Pulsed laser ablation growth and doping of epitaxial compound semiconductor films

PDF Version Also Available for Download.

Description

Pulsed laser ablation (PLA) has several characteristics that are potentially attractive for the growth and doping of chemically complex compound semiconductors including (1) stoichiometric (congruent) transfer of composition from target to film, (2) the use of reactive gases to control film composition and/or doping via energetic-beam-induced reactions, and (3) low-temperature nonequilibrium phase formation in the laser-generated plasma ``plume.`` However, the electrical properties of compound semiconductors are far more sensitive to low concentrations of defects than are the oxide metals/ceramics for which PLA has been so successful. Only recently have doped epitaxial compound semiconductor films been grown by PLA. Fundamental studies ... continued below

Physical Description

14 p.

Creation Information

Lowndes, D. H.; Rouleau, C. M.; Geohegan, D. B.; Budai, J. D.; Poker, D. B.; Puretzky, A. A. et al. December 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Pulsed laser ablation (PLA) has several characteristics that are potentially attractive for the growth and doping of chemically complex compound semiconductors including (1) stoichiometric (congruent) transfer of composition from target to film, (2) the use of reactive gases to control film composition and/or doping via energetic-beam-induced reactions, and (3) low-temperature nonequilibrium phase formation in the laser-generated plasma ``plume.`` However, the electrical properties of compound semiconductors are far more sensitive to low concentrations of defects than are the oxide metals/ceramics for which PLA has been so successful. Only recently have doped epitaxial compound semiconductor films been grown by PLA. Fundamental studies are being carried out to relate film electrical and microstructural properties to the energy distribution of ablated species, to the temporal evolution of the ablation pulse in ambient gases, and to beam assisted surface and/or gas-phase reactions. In this paper the authors describe results of ex situ Hall effect, high-resolution x-ray diffraction, transmission electron microscopy, and Rutherford backscattering measurements that are being used in combination with in situ RHEED and time-resolved ion probe measurements to evaluate PLA for growth of doped epitaxial compound semiconductor films and heterostructures. Examples are presented and results analyzed for doped II-VI, I-III-VI, and column-III nitride materials grown recently in this and other laboratories.

Physical Description

14 p.

Notes

OSTI as DE96008105

Source

  • Fall meeting of the Materials Research Society (MRS), Boston, MA (United States), 27 Nov - 1 Dec 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96008105
  • Report No.: CONF-951155--107
  • Grant Number: AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 219350
  • Archival Resource Key: ark:/67531/metadc666378

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1995

Added to The UNT Digital Library

  • June 29, 2015, 9:42 p.m.

Description Last Updated

  • Jan. 22, 2016, 8:15 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 17

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lowndes, D. H.; Rouleau, C. M.; Geohegan, D. B.; Budai, J. D.; Poker, D. B.; Puretzky, A. A. et al. Pulsed laser ablation growth and doping of epitaxial compound semiconductor films, article, December 1995; Tennessee. (digital.library.unt.edu/ark:/67531/metadc666378/: accessed September 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.