Type Intrusions That Occur with Fixed Separation Times for the Defining Boreholes

<table>
<thead>
<tr>
<th>Separation Time Δt</th>
<th>$p_{S_M}^-(\Delta t)$</th>
<th>$p_{S_M}^+(\Delta t)$</th>
<th>$p_{S_M}^-(\Delta t)$</th>
<th>$p_{S_M}^+(\Delta t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\lambda=3.28\times10^{-4}$ yr$^{-1}$</td>
<td>$\lambda=3.28\times10^{-4}$ yr$^{-1}$</td>
<td>$\lambda=8.44\times10^{-5}$ yr$^{-1}$</td>
<td>$\lambda=8.44\times10^{-5}$ yr$^{-1}$</td>
</tr>
<tr>
<td>100 yr</td>
<td>5.18×10^{-3}</td>
<td>7.26×10^{-3}</td>
<td>3.39×10^{-4}</td>
<td>4.65×10^{-4}</td>
</tr>
<tr>
<td>500 yr</td>
<td>2.50×10^{-2}</td>
<td>3.50×10^{-2}</td>
<td>1.70×10^{-3}</td>
<td>2.39×10^{-3}</td>
</tr>
<tr>
<td>1000 yr</td>
<td>4.79×10^{-2}</td>
<td>6.62×10^{-2}</td>
<td>3.33×10^{-3}</td>
<td>4.66×10^{-3}</td>
</tr>
<tr>
<td>2000 yr</td>
<td>8.63×10^{-2}</td>
<td>1.18×10^{-1}</td>
<td>6.33×10^{-3}</td>
<td>8.84×10^{-3}</td>
</tr>
<tr>
<td>5000 yr</td>
<td>1.61×10^{-1}</td>
<td>2.14×10^{-1}</td>
<td>1.27×10^{-2}</td>
<td>1.77×10^{-2}</td>
</tr>
<tr>
<td>9900 yr</td>
<td>2.02×10^{-1}</td>
<td>2.67×10^{-1}</td>
<td>1.68×10^{-2}</td>
<td>2.34×10^{-2}</td>
</tr>
</tbody>
</table>

Panel-Dependent Brine Pocket Area Fractions: $f_{BP} = a_{BP}/a_{TOT}$ (Table 5)

<table>
<thead>
<tr>
<th>Separation Time Δt</th>
<th>$p_{S_M}^-(\Delta t)$</th>
<th>$p_{S_M}^+(\Delta t)$</th>
<th>$p_{S_M}^-(\Delta t)$</th>
<th>$p_{S_M}^+(\Delta t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\lambda=3.28\times10^{-4}$ yr$^{-1}$</td>
<td>$\lambda=3.28\times10^{-4}$ yr$^{-1}$</td>
<td>$\lambda=8.44\times10^{-5}$ yr$^{-1}$</td>
<td>$\lambda=8.44\times10^{-5}$ yr$^{-1}$</td>
</tr>
<tr>
<td>100 yr</td>
<td>2.92×10^{-3}</td>
<td>6.30×10^{-3}</td>
<td>1.80×10^{-4}</td>
<td>3.99×10^{-4}</td>
</tr>
<tr>
<td>500 yr</td>
<td>1.41×10^{-2}</td>
<td>3.02×10^{-2}</td>
<td>9.95×10^{-4}</td>
<td>2.05×10^{-3}</td>
</tr>
<tr>
<td>1000 yr</td>
<td>2.70×10^{-2}</td>
<td>5.69×10^{-2}</td>
<td>1.89×10^{-3}</td>
<td>3.96×10^{-3}</td>
</tr>
<tr>
<td>2000 yr</td>
<td>4.92×10^{-2}</td>
<td>1.01×10^{-1}</td>
<td>3.56×10^{-3}</td>
<td>7.52×10^{-3}</td>
</tr>
<tr>
<td>5000 yr</td>
<td>9.39×10^{-2}</td>
<td>1.85×10^{-1}</td>
<td>7.22×10^{-3}</td>
<td>1.51×10^{-2}</td>
</tr>
<tr>
<td>9900 yr</td>
<td>1.19×10^{-1}</td>
<td>2.31×10^{-1}</td>
<td>9.57×10^{-3}</td>
<td>1.99×10^{-2}</td>
</tr>
</tbody>
</table>

\[a\] Probability for scenario $S^-(\Delta t)$ calculated with Monte Carlo procedure described in Sect. 3 and a sample size of 1×10^6, with the subscript M selected to indicate "Monte Carlo".

\[b\] Probability for scenario $S^+(\Delta t)$ calculated with Monte Carlo procedure described in Sect. 3 and a sample size of 1×10^6, with the subscript M selected to indicate "Monte Carlo".
This page intentionally left blank.
5. Discussion and Prospectus

A Monte Carlo procedure for the construction of CCDFs for comparison with the EPA release limits for radioactive waste disposal has been illustrated. Conceptually, this procedure is a numerical (i.e., Monte Carlo) technique for integration over the probability space S_{st} associated with stochastic uncertainty. In terms of computational cost, the Monte Carlo procedure is competitive with a previously used procedure based on stratified sampling and produces similar results when equivalent integration problems are considered.

Both the Monte Carlo procedure and the stratified sampling procedure make use of a relatively small number of mechanistic calculations, which are then used to construct normalized releases to the accessible environment for the large number of elements of S_{st} that are considered in the two procedures. The advantage of the Monte Carlo procedure is that it avoids the need to explicitly define subsets of S_{st} (i.e., strata) and then develop closed-form formulas for the probability of these strata. Rather, S_{st} is covered and appropriate probabilities developed through the random sampling associated with the Monte Carlo procedure. In the example contained in this presentation, the Monte Carlo procedure allowed a better calculation of the probabilities and normalized releases associated with E1E2-type scenarios than was obtained with stratified sampling.

In future studies, it is anticipated that the Monte Carlo procedure will allow further refinements over what can be conveniently accomplished with stratified sampling, thus producing more realistic analyses. For example, (1) a distinction can be made between a single borehole that penetrates a pressurized brine pocket and single borehole that does not penetrate a pressurized brine pocket, which is important because a waste panel fills more rapidly with brine when a pressurized brine pocket is penetrated, (2) boreholes can be assumed to close after a specified period of time rather than remaining open permanently as is now done in PAs for the WIPP, (3) E1E2-type scenarios can be assumed to occur only if the necessary boreholes occur sufficiently close together in time, (4) specific flow paths through the waste based on the location of the boreholes associated with E1E2-type scenarios can be included in the analysis rather than conservatively assuming that the flow path associated with such scenarios accesses all waste in a waste panel as is currently done in PAs for the WIPP; the effects of flow paths involving more than one waste panel can also be investigated, (5) borehole permeability can be incorporated into the analysis as a stochastic uncertainty (i.e., all boreholes need not be assumed to have the same permeability as is currently done in PAs for the WIPP), (6) inventory checks on material released from waste panels can be performed to assure that releases do not exceed the available inventory, and (7) interpolation on intrusion time can be used to make more realistic use of the mechanistic calculations on which CCDF construction is ultimately based.

Procedures can also be used to make the Monte Carlo integration over S_{st} more efficient. For example, a possibility is to sample a disproportionate number of elements from S_{st} that involve two or more drilling intrusions and then probabilistically correct for this disproportionate sampling when the derived CCDF is actually constructed. Such procedures (i.e., importance sampling) allow increased resolution in the incorporation of unlikely but risk-
significant subsets of S_{ir} into the analysis. For example, such a procedure could be used to increase the numerical accuracy with which the effects of E1E2-type scenarios are incorporated into the analysis.

Both the Monte Carlo and stratified sampling procedures described in this presentation rely on a relatively small number of mechanistic calculations, which are then extended to provide estimates of the releases associated with a large number of different elements of S_{ir}. Neither procedure would be computationally tractable if a sequence of mechanistic calculations had to be performed for every element of S_{ir} required in the construction of the CCDF specified in the EPA release limits. The advantage of the Monte Carlo procedure is that it allows greater resolution to be built into the use of these mechanistic calculations.
References

PERFORMANCE ASSESSMENT DISTRIBUTION LIST
(Send Distribution list changes to F. Puffer, Tech Reps. Inc.,
5000 Marble NE, Suite 200 Albuquerque, NM 87110)

Federal Agencies

US Department of Energy (6)
Office of Civilian Radioactive Waste Management
Attn: Deputy Director, RW-2
 Associate Director, RW-10/50
 Office of Program and Resources Management
 Office of Contract Business Management
 Director, RW-22, Analysis and Verification Division
Associate Director, RW-30
 Office of Systems and Compliance
Associate Director, RW-40
 Office of Storage and Transportation
 Director, RW-4/5
 Office of Strategic Planning and International Programs Office of External Relations
Forrestal Building
Washington, DC 20585

US Department of Energy
Albuquerque Operations Office
Attn: National Atomic Museum Library
PO Box 5400
Albuquerque, NM 87185

US Department of Energy (2)
Office of Environmental Restoration and Waste Management
Attn: Director, EM-1
 C. Frank, EM-50
Washington, DC 20585

US Department of Energy (3)
Office of Environmental Restoration and Waste Management
Attn: M. Frei, EM-34 / Trevion II
Director, Waste Management Projects
Washington, DC 20585-0002

US Department of Energy
Office of Environmental Restoration and Waste Management
Attn: J. Lytle, EM-30 / Trevion II
Washington, DC 20585-0002

US Department of Energy
Office of Environmental Restoration and Waste Management
Attn: S. Schneider, EM-342
 Trevion II
Washington, DC 20585-0002

US Department of Energy (3)
WIPP Task Force
Attn: G.H. Daly
 S. Fucigna
 B. Bower
12800 Middlebrook Rd., Suite 400
Germantown, MD 20874

US Department of Energy (4)
Office of Environment, Safety and Health
Attn: R.P. Berube, EH-20
 C. Borgstrom, EH-25
 R. Pelletier, EH-231
 K. Taimi, EH-232
Washington, DC 20585

US Department of Energy (6)
WIPP Project Integration Office
Attn: S. Alcorn
 W.J. Arthur III
 J. Coffey
 L.W. Gage
 P.J. Higgins
 D.A. Olona
PO Box 5400
Albuquerque, NM 87115-5400

Dist-1
Defense Nuclear Facilities Safety Board
Attn: D. Winters
625 Indiana Ave. NW
Suite 700
Washington, DC 20004

Nuclear Waste Technical Review Board
Attn: Library (2)
1100 Wilson Blvd.
Suite 910
Arlington, VA 22209-2297

State Agencies

New Mexico Bureau of Mines and Mineral Resources
Socorro, NM 87801

New Mexico Energy, Minerals and Natural Resources Department
Attn: Librarian
2040 South Pacheco
Santa Fe, NM 87505

New Mexico Energy, Minerals and Natural Resources Department
New Mexico Radioactive Task Force (2)
(Governor’s WIPP Task Force)
Attn: A. Lockwood, Chairman
C. Wentz, Policy Analyst
2040 South Pacheco
Santa Fe, NM 87505

Bob Forrest
Mayor, City of Carlsbad
PO Box 1569
Carlsbad, NM 88221

Carlsbad Department of Development
Executive Director
Attn: C. Bernard
PO Box 1090
Carlsbad, NM 88221
New Mexico Environment Department
Secretary of the Environment (3)
Attn: J. Espinosa
PO Box 968
1190 St. Francis Drive
Santa Fe, NM 87503-0968

New Mexico Environment Department
Attn: P. McCasland
WIPP Project Site Office
PO Box 3090
Carlsbad, NM 88221-3090

New Mexico State Engineer’s Office
Attn: M. Chudnoff
PO Box 25102
Santa Fe, NM 87504-5102

Environmental Evaluation Group (5)
Attn: R. Neill
7007 Wyoming Blvd. NE, Suite F-2
Albuquerque, NM 87109

Advisory Committee on Nuclear Facility Safety

John F. Ahearne
Executive Director, Sigma Xi
99 Alexander Drive
Research Triangle Park, NC 27709

James E. Martin
109 Observatory Road
Ann Arbor, MI 48109

WIPP Committee, National Research Council’s Board on Radioactive Waste Management

National Research Council (2)
Board on Radioactive Waste Management
Attn: C.A. Anderson
I.B. Alterman
2101 Constitution Ave. NW
Harris Bldg. HA 456
Washington, DC 20418

Howard Adler
Oxysres, Inc.
11020 Solway School Rd.
Knoxville, TN 37931

John O. Blomeke
3833 Sandy Shore Drive
Lenoir City, TN 37771-9803

John D. Bredehoeft
Western Region Hydrologist
Water Resources Division
US Geological Survey (M/S 439)
345 Middlefield Road
Menlo Park, CA 94025

Fred M. Ernsberger
1325 NW Tenth Ave.
Gainsville, FL 32605

Rodney C. Ewing
Department of Geology
University of New Mexico
Albuquerque, NM 87131

Charles Fairhurst
Department of Civil and Mineral Engineering
University of Minnesota
500 Pillsbury Dr. SE
Minneapolis, MN 55455-0220

B. John Garrick
PLG, Incorporated
4590 MacArthur Blvd., Suite 400
Newport Beach, CA 92660-2027

Leonard F. Konikow
US Geological Survey
431 National Center
Reston, VA 22092

Jeremiah O’Driscoll
Jody, Incorporated
505 Valley Hill Drive
Atlanta, GA 30350
Christopher G. Whipple
ICF Kaiser Engineers
1800 Harrison St. 7th Floor
Oakland, CA 94612-3430

Thomas A. Zordan
Zordan Associates, Inc.
3807 Edinburg Dr.
Murrysville, PA 15668

Performance Assessment Peer Review
Panel

G. Ross Heath
College of Ocean & Fishery Sciences
University of Washington
583 Henderson Hall, HN-15
Seattle, WA 98195

Thomas H. Pigford
University of California
166 Alpine Terrace
Oakland, CA 94618

Thomas A. Cotton
JK Research Associates, Inc.
4429 Butterworth Place NW
Washington, DC 20016

Robert J. Budnitz
President, Future Resources Associates, Inc.
2039 Shattuck Ave
Suite 402
Berkeley, CA 94704

C. John Mann
Department of Geology
245 Natural History Bldg.
1301 West Green Street
University of Illinois
Urbana, IL 61801

Frank W. Schwartz
Department of Geology and Mineralogy
The Ohio State University
Scott Hall
1090 Carmack Rd.
Columbus, OH 43210

National Laboratories

Argonne National Laboratory (2)
Attn: A. Smith
D. Tomasko
9700 South Cass, Bldg. 201
Argonne, IL 60439

Battelle Pacific Northwest Laboratory (2)
Attn: S. Bates
R.E. Westerman
MSIN P8-44
Battelle Boulevard
Richland, WA 99352

Idaho National Laboratory (2)
Westinghouse-Idaho Nuclear Co.
Attn: H. Loo
R. Klingler
Mail Stop 3422
P.O. Box 4000
Idaho Falls, ID 83415-3422

Los Alamos National Laboratory (5)
Attn: B. Erdal, INC-12
M. Ennis, HS-12
Mail Stop J900
S. Kosiewicz, EM-7
Mail Stop J595
L. Soholt, EM-13
Mail Stop M992
J. Wenzel, HS-12
Mail Stop K482
PO Box 1663
Los Alamos, NM 87545
Oak Ridge National Laboratory
Transuranic Waste Manager
Attn: D.W. Turner
Bldg. 3047
PO Box 2008
Oak Ridge, TN 37831-6060

Pacific Northwest Laboratory
Attn: B. Kennedy
PO Box 999
Richland, WA 99352

Westinghouse—Savannah River Technology Center (4)
Attn: N. Bibler
J.R. Harbour
M.J. Plodinec
G.G. Wicks
Aiken, SC 29802

Corporations/Members of the Public

Battelle Memorial Institute
Attn: R. Root
J. Kircher
505 Marquette NW, Suite 1
Albuquerque, NM 87102

Benchmark Environmental Corp.
Attn: C. Frederickson
4501 Indian School NE, Suite 105
Albuquerque, NM 87110

Beta Corporation Int.
Attn: E. Bonano
6613 Esther NE
Albuquerque, NM 87109

City of Albuquerque
Public Works Department
Utility Planning Division
Attn: W.K. Summers
PO Box 1293
Albuquerque, NM 87103

Deuel and Associates, Inc.
Attn: R.W. Prindle
7208 Jefferson NE
Albuquerque, NM 87109

Disposal Safety, Inc.
Attn: B. Ross
1660 L Street NW, Suite 314
Washington, DC 20036

Ecodynamics (2)
Attn: P. Roache
R. Blaine
PO Box 9229
Albuquerque, NM 87119-9229

EG & G Idaho (3)
1955 Fremont Street
Attn: C. Atwood
C. Hertzler
T.I. Clements
Idaho Falls, ID 83415

Geomatrix
Attn: K. Coppersmith
100 Pine St., Suite 1000
San Francisco, CA 94111

Golder Associates, Inc.
Attn: R. Kossik
4104 148th Avenue NE
Redmond, WA 98052

John Hart and Associates, P.A.
Attn: J.S. Hart
2815 Candelaria Road NW
Albuquerque, NM 87107

John Hart and Associates, P.A.
Attn: K. Lickliter
400-C 8th St. NW
Tacoma, WA 98439

INTERA, Inc.
Attn: A.M. LaVenue
1650 University Blvd. NE, Suite 300
Albuquerque, NM 87102
University of California
Engineering and Applied Science
Attn: D. Okrent
48-121A Engineering IV
Los Angeles, CA 90024-1597

University of California
Mine Engineering Department
Rock Mechanics Engineering
Attn: N. Cook
Berkeley, CA 94720

University of Hawaii at Hilo
Business Administration
Attn: S. Hora
Hilo, HI 96720-4091

University of Illinois
Department of Geology
Attn: C. Bethke
1301 W. Green St.
Urbana, IL 61801

University of New Mexico
Geology Department
Attn: Library
Albuquerque, NM 87131

University of New Mexico
Research Administration
Attn: H. Schreyer
102 Scholes Hall
Albuquerque, NM 87131

University of Wyoming
Department of Civil Engineering
Attn: V.R. Hasfurther
Laramie, WY 82071

University of Wyoming
Department of Geology
Attn: J.I. Drever
Laramie, WY 82071

Thomas Brannigan Library
Attn: D. Dresp
106 W. Hadley St.
Las Cruces, NM 88001

New Mexico State Library
Attn: N. McCallan
325 Don Gaspar
Santa Fe, NM 87503

New Mexico Tech
Martin Specere Memorial Library
Campus Street
Socorro, NM 87810

New Mexico Junior College
Pannell Library
Attn: R. Hill
Lovingston Highway
Hobbs, NM 88240

Carlsbad Municipal Library
WIPP Public Reading Room
Attn: L. Hubbard
101 S. Halagueno St.
Carlsbad, NM 88220

University of New Mexico
Zimmerman Library
Government Publications Department
Albuquerque, NM 87131

NEA/Performance Assessment Advisory Group (PAAG)

P. Duerden
ANSTO
Lucas Heights Research Laboratories
Private Mail Bag No. 1
Menai, NSW 2234
AUSTRALIA
Gordon S. Linsley
Division of Nuclear Fuel Cycle and Waste Management
International Atomic Energy Agency
PO Box 100
A-1400 Vienna, AUSTRIA

Timo Vieno
Technical Research Centre of Finland (VTT)
Nuclear Energy Laboratory
PO Box 208
SF-02151 Espoo, FINLAND

Nicolo Cadelli
Commission of European Communities
200, Rue de la Loi
B-1049 Brussels, BELGIUM

Division de la Sécurité et de la Protection de l'Environnement (DSPE)
Commissariat à l'Energie Atomique
Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA)
Attn: Gérald Ouzounian
M. Claude Ringeard
Route du Panorama Robert Schuman
B. P. No. 38
F-92266 Fontenay-aux-Roses Cedex
FRANCE

R. Heremans
Organisme Nationale des Déchets Radioactifs et des Matières Fissiles (ONDRAF)
Place Madou 1, Boitec 24/25
B-1030 Brussels, BELGIUM

Claudio Pescatore
Division of Radiation Protection and Waste Management
OECD Nuclear Energy Agency
38, Boulevard Suchet
F-75016 Paris, FRANCE

J. Marivoet
Centre d'Etudes de l'Énergie Nucléaire (CEN/SCK)
Boeretang 200
B-2400 Mol, BELGIUM

M. Dominique Greneche
Commissariat à l'Energie Atomique
IPSN/DAS/SASICC/SAED
B.P. No. 6
F-92265 Fontenay-aux-Roses Cedex
FRANCE

P. Conlon
Waste Management Division
Atomic Energy Control Board (AECB)
PO Box 1046
Ottawa, Ontario KIP 559, CANADA

Claudio Pescatore
Division of Radiation Protection and Waste Management
OECD Nuclear Energy Agency
38, Boulevard Suchet
F-75016 Paris, FRANCE

A. G. Wikjord
Manager, Environmental and Safety Assessment Branch, AECL
Whiteshell Laboratories
Pinawa, Manitoba ROE ILO, CANADA

M. Dominique Greneche
Commissariat à l'Energie Atomique
IPSN/DAS/SASICC/SAED
B.P. No. 6
F-92265 Fontenay-aux-Roses Cedex
FRANCE

P. Bogorinski
Gesellschaft für Reaktorsicherheit (GRS)
MBH
Schwertnergasse 1
D-5000 Köln 1, GERMANY

Dist-10
NEA/Probabilistic System Assessment
Group (PSAG)

Shaheed Hossain
Division of Nuclear Fuel Cycle and
Waste Management
International Atomic Energy Agency
Wagramerstrasse 5
PO Box 100
A-1400 Vienna, AUSTRIA

Eduard Hofer
Gesellschaft für Reaktorsicherheit (GRS)
MBH
Forschungsgelände
D-8046 Garching, GERMANY

Andrea Saltelli
Commission of European Communities
Joint Research Centre of Ispra
I-21020 Ispra (Varese), ITALY

Alejandro Alonso
Cátedra de Tecnología Nuclear
E.T.S. de Ingenieros Industriales
José Gutiérrez Abascal, 2
E-28006 Madrid, SPAIN

ENRESA (2)
Attn: M. A. Cuñado
F. J. Elorza
Calle Emilio Vargas, 7
E-28043 Madrid, SPAIN

Pedro Prado
Ciemat
Instituto de Tecnología Nuclear
Avenida Complutense, 22
E-28040 Madrid, SPAIN

Nils A. Kjellbert
Swedish Nuclear Fuel and Waste
Management
Company (SKB)
Box 5864
S-102 48 Stockholm, SWEDEN

Björn Cronhjort
Royal Institute of Technology
Automatic Control
S-100 44 Stockholm, SWEDEN

Richard A. Klos
Paul-Scherrer Institute (PSI)
CH-5232 Villingen PSI, SWITZERLAND

Nationale Genossenschaft für die
Lagerung Radioaktiver Abfälle (2)
Attn: C. McCombie
F. Van Dorp
Hardstrasse 73
CH-5430 Wettingen, SWITZERLAND

N. A. Chapman
Intera Information Technologies
Park View House, 14B Burton Street
Melton Mowbray
Leicestershire LE13 1AE
UNITED KINGDOM

Daniel A. Galson
Galson Sciences Ltd.
5 Grosvenor House
Melton Road
Oakham
Rutland LE15 6AX
UNITED KINGDOM

David P. Hodgkinson
Intera Information Technologies
45 Station Road, Chiltern House
Henley-on-Thames
Oxfordshire RG9 1AT
UNITED KINGDOM

Brian G.J. Thompson
Department of the Environment: Her
Majesty’s Inspectorate of Pollution
Room A5.33, Romney House
43 Marsham Street
London SW1P 2PY, UNITED
KINGDOM
Intera Information Technologies
Attn: M.J. Apted
3609 South Wadsworth Blvd.
Denver, CO 80235

US Nuclear Regulatory Commission (2)
Attn: R. Codell
N. Eisenberg
Mail Stop 4-H-3
Washington, DC 20555

Battelle Pacific Northwest Laboratories
Attn: P.W. Eslinger
MS K2-32
PO Box 999
Richland, WA 99352

Center for Nuclear Waste Regulatory Analysis (CNWRA)
Southwest Research Institute
Attn: B. Sagar
PO Drawer 28510
6220 Culebra Road
San Antonio, TX 78284

Geostatistics Expert Working Group (GXG)

Rafael L. Bras
R.L. Bras Consulting Engineers
44 Percy Road
Lexington, MA 02173

Jesus Carrera
Universidad Politècnica de Cataluña
E.T.S.I. Caminos
Jordi, Girona 31
E-08034 Barcelona, SPAIN

Gedeon Dagan
Department of Fluid Mechanics and Heat Transfer
Tel Aviv University
PO Box 39040
Ramat Aviv, Tel Aviv 69978
ISRAEL

Ghislain de Marsily (GXG Chairman)
University Pierre et Marie Curie
Laboratoire de Geologie Applique
4, Place Jussieu
T.26 - 5e etage
75252 Paris Cedex 05
FRANCE

Alain Galli
Centre de Geostatistique
Ecole des Mines de Paris
35 Rue St. Honore
77035 Fontainebleau, FRANCE

Christian Ravenne
Geology and Geochemistry Division
Institut Francais du Pétrole
1 & 4, Av. de Bois-Préau B.P. 311
92506 Rueil Malmaison Cedex
FRANCE

Peter Grindrod
INTERA Information Technologies Ltd.
Chiltern House
45 Station Road
Henley-on-Thames
Oxfordshire, RG9 1AT, UNITED KINGDOM

Alan Gutjahr
Department of Mathematics
NM Institute of Mining and Technology
Socorro, NM 87801

C. Peter Jackson
Harwell Laboratory
Theoretical Studies Department
Radwaste Disposal Division
Bldg. 424.4
Oxfordshire Didcot Oxon OX11 ORA
UNITED KINGDOM

Rae Mackay
Department of Civil Engineering
University of Newcastle Upon Tyne
Newcastle Upon Tyne NE1 7RU
UNITED KINGDOM

Dist-13
Steve Gorelick
Department of Applied Earth Sciences
Stanford University
Stanford, CA 94305-2225

Peter Kitanidis
60 Peter Coutts Circle
Stanford, CA 94305

Dennis McLaughlin
Parsons Laboratory
Room 48-209
Department of Civil Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

Shlomo P. Neuman
College of Engineering and Mines
Hydrology and Water Resources Dept.
University of Arizona
Tucson, AZ 85721

Yoram Rubin
Department of Civil Engineering
University of California
Berkeley, CA 94720

Jean-Pierre Olivier
OECD Nuclear Energy Agency (2)
38, Boulevard Suchet
F-75016 Paris, FRANCE

D. Alexandre, Deputy Director
ANDRA
31 Rue de la Federation
75015 Paris, FRANCE

Claude Sombret
Centre D’Etudes Nucleaires
De La Vallee Rhone
CEN/VALRHØ
S.D.H.A. B.P. 171
30205 Bagnols-Sur-Ceze, FRANCE

Commissariat a L’Energie Atomique
Attn: D. Alexandre
Centre d’Études de Cadarache
13108 Saint Paul Lez Durance Cedex
FRANCE

Bundesministerium für Forschung und Technologie
Postfach 200 706
5300 Bonn 2, GERMANY

Bundesanstalt für Geowissenschaften und Rohstoffe
Attn: M. Langer
Postfach 510 153
D-30631 Hannover, GERMANY

Gesellschaft für Anlagen und Reaktorsicherheit (GRS) (2)
Attn: B. Baltes
W. Muller
Schwertnergasse 1
D-50667 Cologne, GERMANY

Institut fur Tieflagerung (2)
Attn: K. Kuhn
Theodor-Heuss-Strasse 4
D-3300 Braunschweig
GERMANY

Foreign Addresses

Studiecentrum Voor Kernenergie
Centre D’Energie Nucleaire
Attn: A. Bonne
SCK/CEN
Boeretang 200
B-2400 Mol, BELGIUM

Atomic Energy of Canada, Ltd. (3)
Whiteshell Laboratories
Attn: M.E. Stevens
B.W. Goodwin
D. Wushke
Pinewa, Manitoba ROE 1L0, CANADA

Juhani Vira
Teollisuuden Voima Oy (TVO)
Annankatu 42 C
SF-00100 Helsinki Suomi
FINLAND

W. Muller
Institut fur Tieflagerung (2)
Attn: K. Kuhn
Theodor-Heuss-Strasse 4
D-3300 Braunschweig
GERMANY